

FAST LEARNING NEURAL NETS WITH ADAPTIVE
LEARNING STYLES

DOMINIC PALMER-BROWN, SIN WEE LEE, JON TEPPER and CHRIS ROADKNIGHT

Computational Intelligence Research Group,

School of Computing, Leeds Metropolitan University,
Beckett Park, Leeds LS6 3QS (d.palmer-brown@lmu.ac.uk).

Abstract - There are many learning methods in artificial neural networks. Depending on the application, one
learning or weight update rule may be more suitable than another, but the choice is not always clear-cut, despite
some fundamental constraints, such as whether the learning is supervised or unsupervised. This paper addresses
the learning style selection problem by proposing an adaptive learning style. Initially, some observations
concerning the nature of adaptation and learning are discussed in the context of the underlying motivations for
the research, and this paves the way for the description of an example system. The approach harnesses the
complementary strengths of two forms of learning which are dynamically combined in a rapid form of
adaptation that balances minimalist pattern intersection learning with Learning Vector Quantization. Both
methods are unsupervised, but the balance between the two is determined by a performance feedback parameter.
The result is a data-driven system that shifts between alternative solutions to pattern classification problems
rapidly when performance is poor, whilst adjusting to new data slowly, and residing in the vicinity of a solution
when performance is good.

Keywords: neural networks, fast learning, performance feedback, adaptive learning styles.

1. MOTIVATIONS AND OBJECTIVES

There are some basic observations and principles
that motivate research into neural networks and
other systems that are capable of leaning ‘on the
fly’. These concern the ability to rapidly adapt to
discover provisional solutions that meet criteria
imposed by a changing environment.

1. 1 Provisional Learning

The adaptive systems of interest in this type of
research are not required to solve an optimisation
problem in the traditional sense; they search
heuristically for good solutions (solutions that are
fit for purpose according to the chosen criteria of
the target application) in a hyperspace that may
contain many plausible solutions. However,
heuristic information may be expressed by an
objective function of some kind, which the system
tries to ‘optimise’. The classic example is error
minimisation, in which in general the data is
imperfect, e.g. limited, sparse, missing, error-prone,
and subject to change (non-stationary). Therefore,
the error minimum is really just a local minimum:
local to a subset of data and an episode of time.

Whilst this does not preclude the discovery of
solutions that work for all data-time, it does mean
that such generalisation involves extrapolations and
assumptions that cannot be justified on the sole
basis of the available information. In such
circumstances, it is reasonable, when a new

candidate solution is found, for it to be held – as a
provisional hypothesis – until or unless it is
rejected, or until it can be replaced by a stronger
hypothesis.

1.2 Fast Learning

Slow, iterative and intensive sampling based
methods (eg. Gradient descent methods, and
Bayesian methods involving Monte Carlo and
related methods) are inherently non-real-time, in
the sense that they require multiple presentations of
sets of patterns or samples, and therefore they
cannot respond to the changing environment as it is
changing. This contrasts sharply with the human
case. Humans learn ‘as they go along’, to a
significant extent, without the need for multiple
presentations of each exemplar or pattern of
information.

1.3 Performance-guided Learning

An important concern in artificial intelligence is
how to combine top-down and bottom-up
information. This applies to learning systems. For
example, reinforcement learning is very effective at
rewarding successful strategies, or moves, during
learning; supervised learning is a powerful means
of modifying an ANN when it makes mistakes; and
genetic algorithms are effective at selecting for
improvement across generations of solutions. These
are important and effective approaches, not to be
dismissed simply because they are not fast, or
because they are computationally intensive.

Fascinating results and innovations are still
occurring with these approaches, as this conference
testifies [Vieira et al 2003, Andrews 2003, Lee et al
2003]. Equally unsupervised learning, which does
not harness top-down information, is an extremely
useful tool, for example as an alternative or
complement to clustering; but in its purest form it
does not (by definition) make use of any
information on the current performance of learning,
in order to guide adaptation in appropriate
directions.

Ideally, learning should be rapid, and yet capable of
taking external indicators of performance into
account; and it should be capable of reconciling the
data (bottom-up) with feedback concerning how the
ANN is organising the data (top-down).

2. ADAPTIVE RESONANCE

The points raised above have led to the
development of PART (Performance-guided
Adaptive Resonance Theory), which has two of
antecedents, ART (the original Adaptive Resonance
Theory), and SMART (Supervised Match-seeking
ART).

2.1 Adaptive Resonance Theory (ART)

ART [Carpenter and Grossberg, 1988] performs
unsupervised learning. A winning node is accepted
for adaptation if:

| I|

|I w| ∩
 ≥ ρ, where w is the weight vector, I is

the input vector and ρ is the so-called vigilance
parameter, which therefore determines the level of
match between the input and the weights required
for a win. Weight adaptation is governed by:
wiJ

(new) = n(I ∩ wiJ
(old)) + (1-n) (wiJ

(old)). As a
result, only those elements present in both I and w
remain after each adaptation, and learning is fast.
In fact, it is guaranteed to converge in 3 passes of
any set of patterns when n=1.

2.2 Supervised Match-seeking Adaptive
Resonance Tree (SMART)

In order to convert ART into a supervised learning
system that would therefore learn prescribed
problems, SMART was developed [Palmer-Brown,
1992]. In this case the winning nodes are labelled
with a classification. When a node with a label
wins, if the classification is correct, learning
proceeds as usual. If the class is wrong, a new node
is initialised with the values of I, so that it would
win in competition with the current winning node.
An upper limit may be imposed on the number of
nodes, in which case further learning results in

some nodes becoming pointers to subnets, which
learn in the same way as the first net. Hence the
system is a fast, self-growing network tree.

2.3 Information Loss

 The main limitation that was found with ART and
SMART was the ‘one strike and you’re out’ nature
of the adaptation. Nodes sometimes need to retain
information that is relevant to only a subset of the
patterns for which they win. The w ∩ I intersection
is responsible for this information loss, but it is also
the reason for the rapidity and stability of the
learning process. Thus, the challenge is to retain
these positive characteristics whilst preventing the
learning from throwing away information when it is
needed. This objective, along with the points made
in section 1, has led to the development of
Performance-guided Adaptive Resonance (PART).

3. PERFORMANCE-GUIDED ADAPTIVE
RESONANCE (PART)

A non-specific performance measure is used with
PART because, in many applications, there are no
specific performance measures (or external
feedback) available in response to each individual
network decision. PART consists of a distributed
network and a non-distributed network, in order to
perform feature(s) extraction followed by feature
classification, in two stages. Fig. 1 illustrates the
architecture in the context of a particular application
[Sin Wee et al, 2002].

3.1 dP-ART Learning
On the presentation of a binary input pattern I, the
network categorises the input pattern by comparing
it against the stored knowledge in the existing
distributed output categories of F21 layer. This is
achieved by calculating the bottom-up activation,
using (1):

Ti =
|w|
| I w|

i

i

+
∩

β
 (1)

As this architecture is based on a distributed P-
ART, there is more than one winning node, in this
case D = 3. The F21 nodes with the highest bottom-
up activation are selected (D of them), and they
have their weights adapted. If a distributed output
category is found with the required matching level,
using (2), as in ART:

| I|
|I wI| ∩ ≥ ρ (2),

Figure 1. The PART System

Then learning occurs, according to equation (3):

wiJ
(new) = (1 - p) (I ∩ wiJ

(old)) + p (wiJ
(old) + β (I - wiJ

(old))),

where wij

(old)= the top-down (a similar equation
applies for the bottom-up weights) vectors at the
start of the input presentation; p = performance
parameter; I= binary input vector; and β = the
‘drift’ constant. The effect of (3) is wiJ

(new) = α
(fast_ART learning) + β (LVQ) (equation 4), where LVQ
stands for Learning vector quantization.

The α-β balance is determined by performance
feedback. Therefore P-ART does unsupervised
learning, but its learning style is determined by its
performance, which may be updated at any time. So
PART combines minimalist ART learning with
Learning Vector Quantization (LVQ) [Kohonen,
1990], and by substituting p in (3) with 0 for poor
performance, (3) can be simplified to:

wiJ

(new) = (I ∩ wiJ
(old)) (5)

Thus, fast learning is invoked, causing the weights
to reach their new asymptote on each input
presentation:

wJ → I ∩ wJ

(old) (6)

In contrast, for excellent performance where p = 1,
(3) can be simplified to:

wiJ

(new) = (wiJ
(old) + β (I - wiJ

(old))) (7)

Thus, a simple form of clustering or LVQ occurs at
a speed determined by β.

Equation (3), whenever performance is not perfect,
enables the top-down weights to drift towards the
input patterns. With alternate episodes of p = 0 and
p = 1, the characteristics of the learning of the
network will be the joint effects of the (5) and (6).
This joint effect enables the network to learn using
fast and convergent, ‘snap’ learning when the
performance is poor, yet be able to drift towards the
input patterns when the performance is good. Drift
will only result in slow (depending on β)
reclassification of inputs over time, keeping the
network up-to-date, without a radical set of
reclassifications for exiting patterns. By contrast,
snapping results in rapid reselection of a proportion
of patterns to quickly respond to a significantly
changed situation, in terms of the input vectors
(requests) and/or of the environment, which may
require the same requests to be treated differently.
Thus, a new classification may occur for one of two
reasons: as a result of the drift itself, or as a result
of the drift enabling a further snap to occur, once
the drift has moved weights away from
convergence.

3.2 sP-ART

The distributed output representation of categories
produced by the dP-ART acts as input to the sP-
ART. The architecture of the sP-ART is the same
as that described above except that only the F22
node with the highest activation is selected for
learning. The effect of learning within sP-ART and

Feedback
Module Performance Input (p)

Request
Input

Pattern

Proxylet
Metafiles

F22 F21 F12 F11 F01

Selection P-ART (sP-ART)
(For Proxylet Types Selection) Distributed P-ART (dP-ART)

(For Features Extraction)

dP-ART is that specific output nodes will represent
different groups of input patterns until the
performance feedback indicates that sP-ART is
indexing the correct outputs (called proxylets in the
target application).
4 AN EXAMPLE APPLICATION

4.1 The Performance Feedback

The external performance feedback into the P-ART
reflects the performance requirement in different
circumstances. Various performance feedbacks
profiles in the range {0,1} are fed into the network
to evaluate the dynamics, stability and performance
responsivity of the learning. Initially, some very
basic tests with performances of 1 or 0 were
evaluated in a simplified system [Sin Wee et al,
2002]. Below, the simulations involve computing
the performance based on a parameter associated
with the winning output neuron. In the target
application, provided by BT [Marshall and
Roadknight, 2000, 2001], factors which contribute
to good/poor performance include latencies for
proxylet (eg software) requests with differing time
to live, dropping rate for request with differing
time to live, and different charging levels according
to quality of service, and so on.

4.2 Application Layer Active Network (ALAN)

The ALAN architecture was first proposed by [Fry
and Ghosh, 1999] to enable users to supply JAVA
based active-service codes known as proxylets that
run on an edge system (Execution Environment for
Proxylets – EEPs) provided by the network
operator. The purpose of the architecture is to
enhance the communication between servers and
clients using the EEPs, that are located at optimal
points of the end-to-end path between the server
and the clients, without dealing with the current
system architecture and equipment. This approach
relies on the redirecting of selected request packets
into the EEP, where the appropriate proxylets can
be executed to modify the packet’s contents without
impacting on the router’s performance.

In this context, P-ART is used as a means of finding
and optimising a set of conditions that produce
optimum proxylet selections in the Execution
Environment for Proxylets (EEP), which contains
all the frequently requested proxylets (services).

4.3 Simulations

The test patterns consist of 100 input vectors. Each
test pattern characterizes the features/properties of a
realistic network request, such as bandwidth, time,
file size, loss and completion guarantee. These test
patterns were first presented in random order for 25
epochs where the performance, p, is calculated

according to the average bandwidth of selections.
This continuous random-order presentation of test
patterns simulates the real world scenario where the
order of patterns presented is such that a given
network request might be repeatedly encountered,
while others are not used at all.

4.4 Results of simulations

In Figure 2, we show the performance calculated
across the simulation epochs. An epoch consists of
50 patterns, randomly selected. Performance
feedback is updated at the end of each epoch. The
network starts with low performance and the
performance feedback is calculated and fed into the
dP-ART and sP-ART after every simulation epoch,
to be applied during the following epoch. Epochs
are of fixed length for convenience, but can be any
length. Fig. 3 shows the selection frequency of the
proxylet type. In this case, we have the following
bandwidth bands: Low bandwidth proxylet: 0 →
600 Kb/s; Median bandwidth proxylet type: 601 →
1200 Kb/s;High bandwidth proxylet type: >1201
Kb/s.

At the first epoch (refer to Fig. 2), the performance
is set to 0 to invoke fast learning. A further snap
occurs in epoch 7 since low performance has been
detected. Note that during epochs 7 and 8, there is a
significantly higher selection of high bandwidth
proxylet types, caused by the further snap and
continuous new inputs that feed into the network.
As a result, performance has been significantly
increased at the start of ninth epoch.

At epochs 16, 20 and 27, from Fig. 2, there is a
significant decrease in performance. As illustrated
in Fig. 3, this is due to a significant increase in the
selection of low bandwidth proxylet types and a
decrease in high bandwidth proxylets. This is due to
the drift that has occurred since the last snap, with a
number of patterns still appearing for the first time.
The performance induced snap takes the weight
vectors to new positions. Subsequently, a similar
episode of decreased performance occurs, for
similar reasons, and a further snap in a different
direction of weight space follows, enabling
reselections (reclassifications), resulting in
improved performance.

By the 28th epoch, where p = 0.81, the performance
has stabilised around the average performance of
0.85. At this stage, most of the possible input
patterns have been encountered several times. Until
new input patterns are introduced or there is a
change in the performance circumstances, the
network will maintain at this high level of
performance.

As shown in Fig. 4, the average proxylet execution
time is introduced into the performance criterion

calculation to encourage the selection of high
execution time proxylet types. In this case, we have
the following execution time bands: Short
execution time proxylet: 1 → 300 ms; Median
execution time proxylet type: 301 → 600 ms; Long
execution time proxylet type: > 600 ms.

This criterion is fed into the P-ART at every 100th
epoch. The result indicated when the new
performance criterion is introduced in the 100th
epoch, rapid reselection of a proportion of the
patterns occurs on a consistent basis.

Other parameters such as cost, file size will be
added to the performance calculation to produce a
more realistic simulation of network circumstances
in the future.

Fig 2 Performance levels of the network
Figure 2. Performance.

Fig. 3 Selection frequency of the 3-bandwidth bands of proxylet
types at each epoch.

0

0.2

0.4

0.6

0.8

1

1 21 41 61 81 101 121 141 161 181

Epoch

Pe
rf

or
m

an
ce

 L
ev

el

Fig. 4. Performance level before/after a problem
change.

5. CONCLUSION

The PART system is able to adapt rapidly to
changing circumstances. It manages to reconcile top-
down and bottom-up information by finding a new
provisional solution to the pattern classification
problem whenever performance deteriorates. There is
clearly potential to apply this approach to a wide
range of problems, and to develop it in order to fully
explore the objectives stated in section 1.

REFERENCES

S. G Andrews. “Novel neural network methods for
describing attributes contained within lesions
images”. In Proc. of ESM2003.

G.A. Carpenter, S. Grossberg, “The ART of Adaptive
Pattern Recognition by a Self-Organising Neural
Networks”, IEEE Computer, vol. 21(3), pp. 77 – 88,
1988.

T. Kohonen, “Improved Versions of Learning Vector
Quantization”, International Joint Conference on
Neural Networks, San Diego, vol I, 545 – 550, 1990.

T. Kohonen, “The Self-Organizing Maps”,
Proceeding of the IEEE, vol. 78(9), pp. 1464 –1480,
1990.

J Lee, S Mian, R Rees, and G Ball. “Preliminary
Artificial Neural Network Analysis of SELDI Mass
Spectrometry Data for the Classification of
Melanoma Tissue”. In Proc. of ESM2003.

S.W. Lee, D. Palmer-Brown, J. Tepper and C.M.
Roadknight, “Performance-guided Neural Networks
for Rapidly Self-Organising Active Network

0

1 0

2 0

3 0

4 0

5 0

6 0

1 8 1 5 2 2 2 9 3 6 4 3 5 0 5 7 6 4 7 1
E p o c h

N
um

be
r o

f p
ro

xy
le

t t
yp

es
 se

le
ct

ed

L o w b a n d w i d t h (0 - 6 0 0 K / s)
M e d i a n b a n d w i d t h (6 0 1 - 1 2 0 0 K b / s)
H i g h b a n d w i d t h (1 2 0 1 - 2 0 0 0 K b / s)

0

10

20

30

40

50

60

1 8 15 22 29 36 43 50 57 64 71
Epoch

N
um

be
r o

f p
ro

xy
le

t t
yp

es
 se

le
ct

ed

Low bandwidth (0 - 600 K/s)
Median bandwidth (601 - 1200 Kb/s)
High bandwidth (1201 - 2000 Kb/s)

Proxylet Bandwidth Proxylet Execution Time

Management”, in: Soft Computing Systems: Design,
Management and Application, A. Abraham, J. Ruiz-
del-Solar, and M. Koppen, Eds., Netherland: IOS
Press, 2002, pp. 21 - 31.

S.W. Lee, D. Palmer-Brown, J. Tepper and C.M.
Roadknight, “Performance-guided Neural Network
for Self-Organising Network Management”,
Proceeding of London Communications Symposium,
University College London, pp. 269 – 272, Sep 2002.

M. Fry and A. Ghosh, “Application Layer Active
Network”, Computer Networks, vol. 31(7), pp. 655 –
667, 1999.

I.W. Marshall and C.M. Roadknight, “Provision of
Quality of Service for Active Services”, Computer
Networks, vol. 36(1), pp. 75 – 85, 2001.

I.W. Marshall and C.M. Roadknight, “Differentiated
Quality of Service in Application Layer Active
Networks”, in: Active Networks, LNCS 1942, Yasuda,
Eds., Springer-Verlag, 2000, pp. 358-371.

D. Palmer-Brown, “High Speed Learning in a
Supervised, Self Growing Net”, in: Proceeding of
ICANN 92, I. Aleksander and I. Taylor, Eds.,
Brighton, vol. 2, pp. 1159-1162, 1992.

C. Vieira, P Mather, P Alpin. “Improving Artificial
Neural Network Performance by Using Temporal-
Spectral Features for Agricultural Crop
Classification”. In Proc. of ESM2003.

	c0: Proceedings 17th European Simulation Multiconference
(c) SCS Europe BVBA, 2003 ISBN 3-936150-25-7

