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Abstract - There are many learning methods in artificial neural networks.  Depending on the application, one 
learning or weight update rule may be more suitable than another, but the choice is not always clear-cut, despite 
some fundamental constraints, such as whether the learning is supervised or unsupervised. This paper addresses 
the learning style selection problem by proposing an adaptive learning style. Initially, some observations 
concerning the nature of adaptation and learning are discussed in the context of the underlying motivations for 
the research, and this paves the way for the description of an example system. The approach harnesses the 
complementary strengths of two forms of learning which are dynamically combined in a rapid form of 
adaptation that balances minimalist pattern intersection learning with Learning Vector Quantization. Both 
methods are unsupervised, but the balance between the two is determined by a performance feedback parameter. 
The result is a data-driven system that shifts between alternative solutions to pattern classification problems 
rapidly when performance is poor, whilst adjusting to new data slowly, and residing in the vicinity of a solution 
when performance is good. 
 
Keywords:  neural networks, fast learning, performance feedback, adaptive learning styles. 
 

1. MOTIVATIONS AND OBJECTIVES 

There are some basic observations and principles 
that motivate research into neural networks and 
other systems that are capable of leaning ‘on the 
fly’. These concern the ability to rapidly adapt to 
discover provisional solutions that meet criteria 
imposed by a changing environment. 

 
1. 1 Provisional Learning  
 
The adaptive systems of interest in this type of 
research are not required to solve an optimisation 
problem in the traditional sense; they search 
heuristically for good solutions (solutions that are 
fit for purpose according to the chosen criteria of 
the target application) in a hyperspace that may 
contain many plausible solutions. However, 
heuristic information may be expressed by an 
objective function of some kind, which the system 
tries to ‘optimise’. The classic example is error 
minimisation, in which in general the data is 
imperfect, e.g. limited, sparse, missing, error-prone, 
and subject to change (non-stationary). Therefore, 
the error minimum is really just a local minimum: 
local to a subset of data and an episode of time.  
 
Whilst this does not preclude the discovery of 
solutions that work for all data-time, it does mean 
that such generalisation involves extrapolations and 
assumptions that cannot be justified on the sole 
basis of the available information. In such 
circumstances, it is reasonable, when a new 

candidate solution is found, for it to be held – as a 
provisional hypothesis – until or unless it is 
rejected, or until it can be replaced by a stronger 
hypothesis. 
 
1.2 Fast Learning 
 
Slow, iterative and intensive sampling based 
methods (eg. Gradient descent methods, and 
Bayesian methods involving Monte Carlo and 
related methods) are inherently non-real-time, in 
the sense that they require multiple presentations of 
sets of patterns or samples, and therefore they 
cannot respond to the changing environment as it is 
changing. This contrasts sharply with the human 
case. Humans learn ‘as they go along’, to a 
significant extent, without the need for multiple 
presentations of each exemplar or pattern of 
information. 
 
1.3 Performance-guided Learning 
 
An important concern in artificial intelligence is 
how to combine top-down and bottom-up 
information. This applies to learning systems. For 
example, reinforcement learning is very effective at 
rewarding successful strategies, or moves, during 
learning; supervised learning is a powerful means 
of modifying an ANN when it makes mistakes; and 
genetic algorithms are effective at selecting for 
improvement across generations of solutions. These 
are important and effective approaches, not to be 
dismissed simply because they are not fast, or 
because they are computationally intensive. 



 

Fascinating results and innovations are still 
occurring with these approaches, as this conference 
testifies [Vieira et al 2003, Andrews 2003, Lee et al 
2003]. Equally unsupervised learning, which does 
not harness top-down information, is an extremely 
useful tool, for example as an alternative or 
complement to clustering; but in its purest form it 
does not (by definition) make use of any 
information on the current performance of learning, 
in order to guide adaptation in appropriate 
directions.   
 
Ideally, learning should be rapid, and yet capable of 
taking external indicators of performance into 
account; and it should be capable of reconciling the 
data (bottom-up) with feedback concerning how the 
ANN is organising the data (top-down). 
 
2. ADAPTIVE RESONANCE 
 
The points raised above have led to the 
development of PART (Performance-guided 
Adaptive Resonance Theory), which has two of 
antecedents, ART (the original Adaptive Resonance 
Theory), and SMART (Supervised Match-seeking 
ART).  
 
2.1 Adaptive Resonance Theory (ART) 
 
ART [Carpenter and Grossberg, 1988] performs 
unsupervised learning. A winning node is accepted 
for adaptation if:  
 

| I|

|I   w| ∩
  ≥  ρ, where w is the weight vector, I is 

the input vector and ρ is the so-called vigilance 
parameter, which therefore determines the level of 
match between the input and the weights required 
for a win. Weight adaptation is governed by: 
wiJ

(new)  =  n(I ∩ wiJ
(old)) + (1-n) (wiJ

(old)). As a 
result, only those elements present in both I and w 
remain after each adaptation, and learning is fast. 
In fact, it is guaranteed to converge in 3 passes of 
any set of patterns when n=1. 
 
2.2 Supervised Match-seeking Adaptive 
Resonance Tree (SMART) 
 
In order to convert ART into a supervised learning 
system that would therefore learn prescribed 
problems, SMART was developed [Palmer-Brown, 
1992].  In this case the winning nodes are labelled 
with a classification. When a node with a label 
wins, if the classification is correct, learning 
proceeds as usual. If the class is wrong, a new node 
is initialised with the values of I, so that it would 
win in competition with the current winning node. 
An upper limit may be imposed on the number of 
nodes, in which case further learning results in 

some nodes becoming pointers to subnets, which 
learn in the same way as the first net. Hence the 
system is a fast, self-growing network tree.  
 
2.3 Information Loss 
 

   The main limitation that was found with ART and 
SMART was the ‘one strike and you’re out’ nature 
of the adaptation. Nodes sometimes need to retain 
information that is relevant to only a subset of the 
patterns for which they win. The w  ∩ I intersection 
is responsible for this information loss, but it is also 
the reason for the rapidity and stability of the 
learning process. Thus, the challenge is to retain 
these positive characteristics whilst preventing the 
learning from throwing away information when it is 
needed. This objective, along with the points made 
in section 1, has led to the development of 
Performance-guided Adaptive Resonance (PART). 

 
3. PERFORMANCE-GUIDED ADAPTIVE 
RESONANCE (PART) 
 
A non-specific performance measure is used with 
PART because, in many applications, there are no 
specific performance measures (or external 
feedback) available in response to each individual 
network decision. PART consists of a distributed 
network and a non-distributed network, in order to 
perform feature(s) extraction followed by feature 
classification, in two stages. Fig. 1 illustrates the 
architecture in the context of a particular application 
[Sin Wee et al, 2002]. 
 

3.1 dP-ART Learning 
On the presentation of a binary input pattern I, the 
network categorises the input pattern by comparing 
it against the stored knowledge in the existing 
distributed output categories of F21 layer. This is 
achieved by calculating the bottom-up activation, 
using (1): 
 

Ti = 
|w|
| I w| 

i

i

+
∩

β
  (1) 

As this architecture is based on a distributed P-
ART, there is more than one winning node, in this 
case D = 3. The F21 nodes with the highest bottom-
up activation are selected (D of them), and they 
have their weights adapted. If a distributed output 
category is found with the required matching level, 
using (2), as in ART:  
 

| I|
|I   wI| ∩   ≥  ρ  (2),



 

 

 

 

 

 

 

 

 

 

 

 
 
 

 
Figure 1. The PART System 

 
 

Then learning occurs, according to equation (3):  
  

wiJ
(new)  =  (1 - p) (I ∩ wiJ

(old)) + p (wiJ
(old) + β (I  -  wiJ

(old))),
  
 
where wij

(old)= the top-down (a similar equation 
applies for the bottom-up weights) vectors at the 
start of the  input presentation; p = performance 
parameter; I= binary input vector; and β  = the 
‘drift’ constant.  The effect of (3) is wiJ

(new)  = α 
(fast_ART learning) + β (LVQ)    ( equation 4), where LVQ 
stands for Learning vector quantization.  

 
The α-β balance is determined by performance 
feedback.  Therefore P-ART does unsupervised 
learning, but its learning style is determined by its 
performance, which may be updated at any time. So 
PART combines minimalist ART learning with 
Learning Vector Quantization (LVQ) [Kohonen, 
1990], and by substituting  p in (3) with 0 for poor 
performance, (3) can be simplified to:   

            
wiJ

(new)  =  (I ∩ wiJ
(old))   (5) 

 
Thus, fast learning is invoked, causing the weights 
to reach their new asymptote on each input 
presentation: 

 
wJ  →  I ∩ wJ

(old)  (6) 
 

In contrast, for excellent performance where p = 1, 
(3) can be simplified to:  
 
wiJ

(new)  =  (wiJ
(old)  + β (I - wiJ

(old))) (7) 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Thus, a simple form of clustering or LVQ occurs at 
a speed determined by β.  
 
Equation (3), whenever performance is not perfect, 
enables the top-down weights to drift towards the 
input patterns. With alternate episodes of p = 0 and 
p = 1, the characteristics of the learning of the 
network will be the joint effects of the (5) and (6). 
This joint effect enables the network to learn using 
fast and convergent, ‘snap’ learning when the 
performance is poor, yet be able to drift towards the 
input patterns when the performance is good. Drift 
will only result in slow (depending on β) 
reclassification of inputs over time, keeping the 
network up-to-date, without a radical set of 
reclassifications for exiting patterns. By contrast, 
snapping results in rapid reselection of a proportion 
of patterns to quickly respond to a significantly 
changed situation, in terms of the input vectors 
(requests) and/or of the environment, which may 
require the same requests to be treated differently. 
Thus, a new classification may occur for one of two 
reasons: as a result of the drift itself, or as a result 
of the drift enabling a further snap to occur, once 
the drift has moved weights away from 
convergence.   
 
3.2 sP-ART 
 
The distributed output representation of categories 
produced by the dP-ART acts as input to the sP-
ART. The architecture of the sP-ART is the same 
as that described above except that only the F22 
node with the highest activation is selected for 
learning. The effect of learning within sP-ART and 
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dP-ART is that specific output nodes will represent 
different groups of input patterns until the 
performance feedback indicates that sP-ART is 
indexing the correct outputs (called proxylets in the 
target application). 
4 AN EXAMPLE APPLICATION 

4.1 The Performance Feedback 

The external performance feedback into the P-ART 
reflects the performance requirement in different 
circumstances. Various performance feedbacks 
profiles in the range {0,1} are fed into the network 
to evaluate the dynamics, stability and performance 
responsivity of the learning. Initially, some very 
basic tests with performances of 1 or 0 were 
evaluated in a simplified system [Sin Wee et al, 
2002]. Below, the simulations involve computing 
the performance based on a parameter associated 
with the winning output neuron. In the target 
application, provided by BT [Marshall and 
Roadknight, 2000, 2001], factors which contribute 
to good/poor performance include latencies for 
proxylet (eg software) requests with differing time 
to live, dropping rate for request with differing 
time to live, and different charging levels according 
to quality of service, and so on.  

 

4.2 Application Layer Active Network (ALAN) 

The ALAN architecture was first proposed by [Fry 
and Ghosh, 1999] to enable users to supply JAVA 
based active-service codes known as proxylets that 
run on an edge system (Execution Environment for 
Proxylets – EEPs) provided by the network 
operator. The purpose of the architecture is to 
enhance the communication between servers and 
clients using the EEPs, that are located at optimal 
points of the end-to-end path between the server 
and the clients, without dealing with the current 
system architecture and equipment. This approach 
relies on the redirecting of selected request packets 
into the EEP, where the appropriate proxylets can 
be executed to modify the packet’s contents without 
impacting on the router’s performance. 
 
In this context, P-ART is used as a means of finding 
and optimising a set of conditions that produce 
optimum proxylet selections in the Execution 
Environment for Proxylets (EEP), which contains 
all the frequently requested proxylets (services). 

 
4.3 Simulations 
 
The test patterns consist of 100 input vectors. Each 
test pattern characterizes the features/properties of a 
realistic network request, such as bandwidth, time, 
file size, loss and completion guarantee.  These test 
patterns were first presented in random order for 25 
epochs where the performance, p, is calculated 

according to the average bandwidth of selections. 
This continuous random-order presentation of test 
patterns simulates the real world scenario where the 
order of patterns presented is such that a given 
network request might be repeatedly encountered, 
while others are not used at all.  

4.4 Results of simulations 

In Figure 2, we show the performance calculated 
across the simulation epochs. An epoch consists of 
50 patterns, randomly selected. Performance 
feedback is updated at the end of each epoch. The 
network starts with low performance and the 
performance feedback is calculated and fed into the 
dP-ART and sP-ART after every simulation epoch, 
to be applied during the following epoch. Epochs 
are of fixed length for convenience, but can be any 
length.  Fig. 3 shows the selection frequency of the 
proxylet type. In this case, we have the following 
bandwidth bands: Low bandwidth proxylet:  0 → 
600 Kb/s; Median bandwidth proxylet type: 601 → 
1200 Kb/s;High bandwidth proxylet type: >1201 
Kb/s. 
 
At the first epoch (refer to Fig. 2), the performance 
is set to 0 to invoke fast learning. A further snap 
occurs in epoch 7 since low performance has been 
detected. Note that during epochs 7 and 8, there is a 
significantly higher selection of high bandwidth 
proxylet types, caused by the further snap and 
continuous new inputs that feed into the network.  
As a result, performance has been significantly 
increased at the start of ninth epoch. 
 
At epochs 16, 20 and 27, from Fig. 2, there is a 
significant decrease in performance. As illustrated 
in Fig. 3, this is due to a significant increase in the 
selection of low bandwidth proxylet types and a 
decrease in high bandwidth proxylets. This is due to 
the drift that has occurred since the last snap, with a 
number of patterns still appearing for the first time. 
The performance induced snap takes the weight 
vectors to new positions. Subsequently, a similar 
episode of decreased performance occurs, for 
similar reasons, and a further snap in a different 
direction of weight space follows, enabling 
reselections (reclassifications), resulting in 
improved performance.  

 
By the 28th epoch, where p = 0.81, the performance 
has stabilised around the average performance of 
0.85. At this stage, most of the possible input 
patterns have been encountered several times. Until 
new input patterns are introduced or there is a 
change in the performance circumstances, the 
network will maintain at this high level of 
performance.  
 
As shown in Fig. 4, the average proxylet execution 
time is introduced into the performance criterion 



 

calculation to encourage the selection of high 
execution time proxylet types. In this case, we have 
the following execution time bands: Short 
execution time proxylet:  1 → 300 ms; Median 
execution time proxylet type: 301 → 600 ms; Long 
execution time proxylet type: > 600 ms. 
 
This criterion is fed into the P-ART at every 100th 
epoch. The result indicated when the new 
performance criterion is introduced in the 100th 
epoch, rapid reselection of a proportion of the 
patterns occurs on a consistent basis.    

 
Other parameters such as cost, file size will be 
added to the performance calculation to produce a 
more realistic simulation of network circumstances 
in the future.  
 
 
 

 
 
 
 
 
 
 

 
 
 
 

 
 

Fig 2 Performance levels of the network 
Figure 2. Performance. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Fig. 3 Selection frequency of the 3-bandwidth bands of proxylet 
types at each epoch. 
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Fig. 4. Performance level before/after a problem 
change. 

 
 
5. CONCLUSION 
 
The PART system is able to adapt rapidly to 
changing circumstances. It manages to reconcile top-
down and bottom-up information by finding a new 
provisional solution to the pattern classification 
problem whenever performance deteriorates. There is 
clearly potential to apply this approach to a wide 
range of problems, and to develop it in order to fully 
explore the objectives stated in section 1. 
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