
IMPROVING ARTIFICIAL NEURAL NETWORK 
PERFORMANCE BY USING TEMPORAL-SPECTRAL 

FEATURES FOR AGRICULTURAL CROP CLASSIFICATION 
 

CARLOS ANTONIO OLIVEIRA VIEIRA1 

PAUL MATHER2  
PAUL APLIN2 

 
1UFV - Universidade Federal de Viçosa 

Departamento de Engenharia Civil, 
Campus da UFV-DEC Viçosa MG 36.571-000, Brazil 

carlos.vieira@ufv.br 
 

2The University of Nottingham 
The School of Geography,  

University Park, Nottingham, NG7 2RD, UK 
Paul.Mather@nottingham.ac.uk and Paul.Aplin@nottingham.ac.uk 

 
Abstract: A method for improving artificial neural network performance by using multi-temporal, multi-spectral 
and multi-source remotely-sensed data as features for classifying agricultural crops is described. The procedure 
characterizes all the pixels in a scene by considering their intensity values as a function of time of imaging and 
spectral waveband. An analytical surface is interpolated through these data points, which may be irregularly 
spaced. Two fitted function interpolation methods were used to generate and parameterize the analytical 
surfaces. Then, the surface coefficients were input to two different supervised classifiers (Maximum Likelihood 
and Artificial Neural Network algorithms). Results show that classification accuracy is significantly improved in 
comparison with the use of any single-date image. Classification accuracies in excess of 87% were achieved. 
The advantages of the methodology described in this paper is that it takes account of the reflectance spectra at 
different points in the growing season, and that the time periods between images, as well as the wavebands, need 
not be the same at each date. Thus, the procedure can handle data from sensors such as SPOT HRV and Landsat 
TM. In addition, the use of coefficients to represent the analytical surfaces significantly reduces the amount of 
data processing, whilst maintaining information reliability. 
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1. INTRODUCTION 

Remote sensing has been used to provide input data by 
aerial measurements for many agricultural applications, 
including monitoring crop production and yield 
forecasting from very early days [Steven et al., 1997]. 
Many companies and governments require a forecast to 
plan their processing requirements and marketing. 
Although remote sensing is already an established 
forecasting tool for agricultural applications, traditional 
methods (e.g., aerial photographs) are not able to cover 
enough samples, or wide enough areas. Therefore, it is 
important for crop yield forecasting to expand its 
boundaries to incorporate images from orbiting 
platforms, since these kinds of images can provide a 
much better statistical sample for large areas. Thus, 
crop yield prediction by satellite observation could 
become a commercial reality.  

Before one can apply a forecasting model to particular 
crops, it is necessary to separate them from all other 
cover types. This identification process is referred to as 

classification. Although there are many 
classification strategies available, problems 
remain in getting the best accuracy performance 
from a given classification method. The 
classification strategy and its parameters may be 
inadequate; or, the features used in the 
classification process may not be well-suited to 
the technique of crop identification, thus 
causing a lower accuracy performance; or 
perhaps, the available spatial resolution and 
temporal frequency of the data is not matched to 
the expected accuracy. 

For practical applications, it is essential that 
classification systems be robust and exhibit 
good generalisation. Although the range of 
image processing techniques has been greatly 
expanded, from classical statistical approaches 
to neural network methods, there is no single 
classification algorithm capable of deriving 
generic products from remotely sensed data. 
The performance of these algorithms is strongly 



dependent upon data selection and on the efforts 
devoted to the design phase. Therefore, researchers 
must seek alternative methods for achieving improved 
generalisation performance. 

Efficient crop management practices require accurate 
and rapid information about crop distributions. 
Commonly, multispectral remotely sensed images are 
used to distinguish crop types on the basis of their 
spectral properties [Mather, 1999]. However, such 
analysis involving single-date images has the drawback 
that, since maximum discrimination between different 
crop types occurs at different stages in the growth 
cycle, not all differences are incorporated in the 
procedure. Moreover, different crop types represented 
in the area under study may be at different stages of 
growth. In addition, the temporal 'profile' of the 
spectral reflectance curve of each crop is not taken into 
account. Such profiles may be of considerable value in 
discriminating between crop types, which may be 
difficult to distinguish at certain points in the growth 
cycle. Furthermore, results derived from data obtained 
by different sensors may not be comparable due to 
differences in spectral and spatial characteristics. 
Finally, since agricultural crops are dynamic, it is often 
useful to observe their development over time (e.g., 
crop yield estimation). A solution is to use 
multitemporal images for crop monitoring [Badhwar et 
al., 1982]. For most current multitemporal 
classification techniques, a correspondence of time to 
growth state is established for each possible crop 
category that minimises the smallest difference 
between the given multispectral-multitemporal vector 
and the category mean vector indexed by growth state 
[Haralick et al., 1980]. These techniques, however, are 
fairly inaccurate since only relatively few static 
spectral and temporal ‘snapshots’ contribute to crop 
identification. That is, images with specific spectral 
wavebands acquired on specific dates are used, rather 
than images with entire spectral and temporal continua. 
Using the latter may increase crop classification 
accuracy since they contain more information than the 
former [Labin and Strahler, 1994].  

This paper demonstrates a method for improving 
artificial neural network performance by using the 
spectral-temporal signatures of remotely sensed images 
as features for classifying agricultural crops. Per-pixel 
classifications are performed using multispectral, 
multitemporal and multisource data, whereby 
analytical surfaces representing the spectral and 
temporal continua of each feature (pixel) are 
interpolated and their coefficients are used as 
discriminating variables. 

2. STUDY AREA AND DATA SET 

The study area was located near the town of Littleport 
in Cambridgeshire, eastern England. This area was 
approximately at mean sea level with gently undulating 

topography. The agriculture of the region was 
characterized by rotational crop plantation 
techniques. 

Eight remotely sensed images acquired 
throughout the 1994 summer growing season 
were used for analysis. These included four 
Landsat TM images (11 June, 27 June, 20 July, 
14 August) and four SPOT HRV images (13 
May, 28 June, 30 July, 14 August). Only six 
spectral wavebands of Landsat TM imagery 
were used since the thermal infrared band (band 
6) was omitted from analysis. In addition, local 
farmers’ Field Data Printouts for 1994 were 
collected and used to generate a ground 
reference data set. 

All images were geometrically registered to the 
British National Grid. For each image, 
registration was performed using 17 ground 
control points and nearest neighbor re-sampling, 
since this technique maintained the original 
pixel values [Jensen, 1986]. In each case, the 
root-mean-square error associated with 
registration was less than 0.5 pixels. 

Atmospheric correction was performed to 
account for atmospheric differences between 
multitemporal images. Initially, image digital 
numbers were corrected to radiance using 
information supplied with the image data files 
[Teillet and Fedosejevs, 1995]. Radiance was 
then converted to apparent reflectance (recorded 
at the sensor) and finally to surface reflectance. 
The final step used an inversion of the 5S 
(Simulation of the Satellite Signal in the Solar 
Spectrum) model [Tanré, 1990]. 

3. THE SPECTRA-TEMPORAL 
RESPONSE SURFACES (STRS) MODEL 

[Badhwar et al., 1982], [Badhwar, 1984], 
[Haralick et al., 1980], [Lambin and Strahler, 
1994] and [Ortiz et al., 1997] consider the 
problem of characterizing the temporal 
dimension but none utilizes the method 
proposed by [Vieira et al., 1998, 2000], 
involving the use of the spectra-temporal 
response surfaces (STRS), which provide for 
the generalisation in time of spectral reflectance 
properties of agricultural areas. The type and 
sequence of procedures used in the generation 
and potential use of the STRS representations 
are outlined in Figure 1. 

The STRS approach is based on a view of 
multi-band and multitemporal imagery from 
different sources represented in a three-
dimensional space, the axes of which are time 
(x), spectral waveband (y) and reflectance (z). 
Measurement from a number of different 
sensors in the optical wavebands can be plotted 



in this space. A bivariate polynomial of the form: z = 
F(x,y), where F() indicates a polynomial function of 
some order, is generated for each of the crop types in 
the area of study. Two methods were used in order to 
generate the fitted surfaces: polynomial trend surface 
analysis (PTS) and collocation (COL), since fitted 
function interpolation can impose a prescribed general 
behavior on the surface to override aberrant, 
anomalous, or noisy data. [Watson, 1999] and [Lam, 
1983] give comprehensive reviews on these 

interpolations methods and [Mather, 1976] reviews 
polynomial trend surfaces. 

These analytical functions are then parameterized and 
their coefficients, rather than the pixel values in each 
spectral band, are used as input features in the image 
classification process. 

4. METHODOLOGY 

4.1. Sampling Techniques and Classification Phase 

From the co-registered and radiometrically corrected 
image set, two independent sample sets (total 1440 
pixels) were selected using stratified random sampling 
technique and representing the six most common cover 
types in the study area: Potatoes, Sugar beet, Wheat, 
Fallow, Onions, and Peas. Each sample has 120 
patterns per class (total 720 pixels). One sample 
(selected at random) was used to training the classifier 
and the other one was reserved for validating the 
methodology.  

The image acquisition dates were expressed in the form 
of Julian days (x-axis) and the spectral dimensions (y-
axis) were characterized by their medial waveband 
values computed in the form of wavelengths. Thus, the 
spectral bands were labeled using the medial 
wavelength values of 0.458, 0.56, 0.66, 0.83, 1.645, 
2.215 – given to the six available TM channels (except 
the thermal infrared TM band 6) - and 0.545, 0.645, 
0.84 – given to the three HRV channels respectively.  

The radiometric properties are expressed in the form of 
reflectance values along the z-axis. Furthermore, for 

each pixel, 36 three-dimensional control points 
were generated (4 TM images with 6 bands plus 
4 SPOT HRV images with 3 bands). It is 
important to mention that the values along the x, 
y and z axes are scaled into the interval between 
0 and 1, sometimes referred to as normalization, 
before the interpolation phase. 

Initially the control points were used to fit a 
surface using a Polynomial Trend Surface as 
described earlier. Although a surface order of 7 
(36 coefficients) explained over 99% of the sum 
of squares, using a surface order of 3 (10 
coefficients) experimentally proved to be 
enough to characterize the analytical surfaces. 
Then, the same control points were used to fit a 
surface using the Collocation Interpolator. As 
the interpolated coefficients show different 
magnitudes on their values, they were again 
scaled collectively to the interval between 0 and 
1 before the training and test phases. One pixel 
example of the PTS and Collocation analytical 
surfaces is shown in Figure 2 (a to b) for 
several crops. 

According to [Vieira et al., 2000] the Maximum 
Likelihood (ML) classifier is the algorithm that 
best combines classification accuracy and 
computational economy when these coefficient 
are used as input to the classification process. 
Therefore, a supervised classification was 
performed using the Maximum Likelihood 
(ML) algorithm developed by [Mather, 1999] 
and adapted to classify 3D surface coefficients.  

For the purposes of comparison, a single-date 
image (Landsat TM, acquired on 27th June 
1994) was used to perform a standard 
classification in order to compare the results of 

Figure 2. Analytical surfaces and 
contours for several crops. 
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Figure 1. An outline of the methodology followed in this study to 

generate the STRS representations 



this multitemporal and multisource method against a 
classification based on a single-date image. For each 
pixel, the six reflectance values are considered together 
and therefore generate a six dimensional vector, to be 
used as input to the supervised classifiers: Maximum 
Likelihood (ML), and two variants of an Artificial 
Neural Network (ANN and ANNT).  

Both artificial neural network architectures chosen are 
multilayer perceptrons using the backpropagation 
algorithm [Benediktsson et al., 1990; Bischof et al., 
1992; Civco, 1993]. The only difference between the 
models is in the input layer. The first ANN model was 
implemented having one pixel per spectral band in the 
input layer. Therefore, this neural network had 6 nodes 
in the first layer. The input nodes in the ANNT model 
represented a 3 by 3 window of pixel data from each 
band of the image (total 54 nodes in the input layer) as 
the input [Paola, 1995]. This input modification takes 
local texture information into account. 

All neural networks configurations tested had an output 
layer with 6 nodes, corresponding to the 6 general crop 
classes. The number of hidden layers and the number 
of hidden nodes were found using a building up 
procedure. This method, described by Hirose et al. 
(1991) , begins with a small network composed of an 
input and an output layer, which are defined 
respectively by the number of discriminating variables 
and the number of classes involved in a given problem, 
with just one neurone in the hidden layer. The criterion 
for adding neurones to the hidden layer is based on the 
behaviour of the error during the training phase. 

As the main interest in this algorithm is the 
minimisation of the global error, it is expected that the 
error will evolve to small values during training. 
Therefore, if after a number of cycles (e.g., 100 cycles) 
when the error does not decrease by more than one 
percent of its previous value, a new hidden unit is 
added and the connection weights are randomly re-
initialised over the previously-defined interval. This 
process is repeated until the network converges to an 
acceptable global error value. With the above 
algorithm, the number of hidden units can only 
increase. In some cases, the number of hidden units 
becomes rather large, hence a counter-strategy is used. 
Once the network performance is judged to be 
satisfactory, the most recently added hidden unit is 
removed until the network no longer converges. The 
last network to converge is then taken as the optimum 
choice. The learning rate and momentum were set 
initially at 0.2 and 0.9 respectively. The learning rate 
was reduced during the training to 0.1 after 1000 
epochs. 

For this second experiment, two sample sets were 
selected using stratified random sampling based on the 
reference image (ground truth), which was generated in 
the same scale and projection system as the remotely 
sensed data. Each sample has also 120 patterns per 
class (total 720). One sample set was used to train the 

classifiers and another independent sample set 
was reserved to assess the accuracy of the 
classification. 

4.2. Accuracy Assessment 

In order to perform a systematic investigation of 
the relative (improvement of accuracy) cost 
involved in the incorporation of the temporal 
dimension into the crop classification process, 
standard accuracy measures derived from a 
confusion matrix were computed, using an 
independent test data set based on the Field 
Data Printouts. The measures based on the 
confusion matrix were overall accuracy, 
individual class accuracy, producer's accuracy 
and user’s accuracy. The calculations associated 
with these measures are described in standard 
textbooks (e.g., [Mather, 1999]). The Kappa 
coefficient, conditional Kappa for each class, 
and test Z statistics, all of them widely used 
statistics derived from the contingency matrix, 
were also computed [Congalton and Green, 
1999].  

In addition, a pairwise test statistic for 
evaluating the significance of the classifiers 
(represented here by their respective confusion 
matrices), was calculated utilizing the Kappa 
coefficients. These results are summarized in 
form of a significance matrix, in which the 
major diagonal elements indicate if the 
respective classification result is meaningful. In 
this single confusion matrix case, the Z value 
can be computed using the 
formula )var(KaKaZ = , where Z is 
standardized and normally distributed and var is 
the large sample variance of the Kappa 
coefficient K.  If Z ≥ Z α/2, the classification is 
significant better than a random classification, 
where α/2 is the confidence level of the two-
tailed Z test and the degrees of freedom are 
assumed to be infinity. On the other hand, the 
off diagonal elements give an indication, again 
if Z ≥ Zα/2, that the two independent classifiers 
are significantly different. The formula used to 
test significance of the difference of the two 
independent Kappa coefficients is: 

)var()var( 2121 KaKaKaKaZ +−= , where the 
Ka1 and Ka2 are the two Kappa coefficients in 
comparison [Congalton and Green, 1999].  

5. RESULTS AND DISCUSSIONS 

Classification accuracies for six agricultural 
crops using the six multispectral bands of a 
single-date TM Landsat image, Polynomial 
Trend Surface (PTS) and Collocation as input 
features into three supervised classification 
algorithms - maximum likelihood (ML), 



artificial neural networks (ANN) and artificial neural 
network texture (ANNT) are presented in Table 1. 
Individual classification accuracy for each crop 
(Conditional Kappa * 100), overall accuracy, the value 
of the Kappa coefficients and their variances, and test 
Z statistic are reported in this table. These accuracies 
were calculated from an independent dataset (720 
patterns). The pixels received the label of the output 
class having the highest probability. 

As the absolute value of the test Z statistic is greater 
than critical value of 1.96, all the classification results 
are significant better than a random classification at the 
95% confidence level. Moreover, it is noteworthy that 
the level of accuracy was gradually improved by 
employing on the single-date Landsat image the 
different classifiers: ML (72.9%), ANN (77.6%) and 
ANNT (81.7%) respectively. However, the overall 
performance level attained with the features generated 
using the STRS (i.e., the PTS and Collocation 
coefficients) as input features to ML classifies were 
considerably greater (by 5.7%) than those obtained by 
a single-date image. The ML classifier, when 
compared to ANN classifier, is the algorithm that best 
combines classification accuracy and computational 
economy when these coefficients are used as inputs to 
the classification process [Vieira et al., 2000]. Oddly, 
fallow (or set-a-side) is the only individual category for 
which the accuracy was decreased using PTS and 
Collocation features. Therefore, it could be concluded 
that using these features, the ML classifier is confused 
by some residual patterns of crops growing in the field 
from the previous crop rotation, which sometimes 
happens on fallow land.  

The lower performance achieved with ML classifier 
using only the TM multispectral bands is believed to be 
due in part to a non-linear separability of the classes 
under study and to a magnitude of training data set 

inconsistent with the design properties and 
assumptions of the supervised maximum 
likelihood algorithms. Moreover, for some of 
the crops (e.g., sugar beet and potatoes, or 
onions and peas) the multispectral profiles for 
that date are not very well separated. Even so, 
the neural models produce a satisfactory 
performance on the same data set. Furthermore, 
the separability of the classes are considerably 
improved when the local spatial variance of 
individual pixels is implicitly taken as input to 
the neural network model by employing a 3 x 3 
window as implemented in the ANNT 
algorithm.  

Table 2 provides the computed Z values for a 
pairwise statistical test in order to check the 
significance of the improvements on the 
classification accuracy. The classification 
accuracy obtained using the STRS approach 
(PTS and Collocation using ML algorithm) 
were found to be significantly improved in 
relation to the individual classifiers ML, ANN 
and ANNT, in which only a multispectral 
single-date image was used as discriminate 
variables (see yellow pair, Z > 1.96 at 95% of 
confidence level). This demonstrates a need to 
utilise the STRS approach if one is to achieve 
the highest accuracies possible in crop 
discrimination. Moreover, there is no significant 
difference between the performance of the ML 
using PTS or Collocation coefficient as input 
features (see blue pair, Z = 0.05 < 1.96). 
Therefore, it could be concluded that, for this 
data set, these two sets of feature variables may 
‘work together’ because they produce 
approximately equal classifications. 

As expected, the use of neural network models 
significantly overcomes the performance of the 
ML classifier using a single date Landsat TM 
image. However, the results indicate that there 
are no significant differences in performance 
between the ANN and ANNT algorithms (Z = 
1.89 < 1.96) at the same confidence level. 

Table 1. Classification accuracies for six agricultural crops
using Single-Date LANDSAT Image, Polynomial Trend
Surface (PTS) and Collocation (COL)) and three classification
algorithms - maximum likelihood (ML), artificial neural
networks (ANN) and artificial neural network texture (ANNT).
The table shows individual classification accuracy for each crop
(Conditional Kappa * 100), overall accuracy, the value of the
Kappa coefficients and their variances, and test Z statistic. If the
absolute value of the test Z statistic is greater than 1.96, the
result is significant better than a random classification at the
95% confidence level. These accuracies were calculated from an
independent dataset test (720 patterns). 

Table 2. Results of Kappa Analysis for comparison among the
classifiers. The table also presents the Kappa coefficients and
variance for each classifier. The Z values (in major diagonal and
off diagonal elements) were computed using formula as
describe in subsection 4.2. 

CLASSIF       ML      ANN     ANNT      TSA      COL

KAPPA 0.675 0.732 0.78 0.848 0.847
VAR   0.000394 0.000347 0.000299 0.000219 0.000222
ML 34.01
ANN 2.09 39.30
ANNT 3.99 1.89 45.11
TSA 6.99 4.88 2.99 57.30
COL 6.93 4.82 2.94 0.05 56.85  



6. CONCLUSIONS 

A method for improving artificial neural network 
performance by using multi-temporal, multi-spectral 
and multi-source remotely-sensed data as features for 
classifying agricultural crops has been shown to be 
effective in identifying general agricultural crop classes 
over an area in East Anglia (UK). Classification 
accuracies in excess of 87% were achieved, even 
though parts of some of the images are covered by 
clouds. The basic assumption of the method, that 
different crops have different spectral-temporal 
trajectories, has been used in earlier studies. However, 
the methods used to characterize the spectral 
reflectance changes over a growing season using a 
spectral-temporal surface represents a promising new 
approach, for several reasons. First, the method can 
deal with multi-sensor data, as the spectral bands 
measured at each date do not need to be the same. 
Second, data points obscured by clouds can be filtered 
out throughout the interpolation and parameterization 
procedures of the analytical surfaces. Third, the overall 
spectral variation of a given crop class over the 
growing season is captured by a set of coefficients, 
which are fewer in number than the training data pixels 
and hence produce computationally more efficient 
classifiers. 
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