

PERFORMANCE OF A CROSSBAR NETWORK USING
MARKOV CHAINS

D. BENAZZOUZ1 A. FARAH2

1- Laboratoire LMSS, FSI, Université of Boumerdes, 35000, Algeria
2- AUST, Faculty of Computer Science and Engineering, UAE

Phone/fax (+213) 24 81 62 65 e-mail: dbenazzouz@umbb.dz

Abstract: A performance evaluation of a crossbar network is presented using discrete-time
Markov chain (MC). Identical processors, totally synchronized with system clock and
communicating through common memory modules. Simple MC models the behavior of each
processor. We have developed state and output equations for discrete-time state space model.
The transition probabilities of transition matrices are computed. The memory contention
situation of the multiprocessor systems is considered. We show that the network is reliable for
less then 100 processors. For network larger than 100 processors, a considerable degradation
performance is observed which is due to contention.

Keywords: Crossbar - Performance analysis - Markov chains – Multiprocessor systems.

1- INTRODUCTION

Generally in multiprocessing systems, the
processors can communicate and cooperate at
different levels in solving a given problem, i. e., by
sending messages or by sharing memory. Parallel
systems are said to be tightly coupled if there is
many processor interactions via shared memory.
The speed of the machine is restricted by the
memory bandwidth and hence by the
interconnection network (IN) topology, and an IN
with a dynamic topology is required. ALICE
[Harrison and Reeve, 1987], designed to execute
functional languages in parallel [Fiel and Harrison,
1988], and the NYU ultracomputer [Gottlieb et al,
1983] are examples of tightly coupled
multiprocessor systems.
The performance studies of tightly coupled
multiprocessor systems have generated a great
interest [Marsan and Gerla, 1982]. The principle
characteristic of a multiprocessor system is the
ability of each processor to share a single main
memory. The partitioning of main memory into
several independent memory modules (MM), that
can be in operation simultaneously, is known as
memory interleaving. A memory system consisting
of M memory modules (M-way interleaving) can be
used to control severe performance degradation of
the memory system. The interference occurs when
two or more processors simultaneously attempt to
access the same MM.
The mathematical models used to evaluate this
class of multiprocessor systems are based on
discrete-time Markov chains. A limit on the use of
Markovian models of complex computer systems
comes from the fact that their direct construction is

practically very difficult. Various approaches were
examined [Skinner and Asher, 1969; Bhandarkar
1975; Ran, 1979].
The number of states increases very rapidly with
system size. The explosive growth is due to the
detailed information that the state must record the
exact status of the queues at each server in the
system. MC approach has been very successful
technique for modelling, analysis and design of
various kinds of systems [Florin et al. 1991;
Benazzouz and Farah, 1998].
In this correspondence we develop a discrete time
MC model for crossbar multiprocessor systems. It
is assumed that the processors share M-way
interleaved memory and can access any MM
through the network. The entire system is
synchronized with a system clock whose time
period is referred to as the system cycle. The
operation of the system can be assumed as under.
At the beginning of each system cycle the
processors are permitted to make selections of a
MM at random. In case more than one request is
made to same MM, the information is supplied to
one of the processors selected at random, and the
remaining processors permitted to make a retry at
the next cycle. The behavior of the processors is
considered to be independent but statistically
identical. The entire process is thus stochastic in
nature, and permits us to use MC to represent the
state transition behavior of the processors. Section
II describes the multiprocessor system
interconnects. A detailed description of the crossbar
network is presented in this section. The proposed
model and the mathematical approach were
developed in section III and IV respectively. The
paper concludes with section V.

 2- MULTIPROCESSOR SYSTEM
INTERCONNECTS

Parallel processing demands the use of efficient
system interconnect for fast communication among
multiprocessors and shared memory, I/O, and
peripheral devices. Hierarchical buses, crossbar
switches, multistage and single stage networks are
often used for this purpose. Switched networks
provide dynamic interconnections between the
processors and MM. Many classes of switched
networks may be found in literature particularly the
single stage interconnection network (SSIN) and
multistage interconnection network (MIN) [El-
Reweni and Lewis, 1997]. The crossbar switch
network is a SSIN, nonblocking permutation
network.

2.1- Crossbar Network

Crossbar networks provide the highest bandwidth
and interconnection capability. A crossbar network
can be visualized as a single stage switch network.
Each crosspoint switch can provide a dedicated
connection path between a pair. The switch can be
set on or off dynamically upon program demand.
The crossbar switch network configuration is
illustrated in Fig.1. To build a shared memory
multiprocessor, one can use a crossbar network
between the processors and MM (Fig.1). This is
essentially a memory access network. The Cmmp
multiprocessor[Wulf and Bell, 1972] has
implemented a 16x16 crossbar network which
connects 16 PDP 11 processors to 16 MM, each of
which has a capacity of 1 million words of memory
cells. The 16 MM can be accessed by at most 16
processors simultaneously. A crossbar network is
cost effective only for small multiprocessors with a
few processors accessing a few MM. A single stage
crossbar network is not expandable one it is built.
All processors can send memory requests
independently and asynchronously. This poses the
problem of multiple requests destined for the same
MM at the same time. In such cases, only one of the
requests is serviced at a time.

3- PROPOSED MODEL

One set of characteristics of a system is the states of
the system. If we know all possible states of the
system, then the behaviour of the system is
completely described by its states. A system may
have finite or infinite number of states. Here, we
are concerned with only finite state systems.
Suppose X(t) describes the state of the system and
has n values. That is, at a given time, X1(t), X2(t),…
Xn(t) are the possible states of the system. Xi(t)
could be demand access to the MM or a process

with the private memory (PM) of the processor (a
PM is an interne memory within the processor).
The system will move from one state to another
with some random fashion. That is, there is a
probability attached to this. Let us suppose that p(t)
represents the probability distribution over X(t)
(note: X(t) and p(t) are vectors of size nx1) i.e. p1(t)
is the probability of finding the system in state
X1(t). In general, the predictive distribution for X(t)
is quite complicated with p(t), being a function of
all previous state variables X(t-1), X(t-2) and so on.
However, if p(t) depends only upon the preceding
state then the process is called Markov process.
A Markov process is a mathematical model that
describes, in probabilistic terms, the dynamic
behavior of certain type of system over time. The
change of state occurs only at the end of the time
period and nothing happens during the time period
chosen. Thus, a Markov process is a stochastic
process which has the property that the probability
of a transition from a given state pi(t) to a future
state pj(t+1) is dependent only on the present state
and not on the manner in which the current state
was reached.
The multiprocessor arrangement under
consideration is shown in figure1. It consists of P
processors and M memory modules interconnected
through crossbar. Besides an M-way interleaved
shared main memory, each processor has its own
PM.
Contention problem arises when a message is
attempted to be written in (or read from) a common
MM by more than one processors. In crossbar
multiprocessor systems (Fig.1) two types of
possible interference can occur;
- When more than one processor attempts to access
an idle MM at the same time.
- When a processor attempts to access a busy MM,
(the processor is executing in its PM).
Due to this interference, a subset of processors
might be blocked, thus giving degradation in the
performance. The state space X(t) of a processor in
crossbar system can be a P valued random variable,
taking only 3 values as a column vector;

 X(t) = [X1(t), X2(t), X3(t)] (1)

X1(t) is the probability that the processor is in
active state. It means that the processor is busy with
its own private memory.
X2(t) is the probability that the processor is in
accessing state.
X3(t) is the probability that the processor is queued
at the required MM, due to nonavailability of MM.

.
P1

P2

.

.

. .

Pn

M1 M2 Mn

Fig. 1 Interprocessor-memory crossbar network
built in C.mmp multiprocessor at Carnagie Mellon
University (1972).

a31

 a 12
 X1 X 2 X 3

 a 32
 a 21

 a 13

Fig. 2. Markov chain for a single processor.

For the sake of simplicity MC for the single
processor is shown in Fig. 2 and can be coupled P
times for P processors. The state transition behavior
of each processor can be understood as follows.
The processor stays in active state for time duration
equal to its processing time. It will enter the state
X2(t) (accessing state) only if MM is idle and no
other processor is a candidate for that module. The
processor stays in this state for a time equal to the
memory access time (processor-memory connection
time is assumed to be zero). From accessing state it
can go back to the active state after completing the
memory access. Processor enter the queued state if
MM has more than one simultaneous request from
other processors and one of those requests is
successful in getting access to the MM. In this state
the processor has to wait in the queue until memory
is available and then it goes back to the active state.

4- MATHEMATICAL APPROACH

A vector Markov process can be represented by the
help of the discrete time state equation [Stark and
Woods, 1986] provided that the input r(t) is
independent of previous state X(t-1). The state and
output equations are;

 X(t+1) = AX(t) + Br(t) (2)

where X(t) and X(t+1) are the probabilities that the
system lies in specified state of the processor
during current system cycle and the next cycle
respectively.
The input probability vector r(t) can be represented
as a B-valued random variable and can be
considered as;
 r(t) = [r1(t), r2(t)] (3)

where the probability r1(t) represents that the
requesting MM is not available and r2(t) is the
probability that the requesting MM is available.
The probability of the successful request (requests
for which MM is idle) can be considered as an
output C(t) (which can be defined as P-valued
random variable for the P processors) of the
system.

 C(t) = DX(t) + Er(t) (4)

The matrices A, B, D, and E are of appropriate
dimensions, and their components are the transition
probabilities aij , bij , dij , and eij respectively. These
components are defined as follows;
aij: the transition probability that the processor
currently in state i goes to state j in the next system
cycle.
bij : the transition probability that MM are available
for transition to next state.
dij : the transition probability that the processor
currently in any one of the states, active, accessing,
queued, is successful to access requested MM in
the next system cycle.
eij : the transition probability that the successful
request i in the next system cycle is effected by the
input j.
In order to calculate the transition probabilities
following terms are introduced. The probability that
a processor makes a request to access a particular
MM at the beginning of a bus cycle is denoted by
R. This is the probability of leaving states, active,
and queued to access a particular MM. Therefore R
is given by;

)(1
31 gg

M
R += (5)

where gi is the probability of leaving state i at the
beginning of a system cycle. As the states of the
processors are represented by irreductible ergodic
MC, the gi can be defined as the rate of leaving

state i. Thus gi can be written as
i

i
i T

K
g =

where Ti is the average time in any one of the states
which is at least one system cycle and Ki is the
limiting probability of being in state i. The
probability that the processor finds a MM busy at
the beginning of a system cycle and is also not

available in the next system cycle is denoted by BM
and calculated as follows;

)(1
22 gK

M
PBM −
−

= (6)

That means one of the (P-1) processors is accessing
that MM and is not going to release it in the next
system cycle. Where K2 is the probability that the
processor is accessing MM and (K2-g2) is the
probability that the processor is accessing and not
going to release that MM in the next system cycle.
The term α is the probability that the memory
request initiated by a processor finds the MM idle.
The probability that a processor will not request a
particular MM is (1-R), the probability that none of
the P processors requests that MM is (1-R)P, and
therefore the probability that a particular MM is
requested by at least one of the processors is S=1-
(1-R)P. The number of processors which request
that MM at the beginning of the system cycle is PR.
Then the value of α is given by;

PR
S

=α (7)

The transition probability matrix of the model is
denoted as T and given as follows,

















−−−
−

−−−−++−
=

αα

ααα

)1(1
011
)1()1()1(2

BMBM

BMBMBM
T

Using Eqs. 5, 6, and 7, Eqs. 2 and 3 can be written
as follows;


























−

−
+
















=

















+
+
+

)(
)(

.
0)1(

0
0)1(

)(
)(
)(

)1(
)1(
)1(

2

1

3

2

1

3

2

1

tr
tr

tX
tX
tX

T
tX
tX
tX

α
α

α
 (8)

[] [] 







−+
















−−=

)(
)(

1
)(
)(
)(

)1(1)1()(
2

1

3

2

1

tr
tr

tX
tX
tX

BMBMtC ααα

 To solve these equations let’s suppose a discrete
time as said earlier, which means that we have a
stationary homogeneous MC, where the
probabilities X1(t), X2(t), and X3(t) are independent
of time. Therefore, we can say that;
















=

















+
+
+

)(
)(
)(

)1(
)1(
)1(

3

2

1

3

2

1

tX
tX
tX

tX
tX
tX

 (9)

We can consider the fundamental relation to this
linear system that consists of the sum of the state
probabilities which is equal to 1. This relation is
written as follows;

 X1(t) + X2(t) + X3(t) = 1 (10)

Therefore, we can rewrite Eq.(8) by considering
Eq.(9) and replacing one row by Eq.(10), thus we
obtain the following expression,

















−
=

































+−−−
−

)()1(
)(

1

)(
)(
)(

21
021
111

1

2

3

2

1

tr
tr

tX
tX
tX

BMBM α
α

αα
(11)

We have developed an algorithm based on Gauss
method to solve these equations. We calculate the
probability states for one processor, then for P
processors and try to see if these probabilities
change as function of the number of processor.
From fig. 3, we can conclude that these probability
states X1(t), X2(t) and X3(t) stay almost constant.
This is a very important result to proof the validity
of the method since we can generalize the approach
to P processors.
Two parameters were taken to evaluate the
performance of a crossbar network. These
parameters are the bandwidth (BW) and the
probability of connection C(t).
The crossbar model will be analyzed under the
same assumptions given by Agrawal [Bhuyan and
Agrawal, 1983] which are:
1- The operation is synchronous; i.e., the messages
begin and end simultaneously.
2- Each processor generates a random and
independent request. The requests are uniformly
distributed over all the memory modules.
3- At the beginning of a cycle, each processor
generates a new request with a probability Pm.
Thus is the average number of requests generated
per cycle by each processor.
4- The requests which are not accepted are ignored.
The requests issued at a cycle are independent of
the requests issued in the previous cycle.
When the requests are random, it is possible for
two or more processors to address the same
memory module. Assumptions 1-4 are there to
simplify the analysis.
The bandwidth (BW) and the probability of
acceptance (Pa) of MxP crossbar network are
presented by Agrawal and adapted to the model.
BW is defined as the expected number of memory
requests accepted per cycle. The BW and the Pa of
the proposed model are given as follows;

 BW = M - M (1 - C(t) / M) P

where M is the number of MM and P is the number
of processors.
Pa defines the probability that a request will be
accepted;
 Pa = BW/(C(t).P)

Pa is defined as the ratio of the expected BW to the
expected number of requests generated by cycle.

5. RESULTS

In this section, we present performance figures for
a crossbar network in presence of contention. The
simulation results are obtained from the proposed
model where the number of processor is 500.
Figures 3 shows the variation of the probability
states of X1, X2 and X3. For processors P ≤ 100, we
obtain an increase sharp of the state probabilities of
X1, whereby a decrease sharp of the state
probabilities of X2 and X3 is observed. We can say
that, for low processors, most of the state
probabilities show that the processors are in the
active states. They are busy with there private
memories. Almost, with the same state
probabilities, the processors are either in the
accessing or in the queuing states. For processors
P>100, the three state probabilities stay constant,
X1=0.513, X2=0.258 and X3=0.229. It is clearly
shown in Fig.3d. We believe that there exits a
degradation in performance and the system saturate
in this range of processors. In the range of
memories M ≤ 100, a significant decrease of the
probability of connection C(t) and probability of
acceptance Pa are shown in Fig.5 and 6
respectively. For M >100, the memories are
continuously busy and the C(t) and Pa are small
and stay almost constant. In this range of memories,
the processors cannot access easily the memories.
This causes a degradation performance which is
due to the network size.

6. CONCLUSION

We have presented analytic model for blocking
probability of crossbar network. The model is based
on discrete-time MC under the assumption of
random memory requests.
We believe that, the proposed analytic model of the
crossbar can be used to adapt analytic models for
the blocking probability of any arbitrary multistage
interconnection network. The concepts developed
here can later on be used to study the behavior of
complex multiprocessor systems to resolve the
memory contention problems under other
considerations.

 0 100 200 300 400 500

0 .500

0 .505

0 .510

0 .515

X 1

P (p rocessors)

a) State probabilities of X1

0 100 200 300 400 500
0.256

0.258

0.26

0.262

0.264

0.266

0.268

X2

P (processors)
b) State probabilities of X2

0 100 200 300 400 500
0.228

0.229

0.23

0.231

0.232

0.234

0.235

X3

P (processors)

c) State probabilities of X3

-

0 100 200 300 400 500
 0.2

 0.25

 0.3

0.35

0.45

.55 X1

X2

X3

State probabilities of X1, X2 and X3

P (processors)

d) State probabilities of X1, X2, X3

Fig 3. Variation of the probabilities states with
(K1=K2=0.3,K3=0.4, Rp=D=1, r1=0.2, r2=0.6)

50 100 150 200 250 3000

20

40

60

80

100

120

B W

M

Fig. 4 Bandwidth of MxP networks

 0 50 100 150 200 250 300.68

70

.72

.74

.76

.78

.80

.82

C (t)

M
Fig. 5 Probability of connection of MxP networks

 0 50 100 150 200 250 300
.53

.54

.55

.56

.57

.58

.59
Pa

M

 Fig. 6 Probability of acceptance of MxP networks

REFERENCES

Harrison, P. G., and Reeve, M. J. 1987, ’’The
parallel graph reduction machine, ALICE’’. Proc.
workshop on graph reduction, Santa Fe, LNCS,
N°279. Spring-verlag New York/Berlin.
Fiel, A. J., and Harrison, P. G. 1988, ’’Functional
programming’’, addison-wesley, New York.
Gottlieb, A. et al. 1983,’’The NYU ultracomputer
designing an MIMD shared memory parallel
computer’’, IEEE Trans. comput. C32, 2, pp173-
189.
Marsan M.A. and Gerla M. 1982, ’’Markov models
for multiple bus multiprocessor systems’’, IEEE
Trans. Comput. Vol. C.31, pp239-248.
Skinner C. E. and Asher J. R.. 1969, ’’Effects of
storage contention on system performance’’, IBM
system J. Vol. 8, pp319-333.
Bhandarkar D. P. 1975, ’’Analysis of memory
interference in multiprocessors’’, IEEE Trans.
Comput., Vol. C-34, pp897-908.
Ran B. R. 1979, ’’Interleaved memory bandwidth
in a model of a multiprocessor computer system’’,
IEEE Trans. Comput., Vol. C-28, N°9.
Florin G., Fraize C. and Natkin S. 1991,
’’Stochastic Petri Net: Properties, Applications and

Tools’’, Microelectron. reability, vol. 31, N°4,
pp669-697.
Benazzouz D.and Farah A. 1998, ’’The use of Petri
nets in the performance evaluation of shuffle-
exchange network under uniform traffic
distribution’’, the Arabian Journal for Science and
Engineering, AJSE, vol. 23, n° 2B, pp. 253-263.
Benazzouz D. and Farah A. 1998, ’’Performance
evaluation of baseline MIN’’, in Proc. IMACS-
IEEE on Computational Engineering in Systems
Application’, Nabeul-Hammamet, Tunisia, pp.350-
356.
Stark H., and Woods J.W. 1986, ’’probability
random processes and estimation theory for
engineers’’, New Jersey: Prentice-Hall, Inc.
Wulf W.A. and. Bell C. G 1972, ’’C.mmp-A multi-
miniprocessors’’, Proc. Fall joint Compt. Conf.,
pp765-777.
El-Rewini H. & Lewis T. G. 1997, ’’Distributed
and parallel computing’’, Ed. Manning, pp. 102-
103.
Bhuyan L.N. and Agrawal P. 1983, ’’Design and
performance of generalized interconnection
networks’’, Trans. on computers vol. C-32, no12,
pp.1081-1090.

BIOGRAPHY:

Dr.Djamel BENAZZOUZ graduated in 1982 from
the National Institute of Electricity and Electronics
(INELEC) Boumerdes, Algeria. He joined industry
as maintenance engineer in the two major Algerian
Companies: Sonatrach (Petroleum Industry) and
Sonelgaz (Electric Utility Company). He returned
to research and Education since 1986 at the
National Institute of Mechanical Engineering which
became in 1998 University of Boumerdes. He
received his Magister degree in applied electronics
in 1991 at INELEC and his Doctorate d’Etat in
1999 at Ecole Nationale Polytechnique, Algiers. He
worked as associate Professor in 1998 at the
university of Boumerdes. He has been heavily
involved in the field of microprocessor-based
systems. His research interests include architecture
digital system design, verification and test of digital
circuits, hardware and software and the
identification systems using neural network and
fuzzy logic.

	c0: Proceedings 17th European Simulation Multiconference
(c) SCS Europe BVBA, 2003 ISBN 3-936150-25-7

