A Markov Network based Factorized Distribution Algorithm for
optimization

Roberto Santana
Institute of Cybernetics, Mathematics, and Physics (ICIMAF)
Calle 15, ¢/ C y D, Vedado
CP-10400, La Habana, Cuba
rsantana@cidet.icmf.inf.cu

Abstract- In this paper we propose a popula-
tion based optimization method that uses the
estimation of probability distributions. To rep-
resent an approximate factorization of the prob-
ability, the algorithm employs a junction graph
constructed from an independence graph. We
show that the algorithm is able to extend the
representation capabilities of previous algorithms
that use factorizations. A number of functions
are used to evaluate the performance of our
proposal. The results of the experiments show
that the algorithm is able to optimize the func-
tions, and it overperforms other evolutionary
algorithms that use factorizations.

Keywords. Genetic algorithms, EDA, FDA, evo-
lutionary optimization, estimation of distribu-
tions.

1 Introduction

In the application of Genetic Algorithms (GAs) [8, 6]
to a wide class of optimization problems is essential
the identification and mixing of building blocks. It has
been early noticed that the Simple GA (SGA) is in gen-
eral unable to accomplish these two tasks for difficult
problems (e.g. deceptive problems). Perturbation tech-
niques, linkage learners and model building algorithms
are among the alternatives proposed to improve GAs.
They try to identify the relevant interactions among
the variables of the problem, and to use them in an
efficient way to search for solutions.

Model building techniques refer to GAs that con-
struct a probabilistic model of the solutions instead of
the crossover operator. In this paper we use the term
Estimation Distribution Algorithms (EDAs) [16] to call
this type of algorithms. These algorithms construct in
each generation a probabilistic model of the selected
solutions. The probabilistic model must be able to cap-
ture a number of relevant relationships in the form of
statistical dependencies among the variables. Depen-
dencies are then used to generate solutions during a
sampling step.

It is expected that the generated solutions share a
number of characteristics with the selected ones. In this

Proceedings 17th European Simulation Multiconference
(c) SCS Europe BVBA, 2003 ISBN 3-936150-25-7

way the search is led to promising areas of the search
space. EDAs are also known as Iterated Density Esti-
mators Evolutionary Algorithms [1], and Probabilistic
Model Building Genetic Algorithms [20]. The inter-
ested reader is referred to [9] for a good survey that
covers the theory, and a wide spectrum of EDAs appli-
cations.

One efficient way of estimating a probability dis-
tribution is by means of factorizations. A probability
distribution is factorized when it can be computed by a
small number of factors. A subclass of EDAs will group
the algorithms that use factorizations of the probabil-
ity distribution. In this paper we call to this subclass
Factorized Distribution Algorithms (FDAs)! [15].

FDAs have outperformed other evolutionary algo-
rithms in the optimization of complex additive func-
tions, and deceptive problems with overlapping vari-
ables [15]. They have been recently applied as well for
the solution of the bipartitioning [14], and satisfiabil-
ity problems [18]. However, a shortcoming of FDAs is
that the probabilistic model they are based on is con-
strained to represent a limited number of interactions.
In this paper we investigate the issue of extending the
representation capabilities of FDAs. To this end we in-
troduce the Markov Network FDA (MN-FDA), a new
type of FDA based on an undirected graphical model,
and able to represent the so called ”invalid” factoriza-
tions [15].

The paper is organized as follows. In section 2 we
discuss the problem of obtaining a factorization of the
probability. Section 3 presents the main steps for learn-
ing an approximate factorization from data. Section 4
explains the way the sampling step has been imple-
mented. We introduce the MN-FDA in section 5. Sec-
tion 6 presents the functions used in our experiments.
We discuss the numerical results of the simulation. Sec-
tion 7 analyzes the MN-FDA in the context of recent
related research on evolutionary computation, we also
present in this section the conclusions of our paper.

n the literature the term FDA is frequently used to name
a particular type of Factorized Distribution Algorithms. Our
definition covers it, and other algorithms that use factorizations.

Figure 1: Independence graph

2 Factorization of a probability

The central problem of FDAs is how to efficiently es-
timate a factorization of the joint probability of the
selected individuals. To compute a factorization the
theory of graphical models is usually employed. One
example of graphical models are Bayesian networks,
where the dependencies relationships between the vari-
ables of the problem are represented using directed
graphs. A number of Bayesian FDAs have been pro-
posed in the literature [5, 19, 13]. We will focus on
another type of graphical representation based on undi-
rected graphs. The following definitions will help in the
explanation of our proposal.

Let X = (X;,Xs,---,X,) represent a vector of in-
teger random variables, where n is the number of vari-
ables of the problem. z = (x1,2,--- , ;) is an assign-
ment to the variables, and p(z) is a joint probability
distribution to be modeled. Each variable of the prob-
lem has associated one vertex in an undirected graph
G = (V, E). The graph G is a conditional independence
graph respect to p(z) if there is no edge between two
vertices whenever the pair of variables is independent
given all the remaining variables.

Definition 1. Given a graph G, a clique in G is a
fully connected subset of V. We reserve the letter C to
refer to a clique. The collection of all cliques in G is
denoted as C. C is mazximal when it is not contained
in any other clique. C is the mazimum clique of the
graph if it is the clique in C with the highest number of
vertices.

Definition 2. A junction graph (JG) of the indepen-
dence graph G is a graph where each node corresponds
to a mazimal clique of G, and there exists an edge be-
tween two nodes if their corresponding cliques overlap.

Definition 3. A junction tree (JT) is a single con-
nected junction graph. It satisfies that if the variable
Xy, is a member of the junction tree nodes i and j,

Figure 2: Associated junction graph

then Xy is a member of every node on the path between
1 and j. This property is called the running intersection
property.

Figures 1 and 2 respectively show an example of an
independence graph, and its associated junction graph.

If the independence graph G is chordal, an exact
factorization of the probability based on the cliques of
the graph exists. The factorization can be represented
using a JT'. If G is not chordal, a chordal supergraph
of G can be found by adding edges to G in a process
called triangulization. The problem is that we can not
guarantee that the maximum clique of the supergraph
will have a size that would make feasible the calculation
of the marginal probabilities. The problem of finding a
triangulization with maximum clique of minimum size
is NP-complete.

To obtain an exact factorization of the probability
is usually an infeasible task. In such cases we can use
approximate factorizations. This is the approach we
follow. Our goal is to find an approximate factoriza-
tion that contains as many dependencies as possible,
but without adding new edges to the graph. An exact
factorization would comprise all the dependencies rep-
resented in the independence graph. We will assume
that approximate factorizations of the probability are
more precise as they include more of the dependencies
represented in the independence graph.

The approximate factorization will be represented
using a labeled JG. The algorithm for learning the
probabilistic model has four main steps.

Algorithm 1: Model learning

1 Learn an independence graph G from the data
(the selected set of solutions).
Find the set L of all the maximal cliques of G.

3 Construct a labeled JG from L.

4 Find the marginal probabilities for the cliques
in the JG.

3 Learning of approximate factorization

In this section we consider in detail the different steps
for learning a factorization from data.

3.1 Learning of an independence graph

The construction of an independence graph from the
data can be accomplished by means of independence
tests. To determine if an edge belongs to the graph, it
is enough to make an independence test on each pair
of variables given the rest. Nevertheless, from an algo-
rithmic point of view it is important to reduce the order
of the independence tests. Thus, we have adopted the
methodology followed previously by Spirtes [22]. The
idea is to start from a complete undirected graph, and
then try to remove edges by testing for conditional in-
dependence between the linked nodes, but using con-
ditioning sets as small as possible.

To evaluate the independence tests we use the Chi-
square independence test. If two variables X; and X;
are dependent with a 75 percent of significance the cor-
responding X2 value of the Chi-square test is used to
assign a weight w(i, j) to the edge ¢ ~ j. This weight
stresses the pairwise interaction between the variables.
When the independence graph is known in advance,
we assume w(i,j) = w',Vi ~ j € E. The weight
of any subgraph G' of G is calculated as w(G') =
2injeg w(i, j). In this way the weights of the maxi-
mal cliques can be calculated.

3.2 Maximal cliques of graph

To find all the cliques of the graphs the Ken and Ker-
bash algorithm [2] is used. This algorithm uses a branch
and bound technique to cut off branches that can lead
to cliques. Its memory requirements are at most % -M -
(n + 3) storage locations to contain arrays of integers,
where M is the size of the largest connected component
in the input graph [2]. When the undirected graph is
very dense, it can be made sparser before the calcula-
tion of the cliques of the graph by removing the edges
with lower weights.

3.3 Construction of the labeled JG

Algorithm 2 receives the list of cliques L with their
weight, and outputs a list L' of the cliques in the JG.
The first clique in L' is the root, and the labels of
cliques in the JG correspond to their position in the
list. Each clique in the JG is a subset of a clique in L.

We focus now on step 5 of algorithm 2. The con-
dition of maximizing the number of variables in C'N
(L'(1)UL'(2) ---UL'(NCligues)) states that the clique

Algorithm 2: Algorithm for learning a JG

1 Order the cliques in L decrementally according
to their weight.

2 Add element L(1) to list L'

% Remove element L(1) from L

4 While L is not empty

5 Find the first element C' in L such that
the number of variables in C N (L'(1) U
L'(2)--- U L'(NCligques)) # C, and C N
L'(1)NL'(2)---NnL'(NCliques) is maximized

6 fC=90

7 Remove all the elements in L

8 else

9 Insert C in L'

C in L that has the highest number of overlapping vari-
ables with all the variables already in L', will be added
to L'. The number of overlapping variables has to be
less than the size of the clique, constraint meaning that
at least one of the variables in C has not appeared be-
fore. If there exist many cliques with maximum num-
ber of overlapped variables, the one that appears first
in L is added to L'. On the other hand, if the max-
imum number of overlapped variables is zero, then in
the JG there exists more than one connected compo-
nent. In this case we have a set of junction graphs,
however we have preferred to abuse the notation and
call it JG, whether it has one or more connected com-
ponents. Finally, the addition of cliques stops when all
the variables are already in the JG.

3.4 Calculation of the marginal probabilities

Marginal probabilities are found by calculating the num-
ber of counts associated to each configuration, and nor-
malizing. In the implementation, the learned model’s
parameters can be changed by adding a perturbation
in the form of probabilistic priors [10]. The effect of
this type of priors is similar to the effect of mutation
in GAs. In many problems they improve the behavior
of the algorithm. This fact can be explained by the
important role played by mutation in avoiding prema-
ture convergence, and allowing the exploration of new
regions during the search.

4 Sampling of the approximate factoriza-
tion
To create the new generation of solutions FDAs sam-

ple points from the probabilistic model. The MN-FDA
sampling algorithm follows the order determined by the

labels of the JG. The variables corresponding to the
first clique in the JG are instantiated sampling from
the marginal probabilities. For the rest of cliques, each
subset of variables that has not been instantiated is
sampled conditionally on the variables already instan-
tiated that belong to the clique. The process is very
similar to Probabilistic Logic Sampling (PLS) [7] when
it is used in junction trees. There exists however an im-
portant difference. The definition of J7T' discards the
existence of cycles. A labeled JG can contain cycles.
This fact allows the representation of more interactions,
but it does not essentially change the performance of
the sampling algorithm. The reason is that in every
step of the JG sampling algorithm, the conditioning
and conditioned subsets of variables will belong to the
clique whose variables are being sampled.

5 MN-FDA

FDAs based on undirected graphical models represent
the factorizations using a JT. The FDA* [15] uses
a fixed model of interactions, only the parameters of
the cliques are learned in each generation. The sim-
plest FDA is the Univariate Marginal Distribution Al-
gorithm (UMDA) [11]. The UMDA assumes that all
the variables are independent, and in every step it makes
a parametric learning of the univariate probabilities.

The FDA-learning [17] is based on a theoretical al-
gorithm [4] that learns a chordal independence graph
straight from the data, allowing to change the model
structure in each generation. If the underlying prob-
ability model is decomposable, the algorithm recovers
it, if not it recovers a chordal supergraph. The JT is
constructed from the chordal graph found.

Our algorithm will be called Markov Network FDA
(MN-FDA), its pseudo-code is presented in algorithm 3.
The main difference between it and previous FDAs
based on undirected models is that it uses as its prob-
abilistic model a JG, allowing factorizations that have
not to be correct.

Analogously to GAs, different replacing strategies
can be incorporated to the MN-FDA. Additionally, in
the case of proportional selection the learning step can
be done straight on the probabilities determined by the
selection, without the need of constructing a selected
set [21].

6 Experiments

In our experiments we compare the behavior of the
MN-FDA with other FDAs. First, a number of func-
tions commonly used to evaluate evolutionary algo-
rithms are presented. Also a practical problem used

Algorithm 3: MN-FDA

1 Set t <= 0. Generate N > 0 points randomly.
2 do {

3 Select a set S of k£ < N points according to
a selection method.
4 Learn a JG from the data

5 Calculate the marginal probabilities for all
the cliques in the JG.

6 Generate a the new population sampling
from the JG.

7 t<=t+1

§ } until Termination criteria are met

in the experiments is described. All the problems used
in the experiments are defined on binary variables. The
numerical results and the analysis of the experiments
are presented afterwards.

6.1 Functions used in the experiments

Deceptive functions were introduced by Goldberg to
show the deceptive nature of the GAs behavior, and
to address the problems given by the convergence to
local optima of the function. The following 4 elemen-
tary deceptive functions of k& variables are used to de-
fined some of the additive functions used in our experi-
ments. They are defined in terms of the unitation value

u(r) = Z?:l Li-

U 0 112|134 5
3. 1090801
fi. | 3] 2]1]0]4
IsoTy | m | 0 [0]0(O0 0
IsoTo | m | 0 |0|0(0|m—1
n
Onemaz(z) = Z T; (1)
i=1
=3

f3deceptive (.’L‘) = Z fgec($3i—2; T3i—1, $3i) (2)
i=1

i—n
=3

Deceptives(z) = Z fiee(@aizz, Tai—2, Tai—1,%4;) (3)

i=1

FISOP(nymykax) = (i wl) (4)

+h-m+ 1)L —21) - (1= 2n)Tmi1 - Tn)

OneMax BigJump(30,3,1) Deceptived
n | Alg. | N | succ. | n | Alg. | N | succ. | n | Alg. | N | succ.
30| UMDA 30 75130 UMDA | 200 100 | 32| UMDA | 800 0
30 | LFDAy.25 | 100 2130 | LFDAg. 25 | 200 58 | 32 FDA 100 81
30 | LFDAg5 | 100 38 | 30 | LFDAg.5 | 200 96 | 32 | LFDAg .05 | 800 92
30 | LFDAy.75 | 100 80 | 30 | LFDAg.75 | 200 100 | 32 | LFDAy 5 | 800 72
30 | LFDAg. 25 | 200 71 | 30 | LFDAg.o5 | 400 100 | 32 | LFDAg 75 | 800 12
30 | MN-FDA | 30 | 72|30 | MN-FDA | 100| 92|32] MN-FDA [600 | 90
30 | MN-FDA | 100 98 | 30 | MN-FDA | 200 | 100 | 32 | MN-FDA | 800 | 100

Table 1: Comparison between the MN-FDA with the UMDA and the LFDA for different functions

When analyzing interactions between variables it is
important to consider interactions that do not depend
on the linear codification of solutions. To this end
we considered function Fysororus (5) where @y, Tieft,
etc., are defined as the appropriate neighbors, wrap-
ping around.

FrsoTorus (:L') =

n
E i—2 IsoT; (xup: Ziefts Li, Tright,

Function BigJump (6) was introduced in [12]. A
valley has to be crossed in order to reach the global
optimum of this function. The bigger the parameter
m is for this function, the wider the valley. k can be
increased to give bigger weight to the maximum.

and eval is the average number of of evaluations needed
to find the optimum.

In table 1 results of the MN-FDA for different func-
tions are compared with results published in [12] for the
UMDA and the LFDA (A FDA that uses a Bayesian
probabilistic model). For the functions considered, the
MN-FDA achieved equal or better results than the LFDA.
We have observed that the learning algorithm used by

Is0T1 (21 m+n>T1—m+n>T1, T2, T1+m) the MN-FDA easily detects variables that are indepen-
Tdod, ent. The BN learning algorithms used by Bayesian

DAs may have problems recognizing independency,
particularly if the parameter that specifies the density
of the network (parameter « in the case of the LFDA)
is small.

In table 2 we have included the results for the UMDA
the Tree-FDA, and the LFDA for other functions. For
function fsgeceptive the results of the MN-FDA are the
best, and there is a significant difference with the re-

U for 0<u<n-—m sgults achieved by the LFDA. For function FrsoTorus

BigJump(u,n,m, k) = 0 for n—m <u<m LFDA finds the optimum more times than the MN-
k-n for u=m FDA, however its average fitness is lower. For func-

(6) tion Fysp the Tree-FDA takes advantage of the chain-

The generalized Ising model (7) is described by the
energy functional (Hamiltonian) where L is the set of
sites called a lattice. Each spin variable o; at site ¢ € L
either takes the value 1 or value —1. A specific choice of
values for the spin variables is called a configuration.
The constants J;; are the interaction coefficients. In
our experiments we take h; = 0, V¢ € L. The ground
state is the configuration with minimum energy.

H=— Z Jz'jO','O'j —Zh,ﬂ'i

i<jeL i€l

(7)

6.2 Numerical results

In the following experiments IV is the population size,
succ is the number of times the optimum was reached
in 100 experiments, gen the average number of genera-
tions to convergence, f the average fitness of solutions,

shaped structure of function Fy,,p to achieve the best
results. It can be appreciated that the UMDA is not
able to solve the problems with interactions.

We have generated 4 random instances of the Ising

model for different number of variables (n € {25, 36,49, 64}).

For each of the instances we investigate two different
issues. First, the influence of using the prior informa-
tion about the interactions of the variables. MN-FDA?
is a Markov Network FDA that does not learn the inde-
pendence graph from the data. In this case the lattice
where the Ising model is defined serves as the indepen-
dence graph. The maximum size of the cliques is equal
2. The parameters of the cliques that belong to the JG
are learned from the data. The second issue we study
is the scaling of the algorithm.

An analysis of the results shows the convenience of
using prior information about the optimization prob-
lem for increasing the efficiency of the MN-FDA. The

f3deceptive FISOTOT‘US FIsoP
succ. | f | gen | succ. | f | gen | succ. | f | gen
MN-FDA 7711197 | 8.0 78 | 210.78 | 5.8 69 | 1190.69 | 5.0
UMDA 0 0 0 17| 175.01 | 8.7 0 0 0
Tree-FDA 311190 | 9.3 70 | 210.70 | 6.3 99 | 1190.99 | 5.8
LFDA 451191 | 6.4 851 210.55 | 6.0 76 | 1190.75 | 4.6

Table 2: Comparison between the MN-FDA with other FDAs for different functions.

small population size that is enough for the conver-
gence of the MN-FDA? is not sufficient for the MN-
FDA. As expected, when the number of variables in-
creases a higher population size is needed to solve the
problem.

Inst.| N | MN-FDA?® MN-FDA
suce. | eval. | succ. | eval.
I?5 1200 | 100| 849 43 | 1163
I35 | 400 86 | 2316 41 | 2453
I*9 1 700 82 | 3841 36 | 4201
I5% 1700 67 | 6031 28 | 6641

Table 3: Results of the MN-FDA for different Ising
instances.

7 Conclusions

In this paper we have presented a FDA that approx-
imates the probability distribution determined by se-
lection using a labeled JG. The JG is found by calcu-
lating the maximal cliques of a Markov Network that
can be given as an input or learned from the data. Our
work is related with previous work by Muehlenbein et
al. [15], where approximate factorizations were recog-
nized as an alternative for modeling probabilistic dis-
tributions. Our research has led to to a different way of
finding these approximations. It is also related with the
work presented by Brown et al. [3] in the application
of MRFs to GAs. They have used probabilistic models
of GA fitness functions to generate new solutions. Qur
work shows a number of relevant differences with this
approach:

1. The use of statistical test to learn the structure
of interactions. In [3] the structure of the inter-
actions is known a priori.

2. The construction of the JG from the MN

3. The use of PLS on the JG. In [3] the Metropolis
algorithm is used to generate new solutions.

The results of the experiments show that the MN-
FDA is able to optimize theoretical functions as well
as functions derived from practical problems, overper-
forming other evolutionary algorithms. The MN-FDA
generalizes other FDAs by learning factorizations that
have not to be correct. More theoretical investigation is
needed to determine bounds for the convergence of the
MN-FDA. Other practical optimization problems must
be tried to assess the performance of the algorithm.

Bibliography

[1] P. A. N. Bosman and D. Thierens. Linkage infor-
mation processing in distribution estimation algo-
rithms. In W. Banzhaf, J. Daida, A. E. Eiben,
M. H. Garzon, V. Honavar, M. Jakiela, and R. E.
Smith, editors, Proceedings of the Genetic and
Evolutionary Computation Conference GECCO-
99, volume I, pages 60-67, Orlando, FL, 1999.
Morgan Kaufmann Publishers, San Francisco, CA.

C. Bron and J. Kerbosch. Algorithm 457—finding
all cliques of an undirected graph. Communica-
tions of the ACM, 16(6):575-577, 1973.

D. F. Brown, A. Garmendia-Doal, and J. A. W.
McCall. Markov random field modelling of royal
road genetic algorithms. In P. Collet, editor, Pro-
ceedings of EA 2001, volume 2310 of Lecture Notes
in Computer Science, pages 65-76. Springer Ver-
lag, 2002.

L. M. deCampos and J.F.Huete. Algorithms for
learning decomposable models and chordal graphs.
Technical Report DECSAI 970213, University of
Navarra, 1997.

R. Etxeberria and P. Larrafiaga. Global opti-
mization using Bayesian networks. In Proceed-
ings of the Second Symposium on Artificial In-
telligence (CIMAF-99), pages 151-173, Habana,
Cuba, March 1999.

[6]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

D. E. Goldberg. Genetic algorithms in search,
optimization, and machine learning. Addison-
Wesley, Reading, MA, 1989.

M. Henrion. Propagating uncertainty in Bayesian
networks by probabilistic logic sampling. Uncer-
tainty in Artificial Intelligence, 2:317-324, 1988.

J. H. Holland. Adaptation in natural and artificial
systems. University of Michigan Press, Ann Arbor,
MI, 1975.

P. Larranaga and J. A. Lozano. Estimation Dis-
tribution Algorithms. A new tool for FEvolution-
ary Optimization. Kluwer Academic Publishers,
Boston /Dordrecht/London, 2001.

T. Mahnig and H. Miihlenbein. Optimal mutation
rate using Bayesian priors for Estimation of Distri-
bution Algorithms. In K. Steinhéfel, editor, Pro-
ceedings of the First Symposium on Stochastic Al-
gorithms: Foundations and Applications, SAGA-
2001, volume 2264 of Lecture Notes in Computer
Science, pages 33-48. Springer, 2001.

H. Miihlenbein. The equation for response to se-
lection and its use for prediction. FEwvolutionary
Computation, 5(3):303-346, 1997.

H. Miihlenbein and T. Mahnig. Theoretical As-
pects of Evolutionary Computing, chapter Evo-
lutionary Algorithms: From Recombination to
Search Distributions, pages 137-176. Springer
Verlag, Berlin, 2000.

H. Miihlenbein and T. Mahnig. Evolutionary syn-
thesis of Bayesian networks for optimization. Ad-
vances in Evolutionary Synthesis of Neural Sys-
tems, MIT Press, pages 429-455, 2001.

H. Miihlenbein and T. Mahnig. Evolutionary opti-
mization and the estimation of search distributions
with applications to graph bipartitioning. Interna-
tional Journal on Approximate Reasoning, 2002.
to appear.

H. Miihlenbein, T. Mahnig, and A. Ochoa.
Schemata, distributions and graphical models in

evolutionary optimization. Journal of Heuristics,
5(2):213-247, 1999.

H. Miihlenbein and G. Paaf}. From recombination
of genes to the estimation of distributions I. Binary
parameters. In A. Eiben, T. Bick, M. Shoenauer,
and H. Schwefel, editors, Parallel Problem Solving
from Nature - PPSN IV, pages 178-187, Berlin,
1996. Springer Verlag.

[17]

[18]

[19]

[20]

[21]

[22]

A. Ochoa, M. R. Soto, R. Santana, J. C. Madera,
and N. Jorge. The Factorized Distribution Algo-
rithm and the juction tree: A learning perspective.
In A. Ochoa, M. R. Soto, and R. Santana, editors,
Proceedings of the Second Symposium on Artificial
Intelligence (CIMAF-99), pages 368-377, Habana,
Cuba, March 1999.

M. Pelikan and D. E. Goldberg. Hierarchical BOA
solves Ising spin glasses and Max-Sat. IlliGAL Re-
port No. 2003001, University of Illinois at Urbana-
Champaign, Illinois Genetic Algorithms Labora-
tory, Urbana, IL, January 2003.

M. Pelikan, D. E. Goldberg, and E. Canti-Paz.
BOA: The Bayesian Optimization Algorithm. In
Proceedings of the Genetic and Evolutionary Com-
putation Conference GECCO-99, volume I, pages
525-532, Orlando, FL, 1999. Morgan Kaufmann
Publishers, San Francisco, CA.

M. Pelikan, D. E. Goldberg, and F. Lobo. A sur-
vey of optimization by building and using proba-
bilistic models. Computational Optimization and
Applications, 21(1):5-20, 2002.

R. Santana. Factorized distribution algorithms:
Selection without selected population. 2003. Sub-
mitted for publication.

P. Spirtes, C. Glymour, and R. Scheines. Cau-
sation, Prediction and search. Lecture Notes in
Statistics. Springer-Verlag, New York, 1993.

	c0: Proceedings 17th European Simulation Multiconference
(c) SCS Europe BVBA, 2003 ISBN 3-936150-25-7

