
A FORMEL LANGUAGE FOR SOFTWARE REUSE

ZINA HOUHAMDI

Computer Science Department, University of Biskra
BP 145, Biskra RP, 07000, Algeria.

E-mail: z_houhamdi@yahoo.fr

Abstract : Software reuse has been claimed to be one of the most promising approaches to enhance programmer
productivity and software quality. One of the problems to be addresses to achieve high software reuse is
organizing databases of software experience, in which information on software products and processes is stored
and organized to enhance reuse. This paper presents a new approach to define and construct such databases
called the Reuse Description Formalism (RDF). The formalism is a generalization of the faceted index approach
to classification. Unlike the faceted approach, objects in RDF can be described in terms of different sets of
faceted and in terms of other object descriptions. This allows a software library to contain different classes of
objects, to represent various types of relations among these classes, and to refine classification schemes by
adding more detail supporting a growing application domain and reducing the impact of initial domain analysis.
In particular, RDF provides a specification language based on concepts of set theory capable of representing a
rich variety of software and non-software domains; it provides a retrieval mechanism based on exact matches
and similarity metrics which can be customized to specific domains; and it provides a mechanism for defining
and ensuring certain semantic relations between attribute values.

Keywords. Software reuse library, classification system, taxonomy, similarity, retrieval process, specification
language.

1. INTRODUCTION

Complex computer programs have placed a
growing demand on the talents of software
engineers as well as on existing technologies for
software development. In order to keep up with the
increasing complexity of today's software systems,
productivity must be increased and cost reduced in
all phases of the software construction process [2].
An important aspect of the projected solution to this
growing demand for new software is the
development of support technologies to help
increase software reuse, that is, the reapplication of
knowledge about one system to other similar
systems [1,3]. Rather than starting from scratch in
new development efforts, the emphasis must be
placed on using already available software assets
(e.g., processes, documents, components, tools).
This approach avoids the duplication of work and
lowers the overall development cost associated with
the construction of new software applications. One
important characteristic common to most
approaches to software reuse is that they rely, either
explicitly or implicitly, on some kind of software
repository or library from where the "basic building
blocks" are extracted. The fact that software
libraries are such an important aspect of most reuse
systems, has made software reuse library systems
(i.e., systems for designing, building, using, and
maintaining software libraries) a very important
research topic in the area of software reuse [7].

Although these classification models provide the
basis for a useful software reuse library system,
they have significant limitations and, therefore, can
only be regarded as a first step towards a more
complete system. They all suffer from one or more
of the following problems [4]:

Restricted domain. Some reuse library systems
have been designed with the purpose of improving
reuse at code level. Their representation language
usually does not have the expressive power to
model more abstract or complex software domain
(e.g. software project, defect, or processes).

Poor retrieval mechanism. One essential
characteristic of any software reuse library system
is to allow the retrieval of candidate reuse
components based on partial or incorrect
specifications. This functionality requires the ability
to perform similarity-based comparisons, but most
systems only provide retrieval based on partial
keyword matches or predefined hierarchical
structures.

Not flexible. Software reuse library systems must
evolve as the level of expertise in an organization
evolves. Because of this, a software reuse library
system must be flexible enough to allow the
incorporation of new classification schemes or new

retrieval patterns, yet this is not the case in most
systems.

No consistency verification. Most software reuse
library systems are based on representation models,
which must satisfy certain basic predicates for the
library to be in a consistent state. Yet, most of these
systems do not provide a mechanism for ensuring
this consistency.

This paper proposes a classification system for
software reuse called the Reuse Description
Formalism (RDF) which addresses the limitations
of current software reuse library systems. RDF is
based on the principles of faceted classification,
which have proven to be an effective mechanism
for creating such systems [8,11]. RDF is capable of
representing a rich variety of software (and no-
software) domains; provides a powerful and
flexible similarity-based retrieval mechanism; and
provides facilities for ensuring the consistency of
the libraries.

2. FOUNDATION OF RDF

The Reuse Description Formalism uses a
generalization of the faceted classification approach
proposed by Diaz [10] to represent and classify
software objects. The faceted index approach relies
on a predefined set of facets defined by experts.
Facets and associated sets of terms form a
classification scheme for describing components.
Component descriptions can be viewed as a records
with a fixed number of fields (facets), where each
field have a value selected among a finite set of
values (terms). Faceted classification scheme has
proven to be an effective technique to create
libraries of reusable software components. Yet, it
suffers from various shortcomings, which limit its
usefulness and applicability. The RDF approach to
classification overcomes these limitations by
extending the representation model as follow [5]:
Components are replaced by instances that belong
to several different classes. Instances and classes
are defined in terms of attributes and other classes,
supporting multiple inheritance.
Facets are replaced by typed attributes. Possible
types are: integers, string, enumerations, classes,
and sets of the above. Having instances as attribute
values allows a library designer to create relations
among different instances (e.g., that push is a
component of stack).
The concept of similarity is extended to account for
the richer type system, including comparisons of
instances of different classes and comparisons of
set values.
Semantic attribute relations can be defined and
checked using the assertion construct. This facility
simplifies the process of maintaining the
consistency of the definitions in a software library.

An integrated language describes attributes, terms,
classes, instances, distances, and their
dependencies. Descriptions are type checked. The
language is based on a formal mathematical model,
which makes it both coherent and analyzable.

2.1. Representation model

To understand the representation principles of RDF,
it is useful to consider descriptions of objects of a
particular class as point in a multidimensional
space, were each dimension is represented by an
attribute. Attributes have a name and a list of
possible values defined by their associated type
(i.e., set of values). If a is an attribute name, and v
belongs to the a's type, the assignment "a = v"
represent the set all objects whose attribute a is v.
Assignment can be combined in expression to
define other sets of objects. In particular, if A1 and
A2 are two assignments, the expression «A1 & A2»
represents the intersection of the sets A1 and A2.
Similarly, "A1| A2" represents the union of these
sets. In addition, the set of objects that have been
defined in terms of a particular attribute a,
independently of the value associated with a, is
denoted by "has a". The set of objects defined by
the "has" operator is a short form of the expression
"a = v1 | a = v2| … |a = vn" where the value vi are
the elements of the type of a. A set of objects is
called a class in RDF. Classes can be given a name
they are denoted as class (E) where E is an
expression; i.e., unions and intersections of other
sets of objects. If c is a class name, the set of
objects it represents is denoted by "in c", and can be
combined with other sets of objects in an
expression. An object description is called an
instance in RDF. Instances can be given a name and
they are denoted as instance (E) or [E] where E is
an expression. Semantically, an instance must have
only one set of attributes, therefore we say that
instance (E) is well defined if and only if: (1)E is
not a contradiction (i.e. , class(E) ≠ ∅), (2) E
defines a mapping from attributes to values, that is,
E can be simplified into a consistent conjunct of
assignments.

Expressions can also be used to characterize
particular sets of instances defined in a RDF
library. We denote by set (E) the set {i| i ∈ D ∩
class (E)}, where D is the set of instances in the
library. In other words, the set operator defines the
set of instances in the library that belong to the
class defined by E.

2.2. Similarity Model

The goal of any Reuse Library System is to
facilitate
the process of finding suitable objects for reuse.
RDF supports two criteria for selection candidate

objects: by exact match and by similarity. For exact
matches the construct set (E) already described is
used. Similarity-based queries are performed using
the construct "query E", which denoted the list of
instances in the library sorted by decreasing
similarity to the target object define by E. That is,
the first element of the "query E" is the best reuse
candidate for [E], the following element the second
best, and so on.

As mentioned earlier, similarity is quantified by a
non-negative magnitude called similarity distance,
which is used as an estimator of the amount of
effort required to transform one object into another.
Because of this, distances between two object
descriptions, A and B, are not symmetric, because
the effort to transform A into B is not necessarily
the same as the one required to transform B into A.
For this reason, whenever a distance is computed, it
is important to define which object is the source
and which the target.

Let Z be an object class defined by the set of
attributes Z' = {A1,…, An}, and S and T be two
instances in this class. Also, let S'⊆ Z' be the actual
set of attributes used to define S, and similarly for
T'. The distance from S to T is denoted by D (S,T)
and is computed as follows:

∑ ∑∑
∩∈ −∈−∈

++=
'T'SA 'S'TA

AA
'T'SA

AAAA)A.T(CK)A.S(RK)A.T,A.S(TK)T,S(D

Where I.A denotes the value of an attribute A on an
instance I. The set S'∩T' represents the attributes
shared by S and T, while S'-T' is the set of attributes
found in S but not in T, and similarly for T'-S'.
These three sets are disjoint. In addition, each
constant KA is called the relevance factor of
attribute A. Their values fall in the range 0 to 1.,
and must satisfy the relation ∑ ∈

=
'ZA A 1K .

Functions TA, RA and CA are called comparators,
and are explained later in this section.

The expression for distance D(S,T) is based on the
assumption that the overall transformation effort
from S to T can be computed using a linear
combination of the differences between their
respective attributes. In other words, attributes are
considered independent of each other when
computing similarity. This is a strong assumption
that limits the types of domains that can be handled
by RDF's similarity model.

Relevance factors. In general, the distance between
two RDF objects is given by the sum of the
distances between their corresponding attributes.
This default scheme gives equal importance to all
attributes. In our particular situation, this is not a
reasonable assumption. For example, one would

consider that the difference between component
subsystems is more important than the difference
between their number of lines of source code.
Therefore, the first step required to design
comparators is to assign a relevance factor to each
attribute in the representation model, that is, to
define the amount of influence they have in the
computation of similarity distances.

Comparators. Explained earlier, each attribute has
three associated functions TA, RA and CA called
comparators. TA is the transformation comparator
and is used to qualify the amount of effort required
to transform one value of attribute into another. RA
is the removal comparator and is used to estimate
the amount of effort required to eliminate a source
attribute value not required in the target
specification. Finally, CA is the construction
comparator and estimates the amount of effort
required to supply a target value not specified in the
source specification. The set of all attribute
comparators plus their associated relevance factors
define a specific similarity model for reuse library.
These functions and values must be specified using
a process called domain analysis [9] which, among
other thing, defines the criteria for similarity for
objects in a particular domain. Nonetheless, RDF
provides default comparators for each type of
attribute. These default comparators can be used as
a starting point from which to refine the similarity
model of a library. This refinement is normally
done by assigning attributes non-default
comparators using "foreign" functions specified in
some conventional programming language.
RDF defines default comparators for each different
kind of RDF type. Although default comparators
are well suited for certain domains, sometimes it is
necessary to define alternative comparators to be
able to capture the semantics and relations of
specific objects and attributes. For this purpose,
RDF allows the library designer to define arbitrary
comparators, which can be assigned to any attribute
or type using the "distance" clause.

2.3. RDF Specification language

This section presents a formal definition of the
syntax of the RDF language. Syntax is presented in
a variation of the BNF using the following
conventions: Keywords and symbols occurring
literally are written in bold; non-terminals are
written in italics; type-name, attribute-name,
instance-name, term, and class-name all denote
identifiers; symbol, … means one or more
occurrences of symbol, separated by commas; and
keywordopt means that the keyword may or may not
occur, without affecting the semantics.

Declarations: A RDF library consists of a sequence
of declarations. Each declaration either defines a

name (of a type, an attribute, an instance, or a class)
or describes an assertion that must be true of all
instances in the library.
Library ::= declaration
Declaration ::= type-declaration  attribute-declaration 
instance-declaration  class-declaration  assertion

Attributes and types: Software components and
other objects are described in terms of their
attributes. We can think of attributes as fields of a
record describing the object. The declaration of an
attribute specifies the type of the values for the
attribute. RDF supports the following types:
number, string, term enumerations, object classes,
and homogeneous sets of the above.
Attribute-declaration ::= attribute attribute-name : type;
Type-declaration ::= type type-name = type;
Type ::= simple-type distance-clause
set distance-clause of type
Simple-type ::= number string {term,
…}classtype-name
Distance-clause ::= distanceoptno
distancedistance {triplet,…}distance *{triplet,…}
triplet ::= termopt → termopt : number-
literal

The keyword distance by itself is optional and
assigns default distance functions. The case “no
distance” indicates that the distance between values
of the associated type is always zero. In the third
and the fourth forms of the distance clause, the
triplet t1 → t2: n means that the distance from t1 to
term t2 is n. if t1 is omitted the unspecified value is
assumed (i.e., n is creation distance of t2). If both t1
and the arrow are omitted, the previous t1 is
assumed. If the keyword distance is followed by the
character “*”, then the distances between terms not
mentioned in a triplet will be set to infinity. If “*” is
not specified, distances between all terms will be
adjusted by computing the shortest path between
them.

Expressions: Expression are formed from attribute
assignments, the unary operators has and in, and the
binary operators & (intersection) and  (union).
Expression ::= attribute-name = value  has attribute-
name  in class-name  expression & expression 
expressionexpression  (expression)

The expression “attribute-name = value” means that
the value of attribute-name for the instance being
defined is value. The expression “in class” means
that the instance defined belongs to the class; it is
similar to a macro-expansion of the expression that
defines the class. The expression “ has attribute-
name” denotes the condition that the instance being
defined has some value for attribute-name.

Values: Values are used in assignment expressions.
Values are either simple values or set values. A

simple value is either a literal (number or string), a
term, an instance, or the value of an attribute of an
instance. Set values must denote homogenous sets;
they are described either by extension or by
intention, using the

set construct. Only sets of instances can be
described by intention.
Value ::= simple-value {simple-value, …}set
(expression)set (instance-nameexpression)
Simple-value ::= number  string  term instance 
self
Instance.attribute-name self.attribute-name

The construct set (E) represents the set of all
instances in the library that satisfy the expression
(i.e., that belong to class (E)). If the optional
instance-name is used, the name is bound within E
to each instance in the library. The dot notation
“instance.attribute-name” is used to refer to the
value of the attribute attribute-name of an instance.
This notation is similar to that used in other
languages to access record fields. The keyword self
is a reference to the instance defined by the
expression in which the value is used. Within an
instance construct, self is bound the instance
defined. Within an assertion, self is bound to every
instance in the library in turn. Within nested
instance construct, self is bound to the innermost
instance.

Classes: A class is defined by giving the
corresponding expression; the class denotes the set
of all objects for which the expression holds.
Classes are used to abstract proprieties of instances
and also as abbreviations for the corresponding
expressions. Classes are also used as types of
attributes whose values are instances.
Class-declaration ::= class-name = class;
Class ::= class (expression)class-name

Instances: Instances are defined in terms of an
expression. An instance defined by an expression E
is a representative of the class of instances defined
by “class (E)”
Instance-declaration ::= instance-name = instance;
Instance ::= instance (expression) [expression]
An instance may not exist either because the class
is empty (i.e., the expression is a contradiction) or
because the class is not specific enough (i.e., it
defines more than one valid set of attributes) a
sketch of a possible simplification and verification
algorithm is as follows.

Expand all “in” propositions with the expressions
of the corresponding classes.
Transform the expression into disjunctive normal
form, as follows:

Restructure the expression using associativity laws
so that no disjunction occurs within a conjunction.
Represent each conjunct as a set of assignments and
has propositions.

Represent the expression as a set of these conjuncts.
For each conjunction do the following:
Delete redundant assignments.
If there are still two assignment to the same
attribute, or there are unsatisfied has propositions,
delete the conjunction.

Else, delete has propositions (not needed anymore).
Delete conjunctions that imply another conjunction.
If there no conjunctions left, fail (E is a
contradiction)
If there are more than one conjunction left, fail (E is
not specific enough)

Assertion: An assertion specifies a semantic
constraint that must be true of all instances in the
library. Expressions are used to represent
dependencies between attributes, to constrain data
types and classes, and to enforce correct typing.
Assertion ::= assertion expression ⇒ expression;

The meaning of “assertion E1 ⇒ E2” is similar to
set (E1) ⊆ set (E2). This definition does not capture
subtleties with respect to the binding of self. RDF
signals false assertions

Queries and distance computations: Queries are
used to examine a RDF library; they are not part of
the library itself. A query command computes a list
of instances in the library sorted by decreasing
similarity (increasing distance) to the implicit target
instance define by an expression. The syntax of
queries is:
Query ::= query expression query expression :
identifier
If specified, identifier must be the name of an
attribute or a type, and distances are computed
using the distance functions associated with the
type or the attribute. If identifier is not specified,
distances are computed using the default distance
functions provided by RDF. The distance command
is used to compute similarity distances between a
pair of values. This command is useful for verifying
the definition of distance functions and the results
they produce.
Distance ::= distance source-valueopt → target-valueopt

distance source-valueopt → target-valueopt : identifier
The source -value and target-value must be values
of the same type (e.g., instance names). In case of
terms, they must belong to the same enumeration. If
both names are specified, the command computes
their transformation distance. If only the source
value is given, its destruction distance is computed.
Finally, if only the target is specified, its
construction distance is computed. The identifier

has the same use as in the case of the query
command.

3. CONTRIBUTION OF THIS WORK.

As explain earlier, current software reuse systems
based on the faceted index approach to
classification suffer from one or more of the
following problems: they are applicable to a
restricted set of domains; they posses poor retrieval
mechanisms; their classification schemes are not
extensible; and/or they lack mechanisms for
ensuring the consistency of library definitions. The
primary contribution of this dissertation is the
design and implementation of the Reuse
Description Formalism [6], which overcomes these
problems.

RDF is applicable to a wide range of software and
non-software domains. The RDF specification
language is capable of representing not only
software components at the code level, but it is also
capable of representing more abstract or complex
software entities such as projects, defects, or
processes. What is more, these software entities can
all be made part of one software library and can be
arranged in semantic nets using various types of
relations such as "is-a", "component-of", and
"members-of".

RDF provides an extensible representation scheme.
A software reuse library system must be flexible
enough to allow representation schemes to evolve
as the needs and level of expertise in an
organization increases. The RDF specification
language provides several alternatives to extend or
adjust a taxonomy so as to allow the incorporation
of new objects into the library without having to
classify all other objects.

RDF has a powerful similarity-based retrieval
mechanism. One essential characteristic of any
software library system is to allow the retrieval of
candidate reuse components based on partial or
incorrect specification. RDF provides a retrieval
mechanism that selects candidate components
based on the degree of similarity of their associated
library descriptions. This mechanism is based on an
alternative refinement process in which components
at different levels of granularity can be retrieved. It
also includes facilities that allow a library designer
to customize the retrieval process by including
domain specific function.
In short, RDF addresses the main limitations of
current faceted classification systems by extending
their representation model.

SUMMARY AND FUTURE WORKS

The RDF is a general system for creating, using,
and maintaining libraries of object descriptions with
the purpose of improving reusability in software
and non-software organizations. RDF overcomes
the limitations of the actual systems by extending
their representation model and incorporating a
retrieval mechanism based on asymmetric
similarity distances. In summary, we have
presented a software reuse library system called
RDF and show how its representation model
overcome the limitations of current reuse library
systems based on faceted representations of objects.
Although the RDF reuse system has to be an
effective reuse tool, its performance and usefulness
can be enhanced. Several areas that need more
research were identified:

Domain analysis. In general, to create a library for
software reuse it is necessary to perform a domain
analysis, the process of identifying, collecting,
organizing, analyzing, and representing a domain
model and software architecture from the study of
existing systems, underlying theory, emerging
technology, and development histories within the
domain of interest. Domain analysis is currently
done by human expert, but several proposals for
formalizing and automating this process have been
presented in the literature.

Semi-automatic classification. A method is needed
to classify components in terms of a given
representation model. In a general, this involves
analysis of the different parts of a component (e.g.,
source code, documentation, etc.), and the use of
heuristics to extract attributes based on this
analysis.

Similarity distances. A method is needed to test
whether the reuse candidates proposed by the
system are truly best ones available in the software
library. For example, if we classify a new
component A know to be similar to a previously
classified component B, we would expect the
library system to propose B as a reuse candidate for
A. failure to do this could arise due to errors in
classification of components A or B, or because of
errors in the definition of relevance factors and/or
distance comparators.

REFERENCES

K.J. Anderson, R.P. Beck, and T.E. Buonanno. The
full computing reviews classification scheme,
Computer review, 29 January 1988.

B.H. Barnes and T.B. Bollinbger. Making reuse
cost-effective, IEEE Software Engineering, January
1991, 13-24.

T.J. Biggerstaff and A.J. Perlis. Software
reusability, Volume I: Concepts and Models, ACM
Press Frontier Series. September 1989, 474-476,.

Z. Houhamdi and S. Ghoul. A Reuse Description
Formalism, ACS/IEEE international conference on
computer systems and applications AICCSA01,
Lebanese American University, Beirut, Lebanon.
2001.
Z. Houhamdi. Describing and Reusing Software
Experience. The international Conference on
Computer Science, Software Engineering,
Information Technology, e-Business, and
Applications CSITeA’02. Foz do Iguazu,
Brazil,June 2002.

Z. Houhamdi. A Classification Scheme for
Software Reuse. SCS/IEEE 2002. The third Middle
East Symposium on Simulation and Modelling,
MESM’2002, Dubai, Emirate united, September
2002.

Z. Houhamdi. Building and Managing Software
Reuse Library. The international Journal of
Computing and Informatics Informatica (accepted),
2003.

R. Prieto-Diaz. A Software Classification Scheme,
Ph.D. thesis, Department of Information and
Computer Science, University of California at
Irvine, 1985.

R. Prieto-Diaz. Domain analysis for software
reusability, In proceedings of the 11th international
Computer Software and applications Conference
COMPSA'98. IEEE Computer Society Press, 1987.

R. Prieto-Diaz. Implementing Faceted
Classification for software reuse, IEEE Transaction
on Software Engineering. 1991, 88-97.

R. Prieto-Diaz and P. Freeman. Classifying
software for reusability, IEEE Transaction on
Software Engineering, January 1987, 6-16.

	c0: Proceedings 17th European Simulation Multiconference
(c) SCS Europe BVBA, 2003 ISBN 3-936150-25-7

