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Abstract: We consider a fluid system composed of multiple buffers in series. The first buffer receives fluid
from a finite superposition of independent identical on-off sources. The active and silent periods of sources
are exponentially distributed. The ith buffer releases fluid in the (i + 1)th buffer. Assuming that the input
rate of one source is greater than the service rate of the first buffer, the output process of each buffer can
be modeled by an on-off source with the active period distributed as the busy period of an M/M/1 queue.
For i > 2, the stationary content distribution of the ith buffer is obtained by the use of generating functions

which are explicitly inverted.
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1 INTRODUCTION

We consider tandem fluid queues fed by a finite
number of identical on-off sources. It is assumed
that silent and active periods of the sources are
independent and exponentially distributed. Tan-
dem fluid queues are composed of consecutive in-
finite capacity buffers. The stationary behavior
of the first buffer is explicitly derived in [Anick
et al., 1982], using spectral decomposition argu-
ments. As far as the other buffers are concerned,
the output processes need to be characterized. In
[Aalto, 1998] and [Boxma and Dumas, 1998], the
authors consider a fluid queue driven by a su-
perposition of on-off sources, with exponentially
distributed silent periods and generally distribut-
ed active periods. Assuming that the input rate
of one source is greater than the constant service
rate of the buffer, they prove that the output pro-
cess behaves as an on-off source with exponentially
distributed silent periods and active periods dis-
tributed like the busy periods of a M/G/1 queue.
In this paper, we consider the stationary behav-
ior of each buffer level in the tandem fluid queues,
apart from the first one. Using results of [Aalto,
1998] and [Boxma and Dumas, 1998], the output
processes look like on-off sources with active pe-
riods distributed as busy periods of an M/M/1
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queue. This tandem of fluid queues has been s-
tudied in [Aalto, 1998], where the output processes
have been considered as alternating renewal pro-
cesses. The authors obtained the stationary flu-
id level distribution of each buffer in terms of a
Bessel function integral. Here, we derive a new
analytic expression of these distributions. By us-
ing the method developped in [Leguesdron et al,
1991] and [Barbot and Sericola, 2002], we write
the solutions in terms of a matrix exponential and
then via generating functions that are explicitly
inverted. Nevertheless, as shown in the next sec-
tion, we deal here with a more general setting than
the one of [Barbot and Sericola, 2002].

2 MODEL FORMULATION

We consider M infinite capacity fluid queues in se-
ries. The first one is fed by the superposition of N
independent identical on-off sources with exponen-
tially distributed on-off periods with parameters p
and A respectively. During the on period, a source
emits fluid at a constant rate ¢g. The first buffer
empties in the second one at the rate ¢;. For i > 2,
the input of the ith buffer is the output from the
buffer ¢ — 1 and its service rate is denoted by ¢;. It
is assumed that Ncg > ¢; > ... > cpr > 0 in order



to avoid the trivial case where one or more buffers
remain empty. Moreover, we make the restrictive
assumption c¢g > ¢; which permits the output pro-
cess of the first buffer to be simply derived.

Definition 1 An on-off source is called an
MM1(B,a,b,r) source if the off periods are expo-
nentially distributed with rate 8 and the on periods
are distributed as the busy periods of an M/M/1
queue with arrival rate a and service rate b. Dur-
ing the on periods, the source emits fluid at rate r.

The infinitesimal generator associated with such a
source is denoted by A. Its non-zero entries are

Aoo = =B, Agq = B, Ajj—1 = b,

Aj,j = —(Cb+b) and Aj,j_;,_l = a forj>1. (1)

Note that in [Barbot and Sericola, 2002], we con-
sidered a single fluid queue fed by a classical
M/M/1 queue, which is, our definition, a fluid
queue fed by an MM1(a,a,b,r) source. Here we
have to deal with MM1(8,a,b,r) sources, where
B # a, which generalizes the results of [Barbot
and Sericola, 2002].

The following lemmas are proved in [Aalto, 1998]
and [Boxma and Dumas, 1998].

Lemma 2 In the stationary regime, the output
process of the first buffer is equivalent to an
MM1(NXA,u1,c1) source where Ay = AN —
c1/co) and py = pey/co.

Lemma 3 In the stationary regime, the output
process of a buffer with service rate ¢ and fed
by an MM1(B,a,b,r) source is equivalent to an
MM1(B,a’' b ,c) source where o' = ac/r+B(1—c/r)
and b’ = be/r.

Using Lemmas 2 and 3, the output process of the
ith buffer, for 1 < i < M, is equivalent to an
MMI1(NA A\, p4,¢;) source where A; = A(IN —¢;/co)
and p; = pc;/co. Therefore, the traffic intensity in
the ith buffer is given by p; = coNA/(c;(A+n)) and
the stability condition of the tandem fluid queues
is py < 1.

3 A BUFFER FED BY AN
MM1(3,a,b,r) SOURCE

We consider a single fluid buffer fed by an
MM1(8,a,b,r) source. The service rate of the
buffer is denoted by ¢, ¢ < r. We derive an expres-
sion of the stationary buffer content distribution
in terms of a series whose coefficients correspond
to the successive powers of a key matriz G. The

generating function of G is expressed as a function
of the known generating function of a key matriz
T and is explicitly inverted.
The continuous time birth and death process as-
sociated with the MM1(3,a,b,r) source is denoted
by {X;, t > 0} and its infinitesimal generator A is
described by (1). We assume that a < S.
The drifts of that fluid queue represent the differ-
ence between the input and the service rates. Let
d; be the drift when X; is in the state j. We thus
have dy = —c and d; = r — ¢, for every j > 1. The
diagonal matrix containing these drifts is denoted
by D. Since we are concerned by the stationary be-
havior of that fluid queue, we suppose that a < b
and that the stability condition is satisfied. Since
the mean duration of on periods is 1/(b — a), we
have

B

cb—a+p)

The stationary state of the Markov chain { X, ¢t >
0} and the stationary amount of fluid in the buffer
are denoted X and @ respectively.

Let Fj(z) = Pr{X = j,Q < z}. It is easy
to see that for j > 1, we have F;(0) = 0 and
it has been shown in [Sericola and Tuffin, 1999]
that Fy(0) = 1 — po. It is well-known, see e.g.
[Mitra, 1988], that the functions Fj satisfy, for
x > 0, the following system of differential equa-
tions F'(x) = F(x)AD™! where F(z) denotes
the infinite row vector containing the Fj(z) and
F'(x) the derivative of F(z) with respect to . It-
s solution is given by F(z) = F(0)eAP 'z Us-
ing a method similar to the uniformization tech-
nique, we introduce the key matriz G defined by
G =1+ AD7'/0, where § = (a +b)/(r — ¢) and
I is the identity matrix. We then have, for every
J=0,

po = < 1.

B =0-mY e g @
n=0 :

where G ; denotes the (0, j) entry of matrix G™.
In what follows, we focus on the calculation of G ;
using generating functions.

3.1 Generating Functions

Let us consider the complex matrices M indexed
on N x N. We define

oo
v(M) = supz | M,
ieN =

and denote by M the set of infinite complex ma-
trices M such that v(M) is finite. v is a norm on



M and (M,v) is a Banach algebra. With each
M € M, we associate the complex function ®,;,
called potential kernel of M or generating func-
tion, defined by

oo
Dp(z) = Y M
k=0

for every z such that |z| < 1/v(M). Note that for
M € M and z such that |z| < 1/v(M), we have
Dr(z) € Msince v (Par(2)) < 1/(1—|zjv(M)) <
+00.

The following lemma is a classical straightforward
result, so we give it without proof.

Lemma 4 For every matrix H, H® s is the only
solution to the matriz equation

X(2) = H+2X(2)M
for every z such that |z| < 1/v(M).

We shall also need the following result, due to
[Leguesdron et al., 1991], which will be used along
with Lemma 4.

Lemma 5 For every M and N in M, we have
(I)M+N(Z) = <I>M(z) + Z(I)M+N(Z)N(I)M(Z)

for every z such that |z| < min{l/v(M),1/v(M +
N)}.

Let us now introduce some notations. We define
the infinite matrices V., W, R and S as

Vijg = Liv1y, Wiy = Lijp1 . Rij = Lol

and S; ; = I;0l1,; for i and 7 € IN. We studied in
[Barbot and Sericola, 2002] the key matriz T as-
sociated to a fluid buffer fed by an M/M/1 queue
with arrival rate a and service rate b. The input
and service rates of the buffer are respectively r
and c. Therefore, the non-zero entries of T are
given by

Too = q+pr/c, Ton =p, Tro =q—qr/c
TLQ =p and for 7 Z 2, Ti,ifl =q, Ti,i+1 =p
where p and ¢ are defined by
p =a/(a+b) and ¢ = b/(a+1D).

Notice that the stability condition of the flu-
id model associated with T is satisfied, that is
p=ra/ch < 1.

After some algebra, we easily obtain the following
relation between matrices G and T.

Lemma 6 We have G = T + U where U =
(po —p)((r/c =1)R+ S) and po = B/(a + ).

Since B > a, we have pg > p and so v(G) > v(T).
Using Lemma 5, we obtain

Du(2) = Op(2) + 2P6(2)UPr(2) (3)

for every z such that |z| < 1/v(G). We define the
matrix L(z) as

For |z| < 1/v(T), we have v(L(2)) = v(U®7(z)) <
v(U)/(1 — |zlv(T)), and so for every z such as
|z| < 1/(w(T)+ v(U)), we have |z| < 1/v(L(z))
which proves that L(z) € M. Lemma 4 applied to
Relation (3) with X (z) = ®¢(z), H = &r(z) and
M = L(z) leads to

Pa(z) = O7(2)Pr(2)(2) (4)

for |z] < min{l/v(G),1/(v(T) + v(U))} where
v(U) = (po — p)r/c.

In order to derive an expression of the potential
kernel ®¢ given in (4), we first recall in the nex-
t lemma the expression of @1 obtained in [Bar-
bot and Sericola, 2002]. For that, we introduce,
for z such that |z| < 1/4, the function C(z) =

(1 —+v1—4z)/2z.

Lemma 7 Let |z| < 1 and n(z) = C(pgz?). Let
X (z) and Y (2) be the matrices defined by

Xij(z) = (gzn(2)) (pzn(2))
Y(z) = Y WrX(z)V*.
k=0

For every z such that |z] < min{1/2,¢/(qr + ¢)},
we have

(L4 p = pgen(=) X (2) - “WX(2)
(1 —qzn(2))(1 — pgzn(z))

(5)

qzn’(z)

Theorem 8 For every z such that |z| < 1/2, we
have

L(z) = u(z)RX(z) + n(z)(po — p)RX(2)V, (6)
Priy(z) =1+ %U(Z)L(Z)’ (7)

n(2)

where u(z) = (po — p)(r/c— 1)TZ7’(2)



Proof. Let z be such that |z| < 1/2. Since RW =0
and SW = R, we have by definition of X (z) and
Y(2)

RY(z) = RX(z), SX(z) = qzn(z)RX (z)
and

SY(z) = qzn(z)RX(z) + RX(2)V .

Lemma 7 leads to

L(z) = n(z)po —p)((r/e~ DR +5) <Y<z>+

(14 p— pgzn(2)) X (2) — “W X (2)
qzn(2) < )

(1 —qzn(2))(1 — pgan(2))

and using the relations above, we obtain (6). Con-
sider now the successive powers L*(z) of matrix
L(z). Observing that VR = 0 and

X(2)RX(2) = X(2), (8)

we easily get from (6) that L?(z) = u(z)L(z). It
follows by induction that for every k > 0,

LFY(2) = uP(2)L(2).

Since |z| < 1/2, it is easy to check, from the defi-
nition of the function C, that |n(z)| < 2 and there-
fore |gzn(z)| < 1. Moreover, since pg < 1, we have
(50 — P)(r/c — 1) < q(1 — p) and s0 u(2)] < 1.
Thus, we obtain

Brp(z) = I+2 (zu(z)*L

Theorem 9 For |z| < min{1/2,¢/(qr + ¢),

1/(v(G) +v(U))}, we have
a(z) = n(2)Y ()
qzn(2)(1L+ p — pgzn(z)) + %

LS G- =) Xz)
* (r—c o )))(1—zu< 5 R

) ==y 7
. g2 (2)u(2) .

(r )(l—qzn( e L

Proof. Let z be such that |z| < min{1/2,¢/(qr +
¢),1/(w(G)+v(U))}. Replacing Relations (5) and
(7) in (4), we obtain

z

Ds(2) = n(2) <I+ mL(z)) (Y(z)+

90 T o) = pgen(a))

Now, since VR =
Y(2)RX (=)

Y(2)L(z) = u(2)X(2) +n(2)(po — )X (2)V

and using (8), X(z)L(z) = Y(2)L(z). Putting
these relations in (10), we obtain (9).

(14 p — pgzn(2)) X (2) — fWX(z))
c (10)

0, we obtain from (8) that
= X (z). We get from (6),

3.2 Explicit Solution For A Single
Buffer

We obtain in this section a closed-form expression
[e.e]

for Gg; and so for Pr{Q <z} = ZFj (x). For
§=0

that purpose, we need the following well-known

lemma which gives an analytical expression of the

powers of n(z). For the proof, see e.g. [Riordan,

1968] page 154.

Lemma 10 For every k > 1 and |z| < 1/4, we
(o)

Z s(k,n)z"

n=0
ballot defined by

have C*(z) = where s(k,n) are the

(2n+k-1)!

sthn) =k nl(n + k)!

Theorem 11 For every x > 0,

= Ox (em)n

Pr{Q<a} = (1—po) Y e "0

— n!
« (14 (o —p)-22 Z Z
Po—Dp nrl "
m=0
[*=5]
x Y s(n—2k+1,k)prgn "
k=0
n—j—m—2k
(m+h)! ,
<y b
h=0

where |u| denotes the largest integer less than or
equal to the real number u and

v = (po—p)(r/c—1) €[0,1].



Proof. Let z be such that |z| < min{1/2,¢/(qr +
¢),1/(w(G) + v(U))}. Since the first row of the
matrix WX (z) has all its entries equal to zero, we
have from (9), for every j € N,

(®c(2))o.; = n(2)¥o,;(2)

qzn(2)(1+ p — pgzn(z)) + #(uz()z)
le) (1 —qzn(2))(1 = pgzn(2)) Xo(2)
+chw@me»W@Ww

By definition of X (z), Y(z) and V, we can easily
verify that

Yo,i(2) = Xo,;(2) =

and _
(X(2)V)g,; = (pzn(z)) .

So, we obtain

(®c(2))oo =

n(z)
=g = pgen@)d —zuzy Y
and for j > 1

Pt (z)

(@c(2))o,; = (1 = qzn(2))(1 = pgzn(z))(1 — zu(z))
c P T (2)u(z)
+ (r — c) (1 —qzn(2))(1 — zu(z)) 12

Before inverting the expressions (11) and (12), it
must be remembered that for |z| <1 and n € N

(1 _ l‘)—n—l — Z (n;l)'xl

=0

For |z| < 1/2, we have |u(z)| < 1 and |gzn(z)| < 1
and therefore, using the Cauchy product of two
series, we obtain

B n(z) 3
(@600 = TN @ = paentz g
T 1—qa(z) qzn T;) yan(2)" (L = pazn(2)) "
o0 n+1)!
- 12 qzn nzl::() yzn(z I (pgzn(2))!

! |

= nz) > (yan(2)" Y %(pqzn@))h

n,l=0 h=0

x (qzn(z

oo
— Z Zn—H n+l+1

n,l=0

)l h

nlz n+h h

From Lemma 10, we have

n+i+1 (Z) — C«n+l+1 (

" pqz?)

o0
= s(n+1+1,k)prgh2k
k=0
which leads, by changing the order of summations,
to

(®a()oo = D 2"HEs(ni+1 k)"t
n,l,k=0

n=0 m=0 k
n—m—2k
n—m—=k (m+h) h
xq > Rl
h=0

Then, we have for every n € N,

n (=]

=2
k=0
n—m—2k

R m+ h)!
B A SIS
h=0 ’

(n — 2k + 1,k)p*

Similary, for j > 1, we obtain

n me

(@G( _72332 Z,y Zpknmk

n=0 m=0
n—m—2k
h)!
X sn—2k+j+1Lk) Y (m%)ph

h=0

L=

+Zjlp0— Z Z,ymzpknmk

n—m—2k '
X s(n—2k+j,k) Z wph.
h=0 ’

Therefore, Gy ; =0ifn <j , and forn > j

= (5

m=0

nz pknmk

n—j—m—2k
h)!
x s(n—2k+1,k) %ph
h=0 ’
bo—Dp (P 1TE knmk
b RIR () S z Vi
q q 0
n—j—m—2%k
h)!
x  s(n—2k, k) Z %ph. (14)

h=0



Putting Relations (13) and (14) in (2), we obtain
the result by summing over j and changing the
order of summations.

4 THE FLUID CONTENT

OF THE (i+1)TH BUFFER
We suppose that the stability condition of the tan-
dem fluid queues is satisfied, that is, pp; < 1. For

1 <i< M —1, we derive the distribution of the
stationary level Q;4+1 of the (i + 1)th buffer.

Theorem 12 For everyx >0 and1 <i< M -1

s — 0.z 911‘ "
Pr{Qur <} = (1-p) Y e tor )
n=0 :
Az S pi)j
X 1+ —
< (n+ 1)eo(1 — Ci+1/0i)> ; <Qz‘
n—j [n_é_mJ
X it s(n — 2k 4 1, k)pFqr—m=k
m=0 k=0
n—j—m—2k
(m + h)' ’h
X Z B! i
h=0
where
>\i = >\(N - Ci/CO) y M = lu’c’i/co )
pi = N/ Ni+tp), @ = 1—pi,
O = (Ni+wpi)/(ci —ciy1),
pi = cihi/(citipu)
vi = (ci/co)(ci/civr — DN/ (Ni + i) -

Proof. We saw that the stationary level of the
(¢ 4+ 1)th buffer is equivalent to the stationary lev-
el of an infinite buffer with service rate ¢;41 and fed
by an MM1(NA,\;,u;,¢;). We then apply Theorem
11 to this fluid model and set 8 = NX, a = \;,
b=, r=c; and ¢ = cj41.
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