A Preconditioning Method for Stochastic Automata Networks

ABDEREZAK TOUZENE
Department of Computer Science, Sultan Qaboos University
P.O. Box 36, Al-khod 123, Oman.

email: touzene@squ.edu.om

Abstract

In this paper we extend the methodology pre-
sented in [1] to develop a preconditioning method
to solve Markovian models issued from Stochastic
Automata Network modeling (SAN). This method
is also based on grouping terms and factorization of
the SAN descriptor. Stochastic automata networks
have gained a high interest because of the ease of
modeling parallel systems and also because of the
compact structure of the SAN generator. In this
paper, we propose a preconditioning method that
uses the compact structure of the SAN.

Keywords: Markovian models; Stochastic automata
networks; Preconditioning.

1 Introduction

Stochastic Automata Networks (SAN) is a very
powerful modeling tool for complex systems [2] [3]
[4], they are particularly useful to model parallel
activities, such as concurrent and communicating
processes. A stochastic automata network consists
of a collection of automaton that may interact each
others. An automaton models a specific activity
or a component of the whole system under study.
Each automaton is represented by a finite number
of states and a set of probabilistic transition rules,
which define the moves from a state to another. At
any given time ¢, the global state of a stochastic
automata network consists of the current state of
each one of its compound automaton. In the gen-
eral case, the SAN descriptor @ has the following
form:

Q=P Aai+> @ QY (1)
i J

where the first part of ) is called local term, and the

second part corresponds to synchronization events

see [4]. Computing the steady states probability

vector needs to solve the following system of equa-

tions:

Q@ = 0. (2)

Proceedings 17th European Simulation Multiconference
(c) SCS Europe BVBA, 2003 ISBN 3-936150-25-7

where 7 is the steady states probability vector of
size n and @) the SAN descriptor. Because of the
compact form of the descriptor, only iterative meth-
ods can be applied to solve the above system of
equations. Fortunately, all iterative methods in-
volve the multiplication of the SAN descriptor by
a vector which can be efficiently computed without
expanding the matrix @ [5]. Iterative methods such
as Arnoldi, GMRES [6] [7] can be used in solving
the system of equations.

Preconditioning is a very important step for solv-
ing the system of equations using iterative methods.
This step will improve considerably the convergence
rate of the original iterative method. Let us con-
sider the general case, where the system to be solved
is

Az =b. (3)

Where A is an n xn matrix and z of size n. The aim
of preconditioning is to modify the original system
of equations in order to have and equivalent system
with a better distribution of its eigenvalues. In fact,
it is well known that the convergence of iterative
methods and also the stability of direct methods
depends on the distribution of the eigenvalues of
the system [8] [9]. Preconditioning the system (3)
leads to the modified system

M tAx = M 'b. (4)

The matrix M~ is called the preconditioner and
should approximate the inverse of the matrix A.
The problem is how to compute the matrix M !
in an inexpensive way. Traditional approaches to
calculate the matrix A ~! is to obtain an incomplete
factorization of the matrix A,

A=LU+E (5)

where L is a lower triangular matrix, U is an upper
triangular matrix, and F is the error or a residual
matrix. For more details on how the factorization
is performed (ILU(0),ILU(k),ILUTH) see [9].
Let us focus now on the SAN descriptor, which
has a tensor form. It is clear that the traditional
methods cannot be applied to built a precondi-
tioner. We will solve the SAN descriptor using the



system of equations (2). The system of equations

(2) is equivalent to

mP =,

(6)

where P = (I + @), and I is the identity matrix of
dimension n. This system can be solved using an
iterative method. Preconditioning the system (6)
leads to the following iterative formulation:

7D = 21 — (I - P)M™Y).
And then,

(7)

D = gt g (I = PYM ™, (8)

where M ~! is an approximation of the inverse of
the matrix
M = (I — P). The problem is the computation
of this inverse taking into account the particular
structure of the matrix (I — P). In [10], the inverse
of (I — P) is computed as a polynomial series,

K
Mt =Y P
k=0

where K is a given order. This Preconditioner
gave a good convergence rate, but unfortunately,
the cost of powering of P induces a huge amount
of time. In this paper we propose a method which
avoid the direct computation of the inverse M !
and transforms this problem to solve a linear system
of equations [1]. Indeed, if we denote y* = 7t(I—P),
the result x! of multiplying ¢ by the matrix M ~*
can be provided by solving the following system of
equations:

9)

' M=y, (10)

where M is kept in its compact form (tensor sums).
Our paper is organized as follows: In section 2
we present the methodology. Section 3 describes
the SAN models to be tested. In section 4, we sum-
marize our results and we conclude in section 5.

2 Methodology

To simplify the presentation of our method, we will
present first the case where the SAN descriptor is
a pure tensor sum (it contains only local terms).
Then we will show how to extend the method to
the case where the SAN is not a pure tensor sum,
which is in fact the more general case.

2.1 SAN Descriptor with Pure Ten-

sor Sums
For clarity reasons, let us consider the case where

the SAN descriptor consists only on tensor sum with
only two factors : M = (A4; ® A2), where A4, is of

dimension m xm, and A, is of dimension n xn. The
generalization of this method is very simple and will
be discussed later on. We recall that our aim is to
solve the system of equations (10). As described in
the basic algorithm of Bartels and Stewart [11], the
system (10) is equivalent to the system:

ATX + XA, =Y (11)

where X is an m xn matrix. The matrix X can be
seen as a matrix of columns : X = (z1, 22, ..., Tp),
where z; denotes the jth column of X. The matrix
Y which represents y; is structured in a similar way.
The algorithm is as follows:

Algorithm

1. Compute a unitary transformation U and V
such that

A =UTAU anddy, =V7TAV, (12

where A; and A, are upper triangular matrices
obtained using a QR algorithm.

2. Transform the original system (11) using step
1 as follows:

AKX+ X4, =7 (13)
where B
X=UTxVv
and B
v =UTyvV.

3. The first column of X is given by solving the
following lower triangular system:

(A" + Ay + Dy = w1 (14)

4. The computation of the kt* column of the sys-
tem is given by:

Ead

-1
1

(/LT-F/IM/C *I)fk =Yk —

~
Il

5. Form the solution X using X : X = UXVT.

The generalization of this method is based on a
recursive solving process using the previews steps
as follows:

Any system x4(A4; ® Ay...® Ax) =y, where the
matrices A; are of dimension n;,7 = 1..IN, can be
decomposed as x;(A® An) = y;. This leads to solve
the system of equations (10) including the matrix A
which is a tensor sum. We apply the recursion till



reaching a matrix with only two matrices. It is easy
to see that the cost of solving the above system of
equations (excluding the QR decomposition of the
matrices) is given by

5
Cost = §(n1n2...nN)(n1 +n9+ ... +nN).

In general, matrices A;,7 = 1..N are small matrices.
The cost of their QR decomposition is negligible
and hopefully they are calculated only one time for
all iterations. The cost to solve the preconditioned
system is then equal to 2.5 time the cost of the
multiplication vector by the tensor sum.

Let us focus now on practical implementation
issues. Since M is singular (generator), the in-
verse of M does not exist. The idea is to al-
ter slightly the system (13) to overcome the sin-
gularity problem. One sure way to alter M lies
within the following property of the tensor sum:
(AT + al)X + X (Ay — al) =Y, for any real num-
ber a. The resulting system is equivalent to the first
one, but the singularity is still present. The second
way is to apply a shift to M = (4; ® As +al). The
new system is not equivalent, but fortunately any
shift combined with the power method converge to
the right solution.

2.2 SAN Descriptor with Synchro-
nization Terms

We recall that the SAN descriptor has the form
given in formula (1). In general, it has two parts,
the local terms, which are pure tensor sums, plus
the synchronization terms, which are tensor prod-
ucts. In this case our algorithm cannot be applied
directly, since it handles only pure tensor sums.
One solution is to consider only the local terms as
a preconditioner. This leads to lose the effects of
the synchronizations in the preconditioner. We re-
call that in this case according to formula (5), the
residual matrix E of the preconditioner will be the
sum of all synchronization terms. A more accu-
rate preconditioner is to add as much as possible
the synchronization terms, in such a way that the
preconditioner remains a pure tensor sums and in
this case the residual matrix E will be of smaller
magnitude. Intuitively, we will capture the effect of
some synchronizations in the preconditioner. This
may be possible only if the synchronization events
affect only few automata in the stochastic automata
network. This assumption is valid for modeling dis-
tributed and parallel systems.

Now we focus on how to add the effects of the
synchronization in the preconditioner resulting in
a pure tensor form preconditioner: The idea is to
group the automata that are affected by the same
synchronization events using tensor algebra. This

will result in reducing the number of terms but
within the terms, matrices will be of higher size.

In the next section we describe the models to be
tested and we will show using a specific example
how to group and factorize the preconditioner using
the tensor algebra properties in order to have an
accurate preconditioner.

3 Examples of SAN Models

3.1 Resource Sharing Problem

In this model, N processes share P resources, P <
N. Each process ¢ = 1..N, has two states: using the
resource or idle. We denote \; the resource acquisi-
tion rate and u; the freeing rate of a resource from
the process i. Notice that the number of processes
which may access concurrently to the resource is
limited to P. When a process is willing to acquire a
resource and find that P processes have already got
the resource, it will fail and stay in its idle state.
In case P =1, the model is equivalent to the usual
mutual exclusion problem. The SAN descriptor will
have the following form: @ = @fil A; (pure tensor
sums), where A; is

A= ( =Aif NS )
i —Hi

Each automaton contains a functional variable f
evaluated to 0 or 1 depending on the availability of
a resource or not. For our experiments (Matlab),
the descriptor matrix () is factorized in two factors
Q = Q1 ® @Q>. Concerning the preconditioner, for
simplicity reasons we evaluate all the functions f =
1.

3.2 Alterned Bit Protocol

This model concerns the well-known network pro-
tocol named alterned bit protocol. This protocol is
modeled by a SAN in [3] as follows: It contains four
automata :

e Sender automaton, named S, which have four
states namely :PrepareMess0, WaitAckO, Pre-
pareMess1, WaitAckl.

o Message automaton, named M, which have
four states namely :WaitMess0O, MessOInline,
WaitMess1, Mess1Inline.

e Acknowledge automaton, named A, which have
four states namely :WaitAckO, AckOInline,
WaitAckl, AcklInline.

e Receiver automaton named R, which have four
states namely :WaitMess0, PrepareAck0, Wait-
Mess1, PrepareAckl.



The descriptor of this model contains nine terms,
one term called local term and eight terms called
synchronized terms. The local term consists of the
local views of each automaton. It does not con-
tains the interaction between all automata. The
synchronization terms represent the effect of a syn-
chronization event on the different automaton of the
SAN. For each Synchronization event correspond
one term. In the following we construct each term
of the descriptor of SAN.

1. The local term consists of the matrices
Ls,Ly;,La and Ly, where

0 0 0 0
tm —tm O 0
Ls=1 "9 0o o o ’
0 tm —tm
0 0 0
im —lm O 0
Law=1 " 0 0 ’
0 0 Im —Ilm
0 0 0
la —la O 0
La=l 9o o o o |
0 0 ta -—ta
—ta 0 0 ta
0 0 0 0
Lr= 0 ta —ta O
0 0 0 0

termloc = Lg ® Ly & Lg & Li.

2. The term Send-Messagel contains the matrices
Sm1) and Sm1M):

TermSendMessl = Sm19) @ Sm1M) @ I, ®
Iy.

This synchronization affects only the automata
S and M.

3. The term Send-MessO contains the matrices
Sm0) and Sm0O(M).

TermSendMess0 = Sm0S) @ Sm0M @ I, ®
1.

This synchronization affects only the automata
S and M.

4. The term Send-Ackl
Sackl™ and Sack1(®):

TermSendAckl = I, ® I, ® Sackl®
Sack1(®)

This synchronization affects only the automata
A and R.

contains matrices

5. The term Send-AckO
Sack0™ and Sack0®:

TermSendAck0 = I, ® I, ® Sack0 ®
Sack0®)

contains matrices

This synchronization affects only the automata
A and R.

6. The term Receive-Messl contains the matrices
Srm1™) and Srm1(®)

TermRecMessl =
Srm1E)

I, ® Srm1M) @ [, ®

This synchronization affects only the automata
M and R.

7. The term Receive-Messl contains the matrices
Srm0™) and Srm0(®)

TermRecMessO) =
Srm0H)

This synchronization affects only the automata
M and R.

Iy @ Srm0™M) @ I, ®

8. The term Receive-Ackl contains the matrices
Srack1® and Srack1()

TermRecAckl = Srackl®™® @ I, ® Srackl™ @
I,

This synchronization affects only the automata
S and A.

9. The term Receive-AckO contains the matrices
Srack0®) and Srack0)

TermRecAckO = Srack0®) ® I, ® Srack0™) @
1

This synchronization affects only the automata
S and A.

The SAN descriptor of this model is the sum of
all the above terms. For our preconditioner, we will
factorize and group as much term as possible in or-
der to obtain the preconditioning matrix M of the
form M = @1 ® Q2 and hence our method will be
directly applicable. First, let us group all synchro-
nized terms that have a synchronized effect on the
same automata. In the second step, add them if
possible to the pure tensor sum using some simple
tensor factorization operations (for more details on
tensor algebra see [12]. According to the effect of
the synchronization on the automata network as de-
scribed above, we group automata S ,M to form a
macro-automaton and we group automata A, R to
form another macro-automaton. This will result in
the following:

Q1 = (Ls ® L) + (Sm1) @ Sm1D)

+(Sm0 @ Sm0oM))



and
Q2 = (La® Lg) + (SAck1™ @ SAck1®)

+(SAckO™ @ SAckO).

The other terms:

E =TermRecMessl + TermRecMessO+

TermRecAckl + TermRecAckO,

cannot be added to the preconditioner (without a
loss of its pure tensor sums property), their effect
will be lost. We may think of them as a residual
matrix of an incomplete factorization see equation
(5), and we hope that their effect is very small.

4 Experimental Results

For testing our preconditioning method, we chose
for simplicity reasons the power iterative method.
In our experiments we considered a shift a = 0.25
to ensure the non-singularity of the preconditioner.
The following tables summarizes the number of it-
erations using the power method and the precon-
ditioned power method. The solution precision is
10710 decimals. For the first table, all the param-
eters \;,2 = 1..8 are equal to a given value A\ and
similarly p; = p,% = 1..8. We recall that P is the
number of resources.

[ P| Param. | Iter. Power | Iter. Precond. |
Tl A=Lu=05 3 10
A=1,u=.9 13 3
I A=Lu=25 o1 19
A=1Lu=.9 109 25
6 [ A=Lu=2>5 7 2
A=1,u=.9 319 30
8 | A=1Lu=.5 97 32
A=1,u=.9 196 33

The second experimental study concerns the
model of the alterned bit protocol. For this model
we consider four cases as follows:

o 1: tm = 2)lm = 2/la = 1,ta = .1,us =
2,ur =1,ue =2,uc =1.

e 2 tm = 4,lm = 4la = 1,ta = .l,us =
4 ur =1,ue =4,uc=1.

e 3 tm = .1,lm = 1,la = 1,ta = .1,us =
d,ur =1,ue = .1,uc = 1.

e 4: tm = .1,lm = 1,la = 1,ta = .1,us =

d,ur =1, ue = .1,uc=".1.

us is a transition rate in the matrix Sm0S)and
Sm1(9 .  wr is a transition rate in the matrix
Srm0®and Srm1(). ue is a transition rate in the
matrix Srack0™®and Srackl™ . uc is a transition
rate in the matrix Srack0(®)and Srack1(S).

[ Case. | Iter. Power | Iter. Precond. ||

1 1240 185
2 2189 293
3 7 22

4 787 146

These two tables show clearly the good perfor-
mance of our preconditioning method. Concerning
the number of iterations to acheive convergence,
this method is nine time faster than the simple
power method. If we consider the time cost, our
method will be almost 4 times faster than the sim-
ple power method.

5 Conclusion

In this paper we contributed in developing a precon-
ditioning method for solving stochastic automata
network models. This method has shown a very
good results on the tested models and it can be
easily adapted to other iterative methods, known
to converge very quickly such as the iterative GM-
RES for SAN models. In our future work we will
investigate a general and automatic procedure for
grouping automata (affected by the same synchro-
nization events) and factoring the precondioner as
a pure tensor sum with the smallest residual matrix
possible.

Acknowledgment

The author thanks Prof. B. Plateau and Prof. W.
J. Stewart for their help and guidance in conducting
this work.

References

[1] G.W Stewart. Stochastic Automata, Tensors
Operation, and Matrix Formulas. Technical
Report, University of Maryland, UMIACS TR-
96-11 CMSC TR-3598, Jan. 1996.

B. Plateau. On the Stochastic Structure of Par-
allelism and Synchronization Models for Dis-
tributed Algorithms. Proc. ACM Sigmitrics
Conference on Measurement and Modeling of
Computer Systems, Austin, Texas, Aug. 1985.

K. Atif. Modelisation du Parallelism et de la
Synchronisation. These de Docteur de I’Institut
National Polytechnique de Grenoble, France,
Sep. 1991.



[4]

[5]

[6]

[7]

[10]

[11]

[12]

K. Atif, B. Plateau. Stochastic Automata Net-
work for Modeling Parallel Systems. IEEE
Trans. On Soft. Eng., 17, 10, Oct. 1991 .

P. Fernandes, B. Plateau, W. J. Stewart.
Efficient descriptor-vector multiplication in
stochastic automata networks. J. ACM, (3),
381-414, 1998.

Y. Saad. Krylov Subspace Methods for Solving
Unsymetric Linear Systems. Mathematics of
Computation, 37, 105-126.

Y. Saad, M.H. Shultz. GMRES: A generalized
minimal residual algorithm for solving non-
symmetric linear systems. SIAM J. Sci. Stat.
Comput., 7, 856-869, 1986 .

R. S. Varga. Matrix Iterative Analysis. Print-
ice Hall, Englewood Cliffs, N.J, 1963.

W. J. Stewart An Introduction to the Numeri-
cal Solution of Markov Chains. Princeton Uni-
versity Press, NJ. 1994.

K. Atif, B. Plateau, and W. Stewart. The nu-
merical solution of stochastic automata net-
work.  FEuropean Journal of Operation Re-
search, 86(3), Nov. 1995.

R. H. Bartels and G. W. Stewart. Algorithm
432: The solution of the matrix equation AX-
BX=C. Communication of ACM, 8:820-826,
1972.

M. Davio. Kronecker Products and Shuffle Al-
gebra. IEEE Trans. Comp., Vol C-30, No 2,
Feb. 1981.

Biography

ABDEREZAK TOUZENE received an under-
graduate degree in computer science from uni-
versity USTHB of Algiers in 1987 ,M.Sc. from
university Paris sud in 1988 and a Ph.D. de-
gree in computer science from Institut Poly-
technique de Grenoble (France) in 1992. Dr.
Touzene is currently assistant professor in the
department of computer science, Soltan Qa-
boos university in Oman. His area of inter-
est include performance evaluation, intercon-
nection networks and parallel computing. He
is a member of IEEE.



	c0: Proceedings 17th European Simulation Multiconference
(c) SCS Europe BVBA, 2003   ISBN 3-936150-25-7


