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Abstract: Over recent years studies have shown an increasing application of bioinformatics tools, and in 
particular, artificial intelligence techniques such as artificial neural networks (ANNs) for biological problems. 
Proteomic techniques such as SELDI-MS (Surface Enhanced Laser Desorption/Ionization Mass Spectrometry) 
may be used to distinguish patterns derived from diseased tissue used to identify biomarkers representative of a 
certain pathological state.  This paper describes research building upon studies by Ball et al. (2002) in 
identifying potential biomarkers using ANNs for the analysis of mass spectrometry data from melanoma tissue.  
This approach utilised ANNs to model for 72 melanoma tissue samples (36 stage 1 and 36 stage 4) to identify 
ions as potential biomarkers and any possible interactions between these.  Preliminary results have shown that 
approximately 20,000 inputs can be screened to just 20 molecular ions which are capable of accurately 
predicting tumour grade.  Using the additive approach described by Ball et al. (2002) individual molecular ions 
were used to predict tumour grade and model performance evaluated using a receiver operating characteristic 
(ROC) curve.  The accuracy of the model with 1 ion was 58.3% with a sensitivity of 63.9% and specificity of 
52.8%.  With a 2 ion model, ANN performance increased to an accuracy of 70.8%, sensitivity of 66.7% and 
specificity of 75%. With a 3 and 4 ion model, the accuracy increased yet further to 77.8 and 83.3%, sensitivity to 
72.2 and 77.8% and specificity of 83.3 and 88.9% respectively.  Preliminary findings indicate the ANN 
approaches adopted allow optimisation and determination of the minimum number of ions (derived from SELDI-
MS data) which can successfully predict tumour grade. This work continues so that these key ions may be 
determined in order to identify if they have an important role in tumour progression from low to high grade. 
 
keywords: Artificial neural networks, methodologies, models and algorithms. 
 
1. INTRODUCTION 
 
Melanoma is a form of skin cancer which is 
difficult to treat if not detected early.  If however, it 
is detected in its early stages, survival rate is 
promising.  Therefore, new technologies need to be 
developed which either (i) detect the disease at an 
early stage, so that it can be treated before it 
progresses or (ii) identify biomarkers representative 
of a given pathological state, which may in turn be 
used in the development of novel treatments.   
 
 Mass spectrometry is an important tool which is 
used in linking proteins to their genes [Yates, 
1998].  SELDI-MS is capable of rapidly analysing 
samples containing vast amounts of proteins with 
excellent reproducibility. It can be used in 
generating patterns that these masses of proteins 
produce, and therefore is useful in showing the 
differences between these patterns when the 
proteins are being expressed in different tissues, 
such as differences between tissues during various 
stages of disease.  Techniques such as this may be 

used to search for biomarkers associated with 
tumour progression and/or used in the early 
detection of the disease. Due to the vast amount of 
data generated by SELDI-MS, the development of 
robust computer algorithms is an absolute necessity 
[Ball et al., 2002].  For this reason, this study 
involved using artificial neural networks to analyse 
SELDI-MS data from melanoma tissue. 
 
 ANNs are presently being utilised more than any 
other learning tool in biotechnology, in the 
modelling of complex data. This is particularly true 
in the field of cancer [Almeida, 2002].  Examples 
of their uses have been shown in prostatic cancer 
[Porter et al., 2002; Batuello et al., 2001], cervical 
cancer [Mango, 1998], lung cancer [Zhou et al., 
2002], ovarian cancer [Petricoin et al., 2002] and 
breast cancer [Abbass, 2002; Simpson et al., 1995], 
where ANNs have been shown to perform 
significantly better than physicians in the diagnosis 
of malignant and benign calcifications on 
mammograms [Markopoulos et al., 2001]. ANNs 
have also been used in numerous other fields such 



as the prediction of rehospitalization in patients 
suffering from strokes [Ottenbacher et al, 2001], 
determining progression of glaucoma [Lin et al., 
2002], classification of bacterial growth [Hajmeer 
and Basheer, 2003], identifying factors which 
modify the responses of plant species to ozone 
[Balls et al., 1996] and detecting the presence of 
fish species in rivers [Mastrorollo et al., 1997]. 
 
In this study, a multi-layer perceptron ANN with a 
back propagation algorithm was used to model for 
72 melanoma serum samples, 36 of which were low 
grade (stage 1) and the remaining 36 were high 
grade (stage 4).  The purpose of the study was to 
identify any ions which were important in the 
correct classification of tumour grade and therefore 
may serve as potential biomarkers representative of 
a specific disease state.  Techniques involved using 
relative importance values based on the weights of 
trained models to rank the importance of an inputs 
influence on the system [Balls et al., 1996] and then 
removing inputs of low and no importance.  This 
results in a more generalised model being 
developed, which enables the additive approach 
described by Ball et al. (2002) to be used in order 
to identify these important ions. 
 
2. METHODS 
 
2.1 SELDI-MS 
 
Tissue preparation and SELDI mass spectrometry 
was carried out as described previously by Ball et 
al. (2002).  In summary, two sequential 10-15 µm 
frozen tissue sections were cut for each tumour.  
The first section was stained with haematoxylin and 
eosin in order to determine tumour grade, purity 
and viability.  The tissue was then placed directly 
onto 30 µl homogenising buffer (9.5 M urea, 3% 
CHAPS, 1 % DTT) for 15 min at room temperature 
with agitation to facilitate cell lysis and protein 
extraction. Homogenates were frozen at a 
temperature of -80 °C prior to SELDI analysis.  
Protein ‘chips’ were loaded with 2 µl of 50 % 
acetonitrile and 5 µl of cellular homogenate and 
exposed to the chip surface for 10 min at room 
temperature in a humid environment.  Homogenates 
were then removed and the chip surface washed 
three times using 10 µl of water.  The surface was 
then dried.  Chip analysis was conducted at 
maximum laser intensity and ‘phenomic 
fingerprints’ derived from each tumour sample 
(Ball et al., 2002). 
 
2.2  Optimisation Of ANN Architecture 
 
The study used a multi-layer perceptron ANN with 
a back propagation algorithm and a sigmoidal 
transfer function [Rumelhart and McClelland, 

1986].  The particular architecture used contained 
three layers, with the hidden layer containing 2 
hidden nodes.  Determining the number of hidden 
nodes is essentially a trial and error procedure and 2 
were found to give the best performance for this 
particular data (results not shown this paper).  
Architectures with learning rate and momentum 
values between 0.1 and 0.9 were trained in order to 
deduce the ANN model which performed best for 
this data.  Using the mean squared error (MSE) 
value as a means of measuring prediction accuracy, 
it was found that a learning rate of 0.1 with a 
momentum value of 0.5 produced the lowest value.  
Training was conducted upon 60% of samples, with 
20% being used for test sets, and the remaining 
20% used for production (validation) sets until the 
model reached convergence.  During training, the 
ANN model is optimised against the test set, and 
then validated against the production (validation) 
set.  Convergence was determined by a failure of 
the model to improve the minimum MSE on the test 
data for 20,000 training events. 
 
2.3. Determination Of Important Molecular Ions 
 
The pattern recognition process involves several 
distinct phases which are (i) data representation, 
involving the initial determination of whether the 
tumour grade of the tissue was stage 1 or stage 4, 
(ii) feature extraction, where the analysis of the 
weights occurs, (iii) classification, where the ANN 
model assigns the data into either low or high grade 
classes and (iv) validation, where the ANN model 
is tested against unseen global data. 
 
To determine which ions had the most influence on 
the system in correctly predicting tumour grade, the 
data was first screened for noise removal.  To 
achieve this, data within the mass range of 2-5 KDa 
was trained over 50 random training/test/production 
subsets (so that a good level of confidence could be 
gained) and relative importance values for each 
individual ion was recorded in order to rank these 
ions according to their influence upon predicting 
tumour grade.  These relative importance values are 
calculated from the analysis of weights of the 
trained network, values are calculated by taking the 
sum of the absolute weight values leading from 
each input to the output.   
 
The data was then “shifted” up 500 Da so that the 
input data now ranged from 2.5-5.5 KDa and then 
trained as above.  This process was repeated and 
the inputs were shifted over the whole data range 
(up to 30 KDa) which provided a proteomic profile 
showing relative importance of ions over the whole 
data range from 2-30 KDa taking account of 
potential interactions between ions.   
 



From this relative importance analysis, ions with 
the greatest importance were selected from the data 
in order to reduce the number of inputs in the 
model.  This was achieved by selecting the top 
1,000 ions with the greatest relative importance 
values and repeating the training process as 
described previously.  Relative importance analysis 
was again used to determine the top 500 ions from 
these 1,000.  This was again repeated to deduce the 
top 300, 200, 100, 50, 30 then finally the top 20 
ions from the initial data set of approximately 
20,000 in terms of relative importance. 
 
The next stage involved identifying the minimum 
number of ions from these 20 which were capable 
of correctly predicting tumour grade.  This was 
achieved using an additive approach which 
involves training a number of different models.  
Using these 20 ions, each ion was used as a single 
input in predicting tumour grade, and for each 
model, 100 random training/test/production subsets 
were used (a process termed bootstrapping), in 
order to provide a measure of confidence in the 
predictions made.  The MSE was calculated, and 
the ion model with the lowest value was selected 
for further training.  All of the remaining ions were 
then added sequentially to this first input creating 
19 two-ion models and these were trained as before 
with 100 random training/test/production subsets.  
The model with the best performance was selected 
to produce a three-ion model, and then the process 
was repeated and the ion with the best performance 
was again selected to produce a four-ion model. 
 
3. RESULTS 
 
The data obtained from SELDI-MS were analysed 
for relative importance values to create a relative 
importance profile for all data points with a m/z 
value of between 2 and 30,000 Daltons.  Figure 1a-
c shows the mean relative importance values from 
the 50 sub-models which were applied to each 
individual model.   
 
The next stage involved selecting the ions which 
were most important in predicting tumour grade in 
order to optimise the model.  This was achieved by 
ranking the ions in descending order of importance 
and selecting the top 1,000 ions.  The training 
procedure was repeated and the top 500 ions were 
selected.  This was repeated again so that the top 
300 ions were selected and so on until a model 
containing the top 20 ions of importance was found.  
The purpose of this was to reduce the number of 
ions from an initial value of approximately 20,000 
molecules to just the 20 that could predict tumour 
grade most accurately.   
 
In order to identify the minimum number of ions 
which were able to accurately distinguish between 

low and high grade tumours, an additive approach 
was used (as described in the previous section).  
This involved creating several models and 
assessing their performance with respect to the 
MSE value generated.  Preliminary results have 
shown that the lowest MSE value obtained from the 
one-ion model was from an ion with a molecular 
mass of 7247 achieving a MSE of 0.235.  Using a 
two-ion model, the error decreased to 0.205 using 
ions 7247 and 27867.  With a three-ion model,  
containing the ions from the two-ion model and ion 
4562, the error decreased further to 0.188.  Finally, 
with a four ion model containing the addition of ion  
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Figure 1a-c.  Relative importance values for ion masses ranging 
from (a) 2,000-9,999 Da. (b) 10,000-19,999 Da and (c) 20,000-
29,994 Da.  These values illustrate a value obtained from 50 sub-
models of each individual model in which different random 
weightings were applied to each model. 
 
28470, the MSE value decreased further still to 
0.16.  Model performance from these preliminary 
results was then assessed using a Receiver 
Operating Characteristic (ROC) curve.  A ROC 
curve determines the number of true positives (or 
correctly defined stage 4 melanoma tissue), true 
negatives (correctly defined stage 1 tissue), false 
positives (incorrectly defined stage 4 tissue) and 
false negatives (incorrectly defined stage 1 tissue).  
It achieves this by plotting the true positive rate 
against the false positive rate at different possible 
cutpoints (in this case, prediction errors). The 
curves for the one to four-ion models can be seen in 
Figure 2.  The ROC curves for all models were 
compared and the results are presented in Table 1.  



It is clear from Table 1 that a ROC curve provides 
information about several different variables.  
Briefly, accuracy is the overall ability of the model  
 
 

 
Ions 
in 

model 

Accuracy 
(%) 

Sensitivity 
(%) 

Specificity 
(%) 

Positive 
Predictive 

Value 
(%) 

Negative 
Predictive 

Value 
(%) 

AUC 

1 ion 58.3 
 

63.9 52.8 57.5 59.4 0.574 

2 ion 70.8 
 

66.7 75 72.7 69.2 0.748 

3 ion 77.8 
 

72.2 83.3 81.3 75 0.809 

4 ion 83.3 
 

77.8 88.9 87.5 80 0.854 

 
Table 1. Comparison of performances for each model used 
 
to correctly assign the tissue samples. The 
sensitivity is the percentage of the stage 4 tissues 
correctly classified whilst the specificity is the 
percentage of stage 1 tissues correctly classified.  
The positive predictive value shows the percentage 
of the true positives distinguished from the false 
positives and the negative predictive value is the 
percentage of true negatives from false negatives.   
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Figure 2.  Diagram of ROC curves for all models.  (□) shows 
ROC curve for one-ion model.  (▲) shows ROC curve for two-
ion model.  (■) shows ROC curve for three-ion model.  (•) 
shows ROC curve for four-ion model. 
 
The area under the curve, or AUC measures  
discrimination, that is, the ability of the model to 
correctly classify those with stage 4 and stage 1 
disease.  A perfect ROC curve (and therefore a 

perfect test) has an AUC (area under the curve) 
value of 1, so the closer the curve follows the left 
hand border and then the top border of the ROC 
space, the more accurate the test.  From the results 
it is clear that with increasing ions the accuracy of 
the model also increases.  The one-ion model 
correctly classified 42 out of 72 tissue samples 
(58.3 %), with a two-ion model 51 out of 72 (70.8 
%) samples were correct, using three ions, 56 of the 
72 samples were assigned correctly (77.8%) and 
with the four-ion model, accuracy rose to 83.3 %, 
with 60 out of 72 samples being predicted correctly.  
The sensitivity and specificity of the models also 
showed a similar increase in performance as the 
accuracy.  The sensitivity rose from 63.9% with the 
one-ion model, to 66.7 % with two-ions, a further 
increase was evident with the three-ion model to 
72.2 % and with four-ions this rose again to 83.3 %.  
Meanwhile, specificity with one-ion was 52.8 % 
and increased by over 20 % when a second ion was 
added to the model (75 %).  The three-ion model 
resulted in a specificity of 83.3 % which improved 
to 88.9 % for the four-ion model. The positive and 
negative predictive values also showed similar 
trends, rising from 57.5 % and 59.4 % with the one-
ion model, to 87.5 % and 80 % with the four-ion 
model respectively.  When assessing the AUC 
values, the one-ion model produced an AUC of 
0.574 signifying a poor test.  The two-ion model 
had an AUC of 0.748 which represents a fair test.  
The three and four-ion models had AUC values of 
0.809 and 0.845 respectively illustrating good tests. 
 
4. DISCUSSION 
 
Results shown are those of preliminary work being 
carried out with the aim of identifying biomarkers 
capable of accurately predicting tumour grade from 
SELDI-MS data and therefore may be important in 
either developing novel therapies or in early 
detection of disease.  The first stage of this study 
was to identify the top 20 ions (out of an initial 
20,000) which were capable of predicting tumour 
grade.  The next stage involved using an additive 
approach in order to determine and identify the 
minimum number of key ions that were capable of 
predicting tumour grade and thus may be important 
in tumour progression from low to high grade.  
ROC curves were generated for each model and 
these showed the increase in performance over the 
four models.  The ion with the lowest error was 
identified as ion 7247 which predicted tumour 
grade with an accuracy of 58.3 %.  The two-ion 
model contained ions 7247 and 27867 which 
predicted correctly 70.8 % of the time.  The three-
ion model consisted of ions 7247, 27867 and 4562 
and classified the tissues correctly  to a  value of  
77.8 %.  Finally, the four-ion model contained ions 
7247, 27867, 4562 and 28470 and performed with 
an accuracy of 83.3 %. 



5. CONCLUSION 
 
In conclusion, these preliminary findings show that 
when combining two powerful tools in SELDI-MS 
and ANNs, we can optimise the models so that the 
inputs with little or no influence upon the system 
may be removed in order to find the essential ions 
involved in the prediction of tumour grade.  
Although the method may be limited because the 
data set was relatively small due to the difficulties 
in obtaining tissue samples (these data sets will be 
expanded in future studies), the high classification 
accuracy of the models on truly unseen data shows 
that the models have generalised well enough to 
overcome this.  Further research is ongoing and 
work continues on developing the models in order 
to conclude which, and how many ions the optimal 
model for the classification of tumour types from 
tissue contains.  Once this is achieved, the next 
phase will involve methods for the analysis of 
interactions between ions within the system.  Once 
these essential ions are identified they may be 
sequenced to determine their corresponding 
molecule/protein, which is essential in order to 
establish diagnostic markers. 
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