
CONFLICT RESOLUTION BY RANDOM ESTIMATED COSTS

ROMAN V BELAVKIN

School of Computing Science, Middlesex University, London NW4 4BT, UK

Abstract: Conflict resolution is an important part of many intelligent systems such as production systems, planning
tools and cognitive architectures. For example, the ACT–R cognitive architectire [Anderson and Lebiere, 1998]
uses a powerful conflict resolution theory that allowed for modelling many characteristics of human decision
making. The results of more recent works, however, pointed to the need of revisiting the conflict resolution theory
of ACT–R to incorporate more dynamics. In the proposed theory the conflict is resolved using the estimates of the
expected costs of production rules. The method has been implemented as a stand alone search program as well
as an add–on to the ACT–R architecture replacing the standard mechanism. The method expresses more dynamic
and adaptive behaviour. The performance of the algorithm shows that it can be successfully used as a search and
optimisation technique.

keywods: conflict resolution, decision making, search, optimisation, rule–based systems, cognitive modelling.

1 INTRODUCTION

Many problems do not have a unique solution. More-
over, some problems may have infinitely large number
of similar solution paths. A conflict occurs when sev-
eral alternative decisions are available corresponding
to different solution paths. Intelligent systems, such as
rule-based systems, planning tools, cognitive architec-
tures, rely on different strategies to resolve a conflict.
The simplest method is a random or ordered choice
of rules. Other strategies use recency or specificity of
rules. More sophisticated methods can use statistical
information about previous successes and failures of
applying the rules to infer the probability of a success.
In addition, some methods take into account costs of
the rules, which represent the efforts (e.g time) required
from the problem solver to perform the actions.

Statistical (Bayesian) methods proved to be very suc-
cessful not only for a conflict resolution, but also for
modelling some aspects of human behaviour. For ex-
ample, the ACT–R cognitive architecture [Anderson
and Lebiere, 1998] uses subsymbolic statistical infor-
mation to choose a single production rule from a set
of several rules matching the current goal (conflict set).
ACT–R models have been successful in predicting many
properties of human decision making, problem solv-
ing and learning. Despite the success, however, some
recent works have pointed out several problems and
limitations of the conflict resolution theory in ACT–R.
These problems will be summarised in the first section
of this paper.

The new method introduced in this paper relies on the
same statistical information as in ACT–R, but uses it
in a different way. The new method is more adapt-
able to a changing environment. Its dynamics is a
consequence of the entropy reduction during problem
solving. In addition, the method revises and unites

several parameters in ACT–R. Many ideas were in-
spired by the progress in the theories of neural plastic-
ity [Sejnowski, 1977a, 1977b; Bienenstock, Cooper,
and Munro, 1982], as well as the information theo-
retic approach to cognitive models of decision making,
learning and emotion [Belavkin and Ritter, 2003].

In this paper the theory and the algorithm will be pre-
sented in a general form, so that they could be applied
to different domains. In the end of the paper a pro-
gram demonstrating the method will be described, and
its performance will be discussed. It will be suggested
that the method can be used as a powerful optimisation
and search technique.

2 CONFLICT RESOLUTION IN ACT–R

The ACT–R [Anderson and Lebiere, 1998] cognitive
architecture uses a utility values Ui attached to every
production rule i, and in the case of a conflict the rule
with the highest Ui value is selected (i = argmax Ui).
The utility of rule i is defined as

Ui = PiG − Ci + ξ(σ2) . (1)

Here Pi is the expected probability that the goal will
be achieved after rule i has fired, and Ci is the average
cost of the rule (average time required to achieve the
goal). These rules–specific values are learned in ACT–
R statistically using the records of past successes and
failures as well as the efforts spent on each rule. An-
other two members of equation (1) are G — the goal
value parameter (usually measured in time units), and
ξ(σ2) — the expected gain noise, a random number
derived from a normal distribution with zero mean and
variance σ2.

This conflict resolution scheme (1) allowed ACT–R to
model many characteristics of human problem solving,
such as probability matching and the effect of the pay–

off (reinforcement) on choice behaviour. Indeed, one
can see from (1) that utility is a function of probability
of success and the goal value.

Noise ξ in conflict resolution proved to be a good can-
didate for modelling different levels of expertise. It
was shown in [Jones, Ritter, and Wood, 2000] that by
increasing the noise variance σ2 a model of an adult
problem solver may begin to behave more like a young
problem solver. Thus, learning may result in reduction
of noise with time. It was suggested during the ACT–
R workshop in August 2001 that such dynamics could
potentially improve the fit of some models to data.

Moreover, it has been proposed that noise variance
should follow the uncertainty of a success [Belavkin
and Ritter, 2003], and its changes may play an impor-
tant role for optimising the choice behaviour. In ad-
dition, it was shown that goal value G, if controlled
dynamically, may optimise the expenditure of efforts
[Belavkin, 2002]. Indeed, noise and goal value control
breadth and depth of the search for a solution respec-
tively.

Modern cognitive architectures have mechanisms not
only for learning the statistics of existing rules, but
also they may learn new rules (e.g. chunking in SOAR

[Newell, 1990] or production compilation in ACT–R).
It was proposed that noise ξ should be rule–specific and
affect the new rules more than the ‘older’ rules in the
system.

Unfortunately, this is not possible in the current con-
flict resolution mechanism because the goal value G
and noise variance σ2 are global parameters affecting
all the rules simultaneously. Moreover, they are con-
stants, and the theory does not explain their dynamics.

As we can see from the discussion above that being
a successful theory of conflict resolution for some as-
pects of human problem solving, the current conflict
resolution mechanism in ACT–R may not yet be com-
plete. The new method introduced here is an attempt to
overcome the described problems.

3 COST AND SUCCESS PROBABILITY

One may question the need of having the success prob-
ability P , as well as the goal value G and cost C in
the utility equation (1). Let us consider the cost C of
achieving the goal as a random variable, and let P (C)
be the probability that the goal will be achieved at the
cost C (probability that the cost is exactly C). The ex-
pected value of the cost is

E{C} =
∑
C

C P (C)
(

E{t} =
∫ ∞

0

t P (t) dt

)
,

where the summation is made across all possible values
of C (or an integral on t ∈ [0,∞] if C represents con-
tinuous time). The distribution function P (C) gives
the value of success probability for any cost. That is

the expected probability P for given C or G in (1).

Knowledge of distribution functions P (C) for differ-
ent decisions would allow the problem solver to calcu-
late their expected costs E{C}, and to choose the best
rule (or strategy) to solve the problem. Of course the
difficulty here is that when solving a problem for the
first time nothing is known about P (C). The only way
to sample these distributions is by trying to solve the
problem using different strategies. Moreover, even if
we were determined to find out what the costs are by
trial, we would soon realise that some costs are very
hard to ‘measure’ directly.

For example, random rotation of the edges of a Ru-
bik’s cube may eventually assemble the puzzle, but the
chance, as we say, is very low. More correctly would
be to say that the probability of assembling the puzzle
quickly is very low. This means that most likely the
cost of such random rotation strategy is very high, and
one would have to spend a lot of time waiting for the
result. The question is when to give up and try another
strategy?

The ability to give up on hopeless solutions without ex-
ploring them in full is a very important property of hu-
man problem solving. One of the important property of
the algorithm that will be introduced is that it specifies
exactly how deeply an alternative should be explored.

4 PROBLEM SOLVING AS AN OBSERVATION
OF A POISSON PROCESS

Let us imagine that a computer solves some problem
using a particular algorithm, and each time after the
goal state has been achieved, the computer is restarted
and is given to solve the same problem again (1).

Figure 1: A computer running an algorithm in a loop. The goal
state is observed at a rate λ = 1

E{C} , where E{C} is the expected
cost.

Now, if the expected cost of the solution that the com-
puter is using is E{C}, then we shall observe the goal
state every E{C} seconds, or at a rate λ = 1

E{C} . We
may consider the occurrence of the goal state as a Pois-
son process. The probability of observing n events by
the time t is

P (n | λ) =
(λt)n

n!
e−λt , n = 0, 1, 2, (2)

Here λ is called the mean count rate (λ = 1/E{C}),
and n = 0, 1, 2, ... is the number of observations of the
event by the time moment t.

Note, that for λ = 0 (or E{C} = ∞) the probabil-
ity (2) becomes zero for any t, which corresponds to a
case when the event is impossible. Thus, for an event
to be possible the rate must be λ > 0 (or E{C} < ∞).
Perhaps, when solving a problem, one must assume
that the goal state is possible (be optimistic). That is
∃G < ∞ : E{C} ≤ G.

Now, let us consider some special cases of the Poisson
probability (2).

Failure probability is the probability that the event
will not occur (n = 0), and according to (2) it is

q(t) = P (n = 0) = e−λt . (3)

The shape of the above function is shown by a declin-
ing dashed curve on Figure 2.

Success probability is the probability that the event
will occur at least once (n > 0):

p(t) = P (n > 0) = 1 − q(t) = 1 − e−λt . (4)

The success probability is shown on Figure 2 by an in-
clining dashed curve. One can see that it increases with
time if λ > 0.

When solving a problem, especially for the first time,
what we are interested in is the first occurrence of the
goal state. Moreover, often we do not need to solve
exactly the same problem again. Therefore, the proba-
bility of the very first success is of special interest.

First success probability that the event will occur ex-
actly once (n = 1) is

p1(t) = P (n = 1) = λte−λt . (5)

The shape of the above function is shown by a solid
curve on Figure 2. One may notice that it increases
with time up to a certain maximum and then decreases
again.

Figure 2: Probability of failure q(t) decreases with time (declin-
ing dashed curve), probability of success p(t) increases with time
(inclining dashed curve). Probability of the first success p1(t) (solid
curve) has a unique maximum in t = 1/λ = E{C}.

Let us find the time moment corresponding to the max-
imum of the first success probability:

ṗ1(t) =
d
dt

λte−λt = 0 ⇒ t =
1
λ

.

We can see that this time moment corresponds to the
expected cost E{C} (the most likelihood cost). Note,
that at this point the probability of the first success
equals the probability of failure:

p1(t) = q(t) = e−1 , t = 1/λ .

It can be shown that for a system with two outcomes
(first success and its complement) this is the moment of
the maximum entropy, and hence it is the best moment
to make a new estimate of λ using new information.
If the new estimate turns out to be much greater than
expected, then it may also be the optimal moment to
change strategy or give up.

5 ESTIMATION OF THE EXPECTED COST

Up to this point we have been talking about problem
solving as an observation of a Poisson process with
known rate λ. Indeed, equation (2) describes the condi-
tional probability P (n | λ) of observing n events for a
given value of λ (t is parameter). In reality, when solv-
ing a problem, the rate λ is unknown, and the expected
cost is what we are trying to estimate. What is known
is the number of successes n and the amount of time
(or cost) that have been spent.

Let us estimate the rate λ (and, hence, E{C}) from
the observed number of successes n after spending t
amount of time. This can be done using posterior prob-
ability P (λ | n), which can be obtained by the Bayes’
formula

P (λ | n) =
P (n, λ)
P (n)

=
P (n | λ)P (λ)

P (n)
.

One can show that when a priori all the values of λ
are equally probable, and the likelihood probability is
described by the Poisson distribution (2), then the pos-
terior probability can be found from the likelihood:

P (λ | n) = t P (n | λ) .

Now, using the above formula for the posterior proba-
bility, we can find the posterior mean estimate of λ:

E{λ} =
∫ ∞

0

λP (λ | n) dλ =
n + 1

t
,

and hence E{C} ≈ t
n+1 . Note that this estimation

is biased towards successes (optimistic). Such an esti-
mate is more useful than t

n because it can be used even
when no successes have yet been observed (n = 0).
For this reason the algorithm was named OPTIMIST.

Interestingly, the OPTIMIST algorithm finds support in
several studies on kinetics of choice and animal learn-
ing. Myerson and Miezin [1980] found that the re-
sponse frequency in rats can be explained by the Pois-
son distribution [see also Mark and Gallistel, 1994].

6 RECURSIVE ESTIMATION

Let us return to the example of a computer solving a
problem (Figure 1), but with one difference: the ex-
pected cost E{C} is unknown. Also, this time we
control when the computer is restarted. Our goal is to
restart the computer in such a way, that the goal state
appeared at the highest rate possible.

Let us denote by ∆t the time interval after which we
restart the computer. If we restart the computer too late
∆t > E{C}, then obviously the rate at which the goal
state occurs will not be the highest. On the other hand,
if we restart the computer too early ∆t < E{C}, then
often the computer will not have enough time to finish
solving the problem.

Let us conduct a series of trials registering the first oc-
currence of the goal state during time intervals ∆t: if
the goal state is registered, then we shall restart the
computer immediately after it; otherwise, restart the
computer after ∆t. One may notice that there are only
two possible outcomes of such trials (binomial trials):

Failure: the goal state has not been achieved, the num-
ber of successes n does not change, the overall effort
(time) spent increases by C = ∆t.

Success: the goal state is achieved, the number of suc-
cesses n increases by one, and the effort increases by
C ≤ ∆t.

By counting n number of successes and summing up
the time spent t = C0 + ... + Ck in k trials, we can
estimate the expected cost E{C} using posterior mean
formula:

E{C} ≈ C̄ =
t

n + 1
. (6)

Now, starting with some small ∆t = Cmin let us set
each next ∆t equal to the last estimation of E{C}:

∆tk+1 = C̄k =
∑k

i=0 Ci

n + 1
.

An example of step by step calculation of C̄i and ∆tk+1

for ten trials (k = 0, ..., 10) is shown in Table 1. The
dynamics of the estimated cost (6) during 20 trials
is shown on Figure 3. With no successes registered
(n = 0) the estimated value grows exponentially until
it becomes greater than the expected cost E{C}, which
means that the system spends enough efforts (time) to
register first successes (n = 1, 2, ... > 0). As the num-
ber of successes n increases, the estimated value C̄
decreases converging to the expected cost E{C}.

One can see that if the expected cost of the algorithm
our computer is using is finite E{C} < ∞, then with
trials the estimated cost C̄ , and hence the restarting
time ∆t, will converge to E{C}:

lim
k→∞

∆tk+1 = lim
k→∞

C̄k = E{C} .

Also, as a result, the goal state will occur at the highest
rate possible.

Table 1: Example of estimation of E{C} in 10 trials with failures
in the first two and successes in the following eight trials.

k n C̄k ∆tk+1

0 0 Cmin C̄0

1 0 ∆t1 C̄1

2 0 ∆t1 + ∆t2 C̄2

3 1 ∆t1+∆t2+∆t3
2 C̄3

· · · · · · · · ·
10 8 ∆t1+...+∆t10

9 C̄10

Figure 3: Estimated cost C̄ converges to the expected cost E{C}
with cycles k → ∞ and the number of successes n > 0.

7 CONFLICT RESOLUTION

In previous sections we discussed how to estimate the
cost of one particular strategy (algorithm, decision or
production rule) by estimating the rate of a hypothet-
ical Poisson process. As an illustration we used the
example of a computer set into an endless loop solving
a problem (Figure 1). In a similar manner let us rep-
resent a conflict by a choice of several such computers
tackling the same problem, but with only one computer
used at a time.

Let us denote the options (choice of computers, strate-
gies or rules) by x, and suppose that each computer
uses different algorithm with a different expected cost
E{C(x)}. Our goal is to find the fastest (cheapest) x.

Let us record for each option x the following informa-
tion: k(x) — the number of times x was used, n(x)
— the number of successes for x, t(x) = C0(x) +
... + Ck(x)(x) — the efforts (all time) spent using x.
After trying each option we can estimate its expected
cost E {C(x)} ≈ C̄(x) using equation (6). In order to
resolve the conflict we introduce a random estimated
cost:

C̃(x) =
k(x)C̄(x) + ξ(C̄(x))

k(x) + 1
. (7)

Here ξ(C̄(x)) is called a random prediction, and it is
a random variable defined in such a way that its ex-
pected value equals the estimated cost C̄(x) (E {ξ} =
C̄(x)). For example, we can use the following func-
tion: ξ(C̄(x)) = rand ∈ (0, 2C̄(x)).

The conflict is resolved by selecting an alternative x
with the smallest random estimated cost:

x = arg min
[
C̃(x)

]
.

8 PROPERTIES OF THE RANDOM ESTIMATE

One can see from (7) that the random estimated cost is
a mixture of two components: the estimated cost C̄ and
the random predication ξ made based on the last esti-
mated cost C̄. The contribution of the latter component
for individual rule x depends on the number of trials k
(experience), and it decreases. This means that if new
production rules are learned during problem solving,
their expected cost will be more affected by the ran-
dom prediction ξ.

The expected value of the random estimated cost C̃
equals the expected cost E{C}, which follows from its
definition (7). Moreover, with trials k the value of the
random estimated cost C̃ not only converges to the the
expected cost E{C}, but also its value becomes more
stabilised (less plastic) as the number of samples k in-
creases. This property recalls of an important plastic-
ity effect known for neural networks and explained by
the covariance learning rule [Sejnowski, 1977a, 1977b;
Bienenstock et al., 1982].

Because with successes the estimated cost C̄ decreases,
so does the expected value of the random ξ, as by def-
inition E{ξ} = C̄. This way, with successes, the ran-
dom estimated cost C̃ decreases on average and be-
comes less random. We may compare this process with
cooling the system down in simulated annealing [Kirk-
patrick, Gelatt, and Vecchi, 1983].

On the contrary, if the number of failures increases,
then the estimated cost C̄ grows exponentially. As a re-
sult, the contribution of the random prediction ξ in (7)
becomes more and more noticeable. This way, with
failures, the random estimated cost C̃ increases on av-
erage and becomes more random. We may compare
this process with heating the system up.

The information acquired during the binomial tests of
rules acts as reward or penalty signals in reinforcement
learning theories [Barto, 1985; Barto and Anandan,
1985]. Indeed, initially all the alternatives x have equal
chances to be selected from the conflict set, because
no posterior information is available, and the choice is
random. On successes the estimated cost C̄ , and conse-
quently the expected value of C̃ , decreases. As a result,
the chance of the successful rule to be selected on the
next trial increases. This is similar to excitation effect
in neural networks. On the contrary, if a failure oc-
curs, then the estimated cost C̄, and consequently the
expected value of C̃, increases. This leads to inhibi-
tion of the failed alternative x, because its chance to be
selected next time decreases.

9 METHOD PERFORMANCE

There are currently two applications in which the OP-
TIMIST algorithm has been tested: an add–on to the
ACT–R architecture replacing the conflict resolution
mechanism [see Belavkin, 2002], and a demonstration

search program (all implemented in Common Lisp).
The interface of the latter is shown on Figure 4. The
program presents a search space with several gadgets
controlling its parameters. The alternatives x repre-
senting different choice of strategy are located along
the horizontal axis (breadth of the search space). The
cost (depth of the search) is represented by the vertical
axis.

When a particular rule x is selected, it is depicted by
a vertical beam going up from the corresponding posi-
tion (second alternative is shown selected on Figure 4).
The height of the beam represents the current maximal
cost (∆t). The outside world is represented by a distri-
bution of the real costs. They are represented by thick
horizontal bars. The distribution shape is controlled by
the user, and it is not known to the algorithm. Figure 4
shows parabolic distribution of the real costs with the
smallest (optimal) cost positioned in the middle. If the
cost payed by the algorithm is enough to achieve the
goal (the beam is higher than the real cost bar), then a
success is registered (goal achieved); otherwise, a fail-
ure occurs. The horizontal line represents the latest es-
timation of the expected cost. The estimated costs for
each alternative are stored in the memory of the pro-
gram and are represented by thin horizontal bars.

Figure 4: Interface of the OPTIMIST demonstration program

The program demonstrated the following behaviour of
the algorithm with the four distinguishable stages. In
the beginning the search is completely random and not
very deep (the heights of the beams are small). When
no successes are registered the estimated costs begin
to grow exponentially (the beams begin to rise higher).
The system ‘heats up’. When the depth explored by
the algorithm is greater than the real cost, the first suc-
cesses occur, and the estimated cost decreases. For
some period of time the number of successes is compa-
rable to the number of failures, and the system appears
as ‘boiling’. When the algorithm finds more optimal
solutions the system starts to cool down which is rep-
resented by a decrease of the estimated cost, and the
choice is concentrated more on the successful entries
with smaller (more optimal) costs. Finally, the system
stabilises choosing only the optimal alternative and ex-
ploring just enough to reach the success. This stage can
be compared with crystallisation.

If the distribution of the real costs changes after crys-

tallisation, the system heats up again until the algo-
rithm finds another solution. This demonstrates the
ability of the system to adapt to a changing environ-
ment. The speed of adaptation, however, decreases
with the ‘age’ of the system.

Figure 5 shows from left to right the dynamics of choice
proportion for parabolic distribution of the real costs
with the optimal in the middle (breadth set to 50 al-
ternatives). One can see that the breadth of the search
decreases. The dynamics of the estimated cost is shown
on Figure 6, and it illustrates the depth of the search as
a function of trials (cycles).

Figure 5: Dynamics of the choice proportion (from left to right).

Figure 6: Dynamics of the estimated cost (optimal cost set to 20)
for a conflict set of 20 alternatives (breadth 20).

The depth of search converges to the optimal. More-
over, the first solution found is not necessarily, but most
likely to be the optimal. Indeed, the greater is the real
cost of a solution, the less is its chance to be explored
in full. On the contrary, the optimal solution path has
the highest probability to be explored in full.

10 CONCLUSIONS

A new conflict resolution algorithm has been intro-
duced, which united some of the parameters of the
ACT–R cognitive architecture. The introduced learn-
ing and conflict resolution scheme addresses several
problems of the ACT–R conflict resolution. It also im-
plements other theories on kinetics of choice as a com-
putational algorithm. In addition, the theory is general
enough to be employed as a search and optimisation
technique. The performance and cheap computational
cost of the algorithm is encouraging for its application
in various areas of computer science.

ACKNOWLEDGEMENTS

This work is sponsored by ESRC Credit and the ORS
Award Scheme. Frank Ritter, David Elliman and David
Wood provided useful comments and support for this
work.

REFERENCES

Anderson, J. R., and Lebiere, C. 1998. The atomic components of
thought. Mahwah, NJ: LEA.

Barto, A. G. 1985. “Learning by statistical cooperation of self–
interested neuron–like computing elements.” Human Neurology, 4,
229–256.

Barto, A. G., and Anandan, P. 1985. “Pattern–recognizing stochas-
tic learning automata.” In IEEE Transactions on Systems, Man and
Cybernetics (Vol. 15, pp. 360–375).

Belavkin, R. V. 2002. On emotion, learning and uncertainty: A
cognitive modelling approach. PhD Thesis, The University of Not-
tingham, United Kingdom.

Belavkin, R. V., and Ritter, F. E. 2003. “The use of entropy for
analysis and control of cognitive models.” In F. Detje, D. Dörner,
and H. Schaub (Eds.), Proceedings of the Fifth International Con-
ference on Cognitive Modelling (pp. 21–26). Bamberg, Germany:
Universitäts–Verlag Bamberg.

Bienenstock, E. L., Cooper, L. N., and Munro, P. W. 1982. “Theory
for the development of neuron selectivity: Orientation specificity and
binocular interaction in visual cortex.” Journal of Neuroscience, 2,
32–48.

Jones, G., Ritter, F. E., and Wood, D. J. 2000. “Using a cognitive ar-
chitecture to examine what develops.” Psychological Science, 11(2),
93–100.

Kirkpatrick, S., Gelatt, C. D., and Vecchi, J. M. P. 1983. “Optimiza-
tion by simulated annealing.” Science, 220(4598), 671–680.

Mark, T. A., and Gallistel, C. R. 1994. “Kinetics of matching.”
Journal of Experimental Psychology, 20(1), 79–95.

Myerson, J., and Miezin, F. M. 1980. “The kinetics of choice: An
operant systems analysis.” Psychological Review, 87(2), 160–174.

Newell, A. 1990. Unified theories of cognition. Cambridge, Mas-
sachusetts: Harvard University Press.

Sejnowski, T. J. 1977a. “Statistical constraints on synaptic plastic-
ity.” Journal of Mathematical Biology, 69, 385–389.

Sejnowski, T. J. 1977b. “Storing covariance with nonlinearly inter-
acting neurons.” Journal of Mathematical Biology, 4, 303–321.

BIOGRAPHY

Roman Belavkin was born in
Moscow in 1971. He gradu-
ated from Physics Department
of the Moscow State Univer-
sity, but his interests switched
from computer modelling of so-
lar radiation to AI and cogni-
tive modelling. He completed
his PhD Thesis in 2002 in the
University of Nottingham. He
is currently based in Middle-
sex University in North Lon-
don. His research is on cognitive modelling of the ef-
fects of emotion on decision making and learning. In
his work he uses information theoretic approach for
analysis of learning in cognitive models and architec-
tures.

	c0: Proceedings 17th European Simulation Multiconference(c) SCS Europe BVBA, 2003 ISBN 3-936150-25-7

