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Abstract: We consider continuous-time Markov chains representing queueing systems in random
environment and we obtain necessary and sufficient conditions for having product-form stationary
distributions. The related topics of partial balance and the ESTA property are also studied. As an
illustration, we apply the results to study the stationary distributions of Jackson networks in random
environment.

For models that do not satisfy the product-form conditions, we develop a product-form
approximation, which is proved to be very good for models evolving in a slowly changing random
environment. We justify this fact and we propose a methodology for estimating the error of this
approximation.
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1. INTRODUCTION

In many applications of queueing we find
systems that evolve in random environment.
The random environment may model the
irregularity of the arrival process (for example
when there are rush-hour phenomena), the
irregularity of the service mechanism (due to
servers' breakdowns, servers' vacations,
availability of resources etc.) or both. Many
authors have studied the properties of such
models (see e.g. Neuts (1981), Gaver at al.
(1984), O' Cinneide and Purdue (1986), Falin
(1996) etc.). The reported results concern
either qualitative properties or computational
issues. The focus of the present work is on a
computational issue and more specifically on
the problem of computing the stationary
distribution of a Markovian queueing system
in random environment. Several authors have
considered the same problem using various
approaches. Matrix-analytic and tranform
methods have been used extensively. However,
although in many cases the above methods
give very satisfactory results, their
implementation is computationaly very
demanding. The reason is that they require
strong computational power to perform a great
number of matrix operations. As the
environmental state space grows large, the
numerical complexity of the underlying
algorithms increases rapidly and the efficient

implementation of these methods becomes
very difficult.

To avoid the computational burden of the
above methods, several authors have tried to
identify some categories of models for which
the stationary distributions assumes a simple
product form. Although product-form
stationary distributions and the related
phenomenon of partial balance have been
extensively studied within the framework of
queueing networks, there are only few papers
that apply these ideas to queueing systems in
random environment. More specifically Sztrik
(1987), Zhu (1994) and Falin (1996) have
identified conditions that ensure product-form
stationary distributions for several concrete
classes of queueing systems in random
environment. In the present paper we study the
same problem within a general framework and
we state necessary and sufficient conditions for
product-form. Moreover, whenever these
conditions fail, we develop a product-form
approximation which is very good for
queueing systems evolving in a slowly
changing environment. We also study the
relationship between the stationary distribution
of a given Markovian queueing model and the
stationary distributions of its embedded chains
at environmental change epochs. Thus, we also
study the Events See Time Averages (ESTA)
property for the class of Markovian queueing
systems in random environment.



To be concrete, we now define a general
structure for a continuous-time Markov chain
in a random environment. The model is an
ergodic (i.e. irreducible and positive recurrent)
Markov chain }0:))(),({( ≥ttXtE  with state
space XE× , where )}({ tE , )}({ tX  represent
the random environment and the queueing
process of interest respectively. We assume
that )}({ tE jumps from state to state according
to an ergodic continuous-time Markov chain
with transition rate matrix

)',:)',(( EQ ∈= eeeeqEE . In the meantime
between two successive environmental
transitions, the process )}({ tX  is governed by
a transition matrix :)|',(()( || exxqe EXEX =Q

)', X∈xx  of an irreducible Markov chain on
X, where e is the current environmental state.
More specifically the transition rates

))','(),,(( xexeq of ))}(),({( tXtE are given by
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Let ),:),(( XE ∈∈= xexeππ  be the joint
stationary distribution of ))}(),({( tXtE  and

):)(( E∈= eeEE ππ , ):)(( X∈= xxXX ππ its
marginal distributions. The (full) balance
equations are
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By summing these equation over x for
every environmental state e we obtain after
some easy manipulations that
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Hence, the marginal distribution
))(( eEE ππ =  is the stationary distribution of

the Markov chain with transition rate matrix
)).',(( eeqEE =Q
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EX  be
the transition probability matrix at time t for
the Markov chain with rate matrix )(| eEXQ and

):)|(()( || X∈= xexe EXEX ππ  its stationary
distribution (in the ergodic case in which it
exists and is unique). We are interested in

determining ,π Xπ and in examining their
relationships with the transition rate matrices

EQ  and )e(E|XQ , .e E∈  We are also
interested in studying the Palm (or embedded)
distributions of )}({ tX  just after (or before)
certain environmental transitions. For every

E∈e  let )()( nX ea  be the state of )}({ tX  just
after the n-th environmental arrival to e and

)()( nX ed  be the state of )}({ tX  just before the
n-th environmental departure from e.
Moreover, let ):)(( )()( X∈= xxeaea ππ  and

):)(( )()( X∈= xxeded ππ  be the stationary
distributions of )}({ )( nX ea  and )}({ )( nX ed
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Since the rate from state (e,x) to ( ',' xe ) is
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It is known that the Palm distributions of a
process that correspond to different sets of
transitions do not coincide with each other nor
do they coincide with the stationary
distribution of the process in general. In such
cases it is important to study the relationships
of these distributions and also to find
conditions under which they do coincide
(Events See Time Averages (ESTA) property).

2. CHARACTERIZATION OF PRODUCT-
FORM DISTRIBUTIONS

Equations (2) are decomposed to the following
partial balance equations that are not satisfied
by π  in general:
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The phenomenon of partial balance and its
implications have been extensively studied in
the literature (see e.g. Kelly (1979)). It has
been generally noted that the presence of
partial balance facilitates the study of a given
model. First, it implies the equality of the Palm
distributions at certain event epochs (see e.g.
Kelly (1979) Ch. 9 and Fakinos and Economou
(1998)). Second, under certain additional
conditions, it implies that the stationary
distribution assumes a certain product form. In
characterizing the phenomenon of partial
balance and product-form for the general
model (1), we use the following result that
gives the stationary distribution π in terms of
the Palm distributions ,)(eaπ .E∈e  For a proof
see Economou (2002).

Proposition 1 (Inversion formula) Given the
Palm distributions ,)(eaπ  the stationary
distribution π  can be computed by
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ea ππ  is the transient

probability function at time t of a Markov
chain with initial distribution )(eaπ  and
transition rate matrix ).(| eEXQ

We are now in position to investigate the
phenomenon of partial balance within the
framework of our model.

Theorem 2 For the general model with
transition rates given by (1) the following are
equivalent:
(i) The Palm distributions )(eaπ and )(edπ

coincide for every .E∈e
(ii) The stationary π  satisfies the partial

balance equations (6).
(iii) The stationary π  satisfies the partial

balance equations (7).
If moreover the transition matrices )(| eEXQ
are ergodic with stationary distributions

),(| eEXπ E∈e  then (i)-(iii) are also
equivalent to:
(iv) The distributions )(edπ  and )(| eEXπ

coincide for every .E∈e

(v) The distributions )(eaπ  and )(| eEXπ
coincide for every .E∈e

(vi) The stationary distribution π is given by
the product-form formula

     ),|()(),( | exexe EXE πππ = ,E∈e .X∈x  (9)

Proof. )()( iii ⇔ The probabilities )()( xeaπ
and )()( xedπ  given by (4) and (5) are
respectively equal to the right and the left side
of the partial balance equations (6) divided by

).()( eqe EEπ

)()( iiiii ⇔ Immediate, in light of the full
balance equations (2).

)()( viiii ⇒  Consider a fixed .E∈e  Because
of (7) we have that the vector

):),(( X∈xxeπ satisfies the balance equations
of the Markov chain with transition rate matrix

).(| eEXQ  Due the ergodicity of ),(| eEXQ we
have that ):),(( X∈xxeπ  is a scalar multiple
of the stationary distribution ),(| eEXπ  i.e.

),|()(),( | execxe EXππ =  .X∈x  By summing
over x we obtain );()( eec Eπ=  hence ),( xeπ
assumes the form (9).

)()( viiv ⇒  Immediate using (5).

)()( viv ⇒  Since )(eaπ  and )(| eEXπ  coincide,
the Inversion formula (8) assumes the form
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But ):)|(( | X∈xexEXπ  is the stationary
distribution of )(| eEXQ  and we have that
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Equation (10) is reduced to (9).

)(),(),()( viviiivi ⇒  If the stationary
distribution π is given by (9) then we have
obviously that the partial balance equations (7)
hold, i.e. (iii) is valid. Moreover, by (5) we
have that ),|()( |)( exx EXed ππ =  ,X∈x  i.e. (iv)
is valid. We have also that (i) holds because of
the implication )()( iiii ⇒ that has already been
proved. Hence ),|()()( |)()( exxx EXedea πππ ==

,E∈e  ,X∈x  i.e. (v) is valid.                         

The above result characterizes completely the
partial balance, the product form and the
ESTA properties for the model (1). However,
we see that the conditions that imply a
product-form stationary distribution are very



restrictive. We now consider a 'perturbed'
model that has always a product-form
distribution. We have the following.

Theorem 3 Consider a continuous-time
Markov chain with state-space XE×  and
transition rates     
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where ),|',(| exxq EX  )',( eeqE  and )|(| exEXπ
are the same as in the model (1). Then its
stationary distribution is given by the product-
form formula

),|()(),(~
| exexe EXE πππ = ,E∈e .X∈x

Proof. The balance equations of the model are
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By direct substitution we see that the
distribution ),:),(~( XE ∈∈ xexeπ  satisfies the
equations (12); hence it is the stationary
distribution of the model.                                

Whenever the transition rates )',( eeqE of the
environmental process )}({ tE  are small, the
rates ))','(),,((~ xexeq  of the perturbed model
(11) are very close to the rates ))','(),,(( xexeq
of the original model (1). Hence the stationary
distributions of the two models are expected to
be also very close to each other and we
conclude that the product-form distribution of
the modified model (11) is indeed a good
approximation for the stationary distribution of
the original model (1). Thus, this product-form
distribution is a legitimate approximation for
queueing systems evolving in a slowly
changing environment. More importantly, in
the context of specific concrete models we can
estimate the error of the approximation using
the results obtained by van Dijk (1992). These
results provide error bounds for the
approximation of the stationary distribution of
a given model by the stationary distribution of
a perturbed model in terms of the differences
of their transition rates, using a Markov reward
approach.

3. AN APPLICATION TO JACKSON
NETWORKS IN RANDOM ENVIRON-
MENT

As an illustration of the main result, we present
its application in the study of Jackson networks
in random environment. A Jackson network in
random environment is a continuous-time
Markov chain on J

+×ZE  with transition rates
given by (1) and matrices ),(| eEXQ  E∈e
corresponding to Jackson networks, i.e.
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where by ),...,,( 21 Jxxxx =  we denote a
generic state of the network representing the
queue lengths at the J stations and je is the j-th
unit vector with J components (with 1 in the j-
th position and 0 elsewhere).

Therefore, in any time interval during
which the environmental process )}({ tE  is in
state e, the network operates as follows:
Customers arrive at the network according to a
Poisson process with rate )(eλ . An arriving
customer goes to the j-th station with
probability )(0 ep j  ( Jj ,...,2,1= ). The service
at the i-th station of the network is offered at
exponential rate )|( exiiµ  which depends on
the number ix  of the present customers at that
same station ( Ji ,...,2,1= ). Upon completing
service at the i-th station, a customer is routed
to station j with probability )(epij  or leaves
the network with probability )(0 epi ,
( Jji ,...,2,1, = ). For every fixed E∈e , the
discrete-time Markov chain with transition
probabilities )(epij  ( Jji ,...,2,1, = ) is
supposed to be irreducible. This implies that
the traffic equations
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have a unique positive solution
))(),...,(),(()( 21 eeee Jαααα = . Moreover, all

the arrival and service processes are assumed
independent. For a fixed e, the Markov chain
representing a Jackson network with rates



given by (13) is positive recurrent if and only
if
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The stationary distribution is then given by

  )|(| exEXπ

       ∏
=

=
J

j jjjj

x
j

j exee
e

eB
j

1 )|()...|2()|1(
)(

)(
µµµ

α .   (16)

Zhu (1994) proved from scratch a sufficient
condition for product form. Using Theorem 2
we can easily show the necessity and the
sufficiency of that condition for product form.

Corollary 4 Let )}(),({ tXtE  be a Jackson
network in random environment with transition
rates given by (1) and (13). For every ,E∈e
let ))(),...,(),(()( 21 eeee Jαααα =  be the
unique solution of the system of equations (14)
and assume that the stability condition (15)
holds. The following are equivalent:
(i) )|(/)( exe jjj µα  is independent of e, for all

Jj ,...,2,1=  and .1≥jx
(ii) The stationary distribution π  is given by

the product-form formula
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where ):)(( E∈eeEπ  is the stationary
distribution of a Markov chain with
transition rates ))',(( eeqE  and )(eB j  are
given by (15), i.e. all the equivalent
conditions (i)-(vi) of Theorem 2 hold.

Proof. )()( iii ⇒  Suppose that (i) holds. Then
by direct substitution we can show that the
distribution given by (17) satisfies the balance
equations (2). Indeed, using the fact that
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But by condition (i) and (15) we obtain that
)(1 eB j

−  is independent of e for all .,...,2,1 Jj =
Hence by (16) we conclude that )|(| exEXπ  is
independent of e for all .x  Then (18) assumes
the form
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i.e. the distribution )),(( xeπ  given by (17)
satisfies the balance equations (2).

)()( iii ⇒  By Theorem 2 )()( iivi ⇒  we have
that for every x  the vector ):),(( E∈exeπ
satisfies the balance equations for the process

)}.({ tE  Hence ):),(( E∈exeπ  is a scallar
multiple of ):)(( E∈eeEπ  and we conclude

that ),()(),( exxe Eπφπ = ,E∈e .Jx +∈ Z  Then
for every Jj ,...,2,1=  and 1≥jx  we have
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 i.e. )|(/)( exe jjj µα  is independent of e.      
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