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Abstract : Software reuse has been claimed to be one of the most promising approaches to enhance programmer 
productivity and software quality. One of the problems to be addresses to achieve high software reuse is 
organizing databases of software experience, in which information on software products and processes is stored 
and organized to enhance reuse. This paper presents a new approach to define and construct such databases 
called the Reuse Description Formalism (RDF). The formalism is a generalization of the faceted index approach 
to classification. Unlike the faceted approach, objects in RDF can be described in terms of different sets of 
faceted and in terms of other object descriptions. This allows a software library to contain different classes of 
objects, to represent various types of relations among these classes, and to refine classification schemes by 
adding more detail supporting a growing application domain and reducing the impact of initial domain analysis. 
In particular, RDF provides a specification language based on concepts of set theory capable of representing a 
rich variety of software and non-software domains; it provides a retrieval mechanism based on exact matches 
and similarity metrics which can be customized to specific domains; and it provides a mechanism for defining 
and ensuring certain semantic relations between attribute values. 
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1. INTRODUCTION 
 
Complex computer programs have placed a 
growing demand on the talents of software 
engineers as well as on existing technologies for 
software development. In order to keep up with the 
increasing complexity of today's software systems, 
productivity must be increased and cost reduced in 
all phases of the software construction process [2]. 
An important aspect of the projected solution to this 
growing demand for new software is the 
development of support technologies to help 
increase software reuse, that is, the reapplication of 
knowledge about one system to other similar 
systems [1,3]. Rather than starting from scratch in 
new development efforts, the emphasis must be 
placed on using already available software assets 
(e.g., processes, documents, components, tools). 
This approach avoids the duplication of work and 
lowers the overall development cost associated with 
the construction of new software applications. One 
important characteristic common to most 
approaches to software reuse is that they rely, either 
explicitly or implicitly, on some kind of software 
repository or library from where the "basic building 
blocks" are extracted. The fact that software 
libraries are such an important aspect of most reuse 
systems, has made software reuse library systems 
(i.e., systems for designing, building, using, and 
maintaining software libraries) a very important 
research topic in the area of software reuse [7]. 

 
Although these classification models provide the 
basis for a useful software reuse library system, 
they have significant limitations and, therefore, can 
only be regarded as a first step towards a more 
complete system. They all suffer from one or more 
of the following problems [4]: 
 
Restricted domain. Some reuse library systems 
have been designed with the purpose of improving 
reuse at code level. Their representation language 
usually does not have the expressive power to 
model more abstract or complex software domain 
(e.g. software project, defect, or processes). 
 
Poor retrieval mechanism. One essential 
characteristic of any software reuse library system 
is to allow the retrieval of candidate reuse 
components based on partial or incorrect 
specifications. This functionality requires the ability 
to perform similarity-based comparisons, but most 
systems only provide retrieval based on partial 
keyword matches or predefined hierarchical 
structures. 
 
Not flexible. Software reuse library systems must 
evolve as the level of expertise in an organization 
evolves. Because of this, a software reuse library 
system must be flexible enough to allow the 
incorporation of new classification schemes or new 



retrieval patterns, yet this is not the case in most 
systems. 
 
No consistency verification. Most software reuse 
library systems are based on representation models, 
which must satisfy certain basic predicates for the 
library to be in a consistent state. Yet, most of these 
systems do not provide a mechanism for ensuring 
this consistency. 
 
This paper proposes a classification system for 
software reuse called the Reuse Description 
Formalism (RDF) which addresses the limitations 
of current software reuse library systems. RDF is 
based on the principles of faceted classification, 
which have proven to be an effective mechanism 
for creating such systems [8,11]. RDF is capable of 
representing a rich variety of software (and no-
software) domains; provides a powerful and 
flexible similarity-based retrieval mechanism; and 
provides facilities for ensuring the consistency of 
the libraries. 
 
2. FOUNDATION OF RDF 
 
The Reuse Description Formalism uses a 
generalization of the faceted classification approach 
proposed by Diaz [10] to represent and classify 
software objects. The faceted index approach relies 
on a predefined set of facets defined by experts. 
Facets and associated sets of terms form a 
classification scheme for describing components. 
Component descriptions can be viewed as a records 
with a fixed number of fields (facets), where each 
field have a value selected among a finite set of 
values (terms). Faceted classification scheme has 
proven to be an effective technique to create 
libraries of reusable software components. Yet, it 
suffers from various shortcomings, which limit its 
usefulness and applicability. The RDF approach to 
classification overcomes these limitations by 
extending the representation model as follow [5]: 
Components are replaced by instances that belong 
to several different classes. Instances and classes 
are defined in terms of attributes and other classes, 
supporting multiple inheritance. 
Facets are replaced by typed attributes. Possible 
types are: integers, string, enumerations, classes, 
and sets of the above. Having instances as attribute 
values allows a library designer to create relations 
among different instances (e.g., that push is a 
component of stack). 
The concept of similarity is extended to account for 
the richer type system, including comparisons of 
instances of different classes and comparisons of 
set values. 
Semantic attribute relations can be defined and 
checked using the assertion construct. This facility 
simplifies the process of maintaining the 
consistency of the definitions in a software library. 

An integrated language describes attributes, terms, 
classes, instances, distances, and their 
dependencies. Descriptions are type checked. The 
language is based on a formal mathematical model, 
which makes it both coherent and analyzable.  
 
2.1. Representation model 
 
To understand the representation principles of RDF, 
it is useful to consider descriptions of objects of a 
particular class as point in a multidimensional 
space, were each dimension is represented by an 
attribute. Attributes have a name and a list of 
possible values defined by their associated type 
(i.e., set of values). If a is an attribute name, and v 
belongs to the a's type, the assignment "a = v" 
represent the set all objects whose attribute a is v. 
Assignment can be combined in expression to 
define other sets of objects. In particular, if A1 and 
A2 are two assignments, the expression «A1 & A2» 
represents the intersection of the sets A1 and A2. 
Similarly, "A1| A2" represents the union of these 
sets. In addition, the set of objects that have been 
defined in terms of a particular attribute a, 
independently of the value associated with a, is 
denoted by "has a". The set of objects defined by 
the "has" operator is a short form of the expression 
"a = v1 | a = v2| … |a = vn" where the value vi are 
the elements of the type of a. A set of objects is 
called a class in RDF. Classes can be given a name 
they are denoted as class (E) where E is an 
expression; i.e., unions and intersections of other 
sets of objects. If c is a class name, the set of 
objects it represents is denoted by "in c", and can be 
combined with other sets of objects in an 
expression. An object description is called an 
instance in RDF. Instances can be given a name and 
they are denoted as instance (E) or [E] where E is 
an expression. Semantically, an instance must have 
only one set of attributes, therefore we say that 
instance (E) is well defined if and only if: (1)E is 
not a contradiction (i.e. , class(E) ≠ ∅), (2) E 
defines a mapping from attributes to values, that is, 
E can be simplified into a consistent conjunct of 
assignments. 
 
Expressions can also be used to characterize 
particular sets of instances defined in a RDF 
library. We denote by set (E) the set {i| i ∈ D ∩ 
class (E)}, where D is the set of instances in the 
library. In other words, the set operator defines the 
set of instances in the library that belong to the 
class defined by E. 
 
2.2. Similarity Model 
 
The goal of any Reuse Library System is to 
facilitate  
the process of finding suitable objects for reuse. 
RDF supports two criteria for selection candidate 



objects: by exact match and by similarity. For exact 
matches the construct set (E) already described is 
used. Similarity-based queries are performed using 
the construct "query E", which denoted the list of 
instances in the library sorted by decreasing 
similarity to the target object define by E. That is, 
the first element of the "query E" is the best reuse 
candidate for [E], the following element the second 
best, and so on. 
 
As mentioned earlier, similarity is quantified by a 
non-negative magnitude called similarity distance, 
which is used as an estimator of the amount of 
effort required to transform one object into another. 
Because of this, distances between two object 
descriptions, A and B, are not symmetric, because 
the effort to transform A into B is not necessarily 
the same as the one required to transform B into A. 
For this reason, whenever a distance is computed, it 
is important to define which object is the source 
and which the target. 
 
Let Z be an object class defined by the set of 
attributes Z' = {A1,…, An}, and S and T be two 
instances in this class. Also, let S'⊆ Z' be the actual 
set of attributes used to define S, and similarly for 
T'. The distance from S to T is denoted by D (S,T) 
and is computed as follows:  
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Where I.A denotes the value of an attribute A on an 
instance I. The set S'∩T' represents the attributes 
shared by S and T, while S'-T' is the set of attributes 
found in S but not in T, and similarly for T'-S'. 
These three sets are disjoint. In addition, each 
constant KA is called the relevance factor of 
attribute A. Their values fall in the range 0 to 1., 
and must satisfy the relation ∑ ∈

=
'ZA A 1K . 

Functions TA, RA and CA are called comparators, 
and are explained later in this section.  
 
The expression for distance D(S,T) is based on the 
assumption that the overall transformation effort 
from S to T can be computed using a linear 
combination of the differences between their 
respective attributes. In other words, attributes are 
considered independent of each other when 
computing similarity. This is a strong assumption 
that limits the types of domains that can be handled 
by RDF's similarity model. 
 
Relevance factors. In general, the distance between 
two RDF objects is given by the sum of the 
distances between their corresponding attributes. 
This default scheme gives equal importance to all 
attributes. In our particular situation, this is not a 
reasonable assumption. For example, one would 

consider that the difference between component 
subsystems is more important than the difference 
between their number of lines of source code. 
Therefore, the first step required to design 
comparators is to assign a relevance factor to each 
attribute in the representation model, that is, to 
define the amount of influence they have in the 
computation of similarity distances. 
 
Comparators. Explained earlier, each attribute has 
three associated functions TA, RA and CA called 
comparators. TA is the transformation comparator 
and is used to qualify the amount of effort required 
to transform one value of attribute into another. RA 
is the removal comparator and is used to estimate 
the amount of effort required to eliminate a source 
attribute value not required in the target 
specification. Finally, CA is the construction 
comparator and estimates the amount of effort 
required to supply a target value not specified in the 
source specification. The set of all attribute 
comparators plus their associated relevance factors 
define a specific similarity model for reuse library. 
These functions and values must be specified using 
a process called domain analysis [9] which, among 
other thing, defines the criteria for similarity for 
objects in a particular domain. Nonetheless, RDF 
provides default comparators for each type of 
attribute. These default comparators can be used as 
a starting point from which to refine the similarity 
model of a library. This refinement is normally 
done by assigning attributes non-default 
comparators using "foreign" functions specified in 
some conventional programming language. 
RDF defines default comparators for each different 
kind of RDF type. Although default comparators 
are well suited for certain domains, sometimes it is 
necessary to define alternative comparators to be 
able to capture the semantics and relations of 
specific objects and attributes. For this purpose, 
RDF allows the library designer to define arbitrary 
comparators, which can be assigned to any attribute 
or type using the "distance" clause. 
 
2.3. RDF Specification language 
 
This section presents a formal definition of the 
syntax of the RDF language. Syntax is presented in 
a variation of the BNF using the following 
conventions: Keywords and symbols occurring 
literally are written in bold; non-terminals are 
written in italics; type-name, attribute-name, 
instance-name, term, and class-name all denote 
identifiers; symbol, … means one or more 
occurrences of symbol, separated by commas; and 
keywordopt means that the keyword may or may not 
occur, without affecting the semantics. 
 
Declarations: A RDF library consists of a sequence 
of declarations. Each declaration either defines a 



name (of a type, an attribute, an instance, or a class) 
or describes an assertion that must be true of all 
instances in the library. 
Library         ::= declaration 
Declaration  ::= type-declaration  attribute-declaration  
instance-declaration  class-declaration  assertion 
 
Attributes and types: Software components and 
other objects are described in terms of their 
attributes. We can think of attributes as fields of a 
record describing the object. The declaration of an 
attribute specifies the type of the values for the 
attribute. RDF supports the following types: 
number, string, term enumerations, object classes, 
and homogeneous sets of the above. 
Attribute-declaration    ::= attribute attribute-name : type; 
Type-declaration         ::= type type-name = type; 
Type                           ::= simple-type distance-clause 
set distance-clause of type 
Simple-type                ::= number string {term, 
…}classtype-name 
Distance-clause          ::= distanceoptno 
distancedistance {triplet,…}distance *{triplet,…} 
triplet                           ::= termopt  → termopt : number-
literal 
 
The keyword distance by itself is optional and 
assigns default distance functions. The case “no 
distance” indicates that the distance between values 
of the associated type is always zero. In the third 
and the fourth forms of the distance clause, the 
triplet t1 → t2: n means that the distance from t1 to 
term t2 is n. if t1 is omitted the unspecified value is 
assumed (i.e., n is creation distance of t2). If both t1 
and the arrow are omitted, the previous t1 is 
assumed. If the keyword distance is followed by the 
character “*”, then the distances between terms not 
mentioned in a triplet will be set to infinity. If “*” is 
not specified, distances between all terms will be 
adjusted by computing the shortest path between 
them. 
 
Expressions: Expression are formed from attribute 
assignments, the unary operators has and in, and the 
binary operators & (intersection) and  (union). 
Expression ::= attribute-name = value  has attribute-
name  in class-name  expression & expression  
expressionexpression  (expression) 
 
The expression “attribute-name = value” means that 
the value of attribute-name for the instance being 
defined is value. The expression “in class” means 
that the instance defined belongs to the class; it is 
similar to a macro-expansion of the expression that 
defines the class. The expression “ has attribute-
name” denotes the condition that the instance being 
defined has some value for attribute-name. 
 
Values: Values are used in assignment expressions. 
Values are either simple values or set values. A 

simple value is either a literal (number or string), a 
term, an instance, or the value of an attribute of an 
instance. Set values must denote homogenous sets; 
they are described either by extension or by 
intention, using the  
 
set construct. Only sets of instances can be 
described by intention. 
Value   ::= simple-value {simple-value, …}set 
(expression)set (instance-nameexpression) 
Simple-value ::= number  string  term instance  
self  
Instance.attribute-name self.attribute-name 
 
The construct set (E) represents the set of all 
instances in the library that satisfy the expression 
(i.e., that belong to class (E)). If the optional 
instance-name is used, the name is bound within E 
to each instance in the library. The dot notation 
“instance.attribute-name” is used to refer to the 
value of the attribute attribute-name of an instance. 
This notation is similar to that used in other 
languages to access record fields. The keyword self 
is a reference to the instance defined by the 
expression in which the value is used. Within an 
instance construct, self is bound the instance 
defined. Within an assertion, self is bound to every 
instance in the library in turn. Within nested 
instance construct, self is bound to the innermost 
instance. 
 
Classes: A class is defined by giving the 
corresponding expression; the class denotes the set 
of all objects for which the expression holds. 
Classes are used to abstract proprieties of instances 
and also as abbreviations for the corresponding 
expressions. Classes are also used as types of 
attributes whose values are instances. 
Class-declaration ::= class-name = class; 
Class ::= class (expression)class-name 
 
Instances: Instances are defined in terms of an 
expression. An instance defined by an expression E 
is a representative of the class of instances defined 
by “class (E)” 
Instance-declaration ::= instance-name = instance; 
Instance ::= instance (expression) [expression] 
An instance may not exist either because the class 
is empty (i.e., the expression is a contradiction) or 
because the class is not specific enough (i.e., it 
defines more than one valid set of attributes) a 
sketch of a possible simplification and verification 
algorithm is as follows. 
 
Expand all “in” propositions with the expressions 
of the corresponding classes. 
Transform the expression into disjunctive normal 
form, as follows: 
 



Restructure the expression using associativity laws 
so that no disjunction occurs within a conjunction. 
Represent each conjunct as a set of assignments and 
has propositions. 
 
Represent the expression as a set of these conjuncts. 
For each conjunction do the following: 
Delete redundant assignments. 
If there are still two assignment to the same 
attribute, or there are unsatisfied has propositions, 
delete the conjunction. 
 
Else, delete has propositions (not needed anymore). 
Delete conjunctions that imply another conjunction. 
If there no conjunctions left, fail (E is a 
contradiction) 
If there are more than one conjunction left, fail (E is 
not specific enough) 
 
Assertion: An assertion specifies a semantic 
constraint that must be true of all instances in the 
library. Expressions are used to represent 
dependencies between attributes, to constrain data 
types and classes, and to enforce correct typing. 
Assertion ::= assertion expression ⇒ expression; 
 
The meaning of “assertion E1 ⇒ E2” is similar to 
set (E1) ⊆ set (E2). This definition does not capture 
subtleties with respect to the binding of self. RDF 
signals false assertions 
 
Queries and distance computations: Queries are 
used to examine a RDF library; they are not part of 
the library itself. A query command computes a list 
of instances in the library sorted by decreasing 
similarity (increasing distance) to the implicit target 
instance define by an expression. The syntax of 
queries is: 
Query ::= query expression query expression : 
identifier 
If specified, identifier must be the name of an 
attribute or a type, and distances are computed 
using the distance functions associated with the 
type or the attribute. If identifier is not specified, 
distances are computed using the default distance 
functions provided by RDF. The distance command 
is used to compute similarity distances between a 
pair of values. This command is useful for verifying 
the definition of distance functions and the results 
they produce. 
Distance ::= distance source-valueopt → target-valueopt 

distance source-valueopt → target-valueopt : identifier 
The source -value and target-value must be values 
of the same type (e.g., instance names). In case of 
terms, they must belong to the same enumeration. If 
both names are specified, the command computes 
their transformation distance. If only the source 
value is given, its destruction distance is computed. 
Finally, if only the target is specified, its 
construction distance is computed. The identifier 

has the same use as in the case of the query 
command. 
 
3. CONTRIBUTION OF THIS WORK.  
 
As explain earlier, current software reuse systems 
based on the faceted index approach to 
classification suffer from one or more of the 
following problems: they are applicable to a 
restricted set of domains; they posses poor retrieval 
mechanisms; their classification schemes are not 
extensible; and/or they lack mechanisms for 
ensuring the consistency of library definitions. The 
primary contribution of this dissertation is the 
design and implementation of the Reuse 
Description Formalism [6], which overcomes these 
problems. 
 
RDF is applicable to a wide range of software and 
non-software domains. The RDF specification 
language is capable of representing not only 
software components at the code level, but it is also 
capable of representing more abstract or complex 
software entities such as projects, defects, or 
processes. What is more, these software entities can 
all be made part of one software library and can be 
arranged in semantic nets using various types of 
relations such as "is-a", "component-of", and 
"members-of".  
 
RDF provides an extensible representation scheme. 
A software reuse library system must be flexible 
enough to allow representation schemes to evolve 
as the needs and level of expertise in an 
organization increases. The RDF specification 
language provides several alternatives to extend or 
adjust a taxonomy so as to allow the incorporation 
of new objects into the library without having to 
classify all other objects.  
 
RDF has a powerful similarity-based retrieval 
mechanism. One essential characteristic of any 
software library system is to allow the retrieval of 
candidate reuse components based on partial or 
incorrect specification. RDF provides a retrieval 
mechanism that selects candidate components 
based on the degree of similarity of their associated 
library descriptions. This mechanism is based on an 
alternative refinement process in which components 
at different levels of granularity can be retrieved. It 
also includes facilities that allow a library designer 
to customize the retrieval process by including 
domain specific function. 
In short, RDF addresses the main limitations of 
current faceted classification systems by extending 
their representation model. 
 
SUMMARY AND FUTURE WORKS 
 



The RDF is a general system for creating, using, 
and maintaining libraries of object descriptions with 
the purpose of improving reusability in software 
and non-software organizations. RDF overcomes 
the limitations of the actual systems by extending 
their representation model and incorporating a 
retrieval mechanism based on asymmetric 
similarity distances. In summary, we have 
presented a software reuse library system called 
RDF and show how its representation model 
overcome the limitations of current reuse library 
systems based on faceted representations of objects. 
Although the RDF reuse system has to be an 
effective reuse tool, its performance and usefulness 
can be enhanced. Several areas that need more 
research were identified: 
 
Domain analysis. In general, to create a library for 
software reuse it is necessary to perform a domain 
analysis, the process of identifying, collecting, 
organizing, analyzing, and representing a domain 
model and software architecture from the study of 
existing systems, underlying theory, emerging 
technology, and development histories within the 
domain of interest. Domain analysis is currently 
done by human expert, but several proposals for 
formalizing and automating this process have been 
presented in the literature. 
 
Semi-automatic classification. A method is needed 
to classify components in terms of a given 
representation model. In a general, this involves 
analysis of the different parts of a component (e.g., 
source code, documentation, etc.), and the use of 
heuristics to extract attributes based on this 
analysis. 
 
Similarity distances. A method is needed to test 
whether the reuse candidates proposed by the 
system are truly best ones available in the software 
library. For example, if we classify a new 
component A know to be similar to a previously 
classified component B, we would expect the 
library system to propose B as a reuse candidate for 
A. failure to do this could arise due to errors in 
classification of components A or B, or because of 
errors in the definition of relevance factors and/or 
distance comparators. 
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