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Abstract: A performance evaluation of a crossbar network is presented using discrete-time 
Markov chain (MC). Identical processors, totally synchronized with system clock and 
communicating through common memory modules. Simple MC models the behavior of each 
processor. We have developed state and output equations for discrete-time state space model. 
The transition probabilities of transition matrices are computed. The memory contention 
situation of the multiprocessor systems is considered. We show that the network is reliable for 
less then 100 processors. For network larger than 100 processors, a considerable degradation 
performance is observed which is due to contention. 
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1- INTRODUCTION 
 
Generally in multiprocessing systems, the 
processors can communicate and cooperate at 
different levels in solving a given problem, i. e., by 
sending messages or by sharing memory. Parallel 
systems are said to be tightly coupled if there is 
many processor interactions via shared memory. 
The speed of the machine is restricted by the 
memory bandwidth and hence by the 
interconnection network (IN) topology, and an IN 
with a dynamic topology is required. ALICE 
[Harrison and Reeve, 1987], designed to execute 
functional languages in parallel [Fiel and Harrison, 
1988], and the NYU ultracomputer [Gottlieb et al, 
1983] are examples of tightly coupled 
multiprocessor systems. 
The performance studies of tightly coupled 
multiprocessor systems have generated a great 
interest [Marsan and Gerla, 1982]. The principle 
characteristic of a multiprocessor system is the 
ability of each processor to share a single main 
memory. The partitioning of main memory into 
several independent memory modules (MM), that 
can be in operation simultaneously, is known as 
memory interleaving. A memory system consisting 
of M memory modules (M-way interleaving) can be 
used to control severe performance degradation of 
the memory system. The interference occurs when 
two or more processors simultaneously attempt to 
access the same MM. 
The mathematical models used to evaluate this 
class of multiprocessor systems are based on 
discrete-time Markov chains. A limit on the use of 
Markovian models of complex computer systems 
comes from the fact that their direct construction is 

practically very difficult. Various approaches were 
examined [Skinner and Asher, 1969; Bhandarkar 
1975; Ran, 1979]. 
The number of states increases very rapidly with 
system size. The explosive growth is due to the 
detailed information that the state must record the 
exact status of the queues at each server in the 
system. MC approach has been very successful 
technique for modelling, analysis and design of 
various kinds of systems [Florin et al. 1991; 
Benazzouz and Farah, 1998]. 
In this correspondence we develop a discrete time 
MC model for crossbar multiprocessor systems. It 
is assumed that the processors share M-way 
interleaved memory and can access any MM 
through the network. The entire system is 
synchronized with a system clock whose time 
period is referred to as the system cycle. The 
operation of the system can be assumed as under. 
At the beginning of each system cycle the 
processors are permitted to make selections of a 
MM at random. In case more than one request is 
made to same MM, the information is supplied to 
one of the processors selected at random, and the 
remaining processors permitted to make a retry at 
the next cycle. The behavior of the processors is 
considered to be independent but statistically 
identical. The entire process is thus stochastic in 
nature, and permits us to use MC to represent the 
state transition behavior of the processors. Section 
II describes the multiprocessor system 
interconnects. A detailed description of the crossbar 
network is presented in this section. The proposed 
model and the mathematical approach were 
developed in section III and IV respectively. The 
paper concludes with section V. 



 

 
 2- MULTIPROCESSOR SYSTEM 
INTERCONNECTS 
 
Parallel processing demands the use of efficient 
system interconnect for fast communication among 
multiprocessors and shared memory, I/O, and 
peripheral devices. Hierarchical buses, crossbar 
switches, multistage and single stage networks are 
often used for this purpose. Switched networks 
provide dynamic interconnections between the 
processors and MM. Many classes of switched 
networks may be found in literature particularly the 
single stage interconnection network (SSIN) and 
multistage interconnection network (MIN) [El-
Reweni and Lewis, 1997]. The crossbar switch 
network is a SSIN, nonblocking permutation 
network.  
 
2.1- Crossbar Network 
 
Crossbar networks provide the highest bandwidth 
and interconnection capability. A crossbar network 
can be visualized as a single stage switch network. 
Each crosspoint switch can provide a dedicated 
connection path between a pair. The switch can be 
set on or off dynamically upon program demand. 
The crossbar switch network configuration is 
illustrated in Fig.1. To build a shared memory 
multiprocessor, one can use a crossbar network 
between the processors and MM (Fig.1). This is 
essentially a memory access network. The Cmmp 
multiprocessor[Wulf and Bell, 1972] has 
implemented a 16x16 crossbar network which 
connects 16 PDP 11 processors to 16 MM, each of 
which has a capacity of 1 million words of memory 
cells. The 16 MM can be accessed by at most 16 
processors simultaneously. A crossbar network is 
cost effective only for small multiprocessors with a 
few processors accessing a few MM. A single stage 
crossbar network is not expandable one it is built. 
All processors can send memory requests 
independently and asynchronously. This poses the 
problem of multiple requests destined for the same 
MM at the same time. In such cases, only one of the 
requests is serviced at a time.  
 
3- PROPOSED MODEL 
 
One set of characteristics of a system is the states of 
the system. If we know all possible states of the 
system, then the behaviour of the system is 
completely described by its states. A system may 
have finite or infinite number of states. Here, we 
are concerned with only finite state systems. 
Suppose X(t) describes the state of the system and 
has n values. That is, at a given time, X1(t), X2(t),… 
Xn(t) are the possible states of the system. Xi(t) 
could be demand access to the MM or a process 

with the private memory (PM) of the processor (a 
PM is an interne memory within the processor). 
The system will move from one state to another 
with some random fashion. That is, there is a 
probability attached to this. Let us suppose that p(t) 
represents the probability distribution over X(t) 
(note: X(t) and p(t) are vectors of size nx1) i.e. p1(t) 
is the probability of finding the system in state 
X1(t). In general, the predictive distribution for X(t) 
is quite complicated with p(t), being a function of 
all previous state variables X(t-1), X(t-2) and so on. 
However, if p(t) depends only upon the preceding 
state then the process is called Markov process.  
A Markov process is a mathematical model that 
describes, in probabilistic terms, the dynamic 
behavior of certain type of system over time. The 
change of state occurs only at the end of the time 
period and nothing happens during the time period 
chosen. Thus, a Markov process is a stochastic 
process which has the property that the probability 
of a transition from a given state pi(t) to a future 
state pj(t+1) is dependent only on the present state 
and not on the manner in which the current state 
was reached.       
The multiprocessor arrangement under 
consideration is shown in figure1. It consists of P 
processors and M memory modules interconnected 
through crossbar. Besides an M-way interleaved 
shared main memory, each processor has its own 
PM. 
Contention problem arises when a message is 
attempted to be written in (or read from) a common 
MM by more than one processors. In crossbar 
multiprocessor systems (Fig.1) two types of 
possible interference can occur;  
- When more than one processor attempts to access 
an idle MM at the same time. 
- When a processor attempts to access a busy MM, 
(the processor is executing in its PM).  
Due to this interference, a subset of processors 
might be blocked, thus giving degradation in the 
performance. The state space X(t) of a processor in 
crossbar system can be a P valued random variable, 
taking only 3 values as a column vector; 
 
            X(t) = [ X1(t), X2(t), X3(t) ]                    (1) 
 
X1(t) is the probability that the processor is in 
active state. It means that the processor is busy with 
its own private memory. 
X2(t) is the probability that the processor is in 
accessing state. 
X3(t) is the probability that the processor is queued 
at the required MM, due to nonavailability of MM. 
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Fig. 1 Interprocessor-memory crossbar network 
built in C.mmp multiprocessor at Carnagie Mellon 
University (1972).  
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Fig. 2. Markov chain for a single processor. 
 
For the sake of simplicity MC for the single 
processor is shown in Fig. 2 and can be coupled P 
times for P processors. The state transition behavior 
of each processor can be understood as follows. 
The processor stays in active state for time duration 
equal to its processing time. It will enter the state 
X2(t) (accessing state) only if MM is idle and no 
other processor is a candidate for that module. The 
processor stays in this state for a time equal to the 
memory access time (processor-memory connection 
time is assumed to be zero). From accessing state it 
can go back to the active state after completing the 
memory access. Processor enter the queued state if 
MM has more than one simultaneous request from 
other processors and one of those requests is 
successful in getting access to the MM. In this state 
the processor has to wait in the queue until memory 
is available and then it goes back to the active state. 
 
4- MATHEMATICAL APPROACH 
 
A vector Markov process can be represented by the 
help of the discrete time state equation [Stark and 
Woods, 1986] provided that the input r(t) is 
independent of previous state X(t-1). The state and 
output equations are; 
 
           X(t+1) = AX(t) + Br(t)                     (2) 

 
where X(t) and X(t+1) are the probabilities that the 
system lies in specified state of the processor 
during current system cycle and the next cycle 
respectively. 
The input probability vector r(t) can be represented 
as a B-valued random variable and can be 
considered as; 
                   r(t) = [ r1(t), r2(t) ]                          (3) 
 
where the probability r1(t) represents that the 
requesting MM is not available and r2(t) is the 
probability that the requesting MM is available. 
The probability of the successful request (requests 
for which MM is idle) can be considered as an 
output C(t) (which can be defined as P-valued 
random variable for the P processors) of the 
system. 
 
               C(t) = DX(t) + Er(t)                           (4) 
 
The matrices A, B, D, and E are of appropriate 
dimensions, and their components are the transition 
probabilities aij , bij , dij , and eij  respectively. These 
components are defined as follows; 
aij: the transition probability that the processor 
currently in state i goes to state j in the next system 
cycle. 
bij : the transition probability that MM are available 
for transition to next state. 
dij : the transition probability that the processor 
currently in any one of the states, active, accessing, 
queued, is successful to access requested MM in 
the next system cycle. 
eij : the transition probability that the successful 
request i in the next system cycle is effected by the 
input j. 
In order to calculate the transition probabilities 
following terms are introduced. The probability that 
a processor makes a request to access a particular 
MM at the beginning of a bus cycle is denoted by 
R. This is the probability of leaving states, active, 
and queued to access a particular MM. Therefore R 
is given by;  

                    )(1
31 gg

M
R +=                         (5) 

where gi is the probability of leaving state i at the 
beginning of a system cycle. As the states of the 
processors are represented by irreductible ergodic 
MC, the gi can be defined as the rate of leaving 

state i. Thus gi can be written as 
i

i
i T

K
g =   

where Ti is the average time in any one of the states 
which is at least one system cycle and Ki is the 
limiting probability of being in state i. The 
probability that the processor finds a MM busy at 
the beginning of a system cycle and is also not 



 

available in the next system cycle is denoted by BM 
and calculated as follows; 
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That means one of the (P-1) processors is accessing 
that MM and is not going to release it in the next 
system cycle. Where K2 is the probability that the 
processor is accessing MM and (K2-g2) is the 
probability that the processor is accessing and not 
going to release that MM in the next system cycle. 
The term α is the probability that the memory 
request initiated by a processor finds the MM idle. 
The probability that a processor will not request a 
particular MM is (1-R), the probability that none of 
the P processors requests that MM is (1-R)P, and 
therefore the probability that a particular MM is 
requested by at least one of the processors is S=1-
(1-R)P. The number of processors which request 
that MM at the beginning of the system cycle is PR. 
Then the value of α is given by; 

                    
PR
S

=α                                   (7) 

The transition probability matrix of the model is 
denoted as T and given as follows, 
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Using Eqs. 5, 6, and 7, Eqs. 2 and 3 can be written 
as follows; 
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 To solve these equations let’s suppose a discrete 
time as said earlier, which means that we have a 
stationary homogeneous MC, where the 
probabilities X1(t), X2(t), and X3(t) are independent 
of time. Therefore, we can say that; 
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We can consider the fundamental relation to this 
linear system that consists of the sum of the state 
probabilities which is equal to 1.  This relation is 
written as follows; 

 
       X1(t) + X2(t) + X3(t) = 1                        (10) 
 
Therefore, we can rewrite Eq.(8) by considering 
Eq.(9) and replacing one row by Eq.(10), thus we 
obtain the following expression, 
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We have developed an algorithm based on Gauss 
method to solve these equations. We calculate the 
probability states for one processor, then for P 
processors and try to see if these probabilities 
change as function of the number of processor. 
From fig. 3, we can conclude that these probability 
states X1(t),  X2(t) and X3(t) stay almost constant. 
This is a very important result to proof the validity 
of the method since we can generalize the approach 
to P processors.     
Two parameters were taken to evaluate the 
performance of a crossbar network. These 
parameters are the bandwidth (BW) and the 
probability of connection C(t). 
The crossbar model will be analyzed under the 
same assumptions given by Agrawal [Bhuyan and 
Agrawal, 1983] which are: 
1- The operation is synchronous; i.e., the messages 
begin and end simultaneously. 
2- Each processor generates a random and 
independent request. The requests are uniformly 
distributed over all the memory modules. 
3- At the beginning of a cycle, each processor 
generates a new request with a probability Pm. 
Thus is the average number of requests generated 
per cycle by each processor. 
4- The requests which are not accepted are ignored. 
The requests issued at a cycle are independent of 
the requests issued in the previous cycle. 
When the requests are random, it is possible for 
two or more processors to address the same 
memory module. Assumptions 1-4 are there to 
simplify the analysis. 
The bandwidth (BW) and the probability of 
acceptance (Pa) of MxP crossbar network are 
presented by Agrawal and adapted to the model. 
BW is defined as the expected number of memory 
requests accepted per cycle. The BW and the Pa of 
the proposed model are given as follows; 
 
                         BW = M - M (1 - C(t) / M) P   
 
where M is the number of MM and P is the number 
of processors. 
Pa defines the probability that a request will be 
accepted; 
                             Pa = BW/(C(t).P)  



 

Pa is defined as the ratio of the expected BW to the 
expected number of requests generated by cycle. 
 
5. RESULTS 
 
In this section, we present performance figures for 
a crossbar network in presence of contention. The 
simulation results are obtained from the proposed 
model where the number of processor is 500. 
Figures 3 shows the variation of the probability 
states of X1, X2 and X3. For processors  P ≤ 100, we 
obtain an increase sharp of the state probabilities of 
X1, whereby a decrease sharp of the state 
probabilities of X2 and X3 is observed. We can say 
that, for low processors, most of the state 
probabilities show that the processors are in the 
active states. They are busy with there private 
memories. Almost, with the same state 
probabilities, the processors are either in the 
accessing or in the queuing states. For processors 
P>100, the three state probabilities stay constant, 
X1=0.513, X2=0.258 and X3=0.229. It is clearly 
shown in Fig.3d. We believe that there exits a 
degradation in performance and the system saturate 
in this range of processors. In the range of 
memories M ≤ 100, a significant decrease of the 
probability of connection C(t) and probability of 
acceptance Pa are shown in Fig.5 and 6 
respectively. For M >100, the memories are 
continuously busy and the C(t) and Pa are small 
and stay almost constant. In this range of memories, 
the processors cannot access easily the memories. 
This causes a degradation performance which is 
due to the network size. 
 
6. CONCLUSION 
 
We have presented analytic model for blocking 
probability of crossbar network. The model is based 
on discrete-time MC under the assumption of 
random memory requests.  
We believe that, the proposed analytic model of the 
crossbar can be used to adapt analytic models for 
the blocking probability of any arbitrary multistage 
interconnection network. The concepts developed 
here can later on be used to study the behavior of 
complex multiprocessor systems to resolve the 
memory contention problems under other 
considerations. 
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Fig 3.    Variation of the probabilities states with 
(K1=K2=0.3,K3=0.4, Rp=D=1, r1=0.2, r2=0.6) 
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