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Abstract: We consider a fluid system composed of multiple buffers in series. The first buffer receives fluid
from a finite superposition of independent identical on-off sources. The active and silent periods of sources
are exponentially distributed. The ith buffer releases fluid in the (i + 1)th buffer. Assuming that the input
rate of one source is greater than the service rate of the first buffer, the output process of each buffer can
be modeled by an on-off source with the active period distributed as the busy period of an M/M/1 queue.
For i ≥ 2, the stationary content distribution of the ith buffer is obtained by the use of generating functions
which are explicitly inverted.
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1 INTRODUCTION

We consider tandem fluid queues fed by a finite
number of identical on-off sources. It is assumed
that silent and active periods of the sources are
independent and exponentially distributed. Tan-
dem fluid queues are composed of consecutive in-
finite capacity buffers. The stationary behavior
of the first buffer is explicitly derived in [Anick
et al., 1982], using spectral decomposition argu-
ments. As far as the other buffers are concerned,
the output processes need to be characterized. In
[Aalto, 1998] and [Boxma and Dumas, 1998], the
authors consider a fluid queue driven by a su-
perposition of on-off sources, with exponentially
distributed silent periods and generally distribut-
ed active periods. Assuming that the input rate
of one source is greater than the constant service
rate of the buffer, they prove that the output pro-
cess behaves as an on-off source with exponentially
distributed silent periods and active periods dis-
tributed like the busy periods of a M/G/1 queue.
In this paper, we consider the stationary behav-
ior of each buffer level in the tandem fluid queues,
apart from the first one. Using results of [Aalto,
1998] and [Boxma and Dumas, 1998], the output
processes look like on-off sources with active pe-
riods distributed as busy periods of an M/M/1

queue. This tandem of fluid queues has been s-
tudied in [Aalto, 1998], where the output processes
have been considered as alternating renewal pro-
cesses. The authors obtained the stationary flu-
id level distribution of each buffer in terms of a
Bessel function integral. Here, we derive a new
analytic expression of these distributions. By us-
ing the method developped in [Leguesdron et al,
1991] and [Barbot and Sericola, 2002], we write
the solutions in terms of a matrix exponential and
then via generating functions that are explicitly
inverted. Nevertheless, as shown in the next sec-
tion, we deal here with a more general setting than
the one of [Barbot and Sericola, 2002].

2 MODEL FORMULATION

We consider M infinite capacity fluid queues in se-
ries. The first one is fed by the superposition of N
independent identical on-off sources with exponen-
tially distributed on-off periods with parameters µ
and λ respectively. During the on period, a source
emits fluid at a constant rate c0. The first buffer
empties in the second one at the rate c1. For i ≥ 2,
the input of the ith buffer is the output from the
buffer i−1 and its service rate is denoted by ci. It
is assumed that Nc0 > c1 > . . . > cM > 0 in order
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to avoid the trivial case where one or more buffers
remain empty. Moreover, we make the restrictive
assumption c0 ≥ c1 which permits the output pro-
cess of the first buffer to be simply derived.

Definition 1 An on-off source is called an
MM1(β,a,b,r) source if the off periods are expo-
nentially distributed with rate β and the on periods
are distributed as the busy periods of an M/M/1
queue with arrival rate a and service rate b. Dur-
ing the on periods, the source emits fluid at rate r.

The infinitesimal generator associated with such a
source is denoted by A. Its non-zero entries are

A0,0 = −β, A0,1 = β, Aj,j−1 = b,

Aj,j = −(a + b) and Aj,j+1 = a for j ≥ 1. (1)

Note that in [Barbot and Sericola, 2002], we con-
sidered a single fluid queue fed by a classical
M/M/1 queue, which is, our definition, a fluid
queue fed by an MM1(a,a,b,r) source. Here we
have to deal with MM1(β,a,b,r) sources, where
β �= a, which generalizes the results of [Barbot
and Sericola, 2002].
The following lemmas are proved in [Aalto, 1998]
and [Boxma and Dumas, 1998].

Lemma 2 In the stationary regime, the output
process of the first buffer is equivalent to an
MM1(Nλ,λ1,µ1,c1) source where λ1 = λ(N −
c1/c0) and µ1 = µc1/c0.

Lemma 3 In the stationary regime, the output
process of a buffer with service rate c and fed
by an MM1(β,a,b,r) source is equivalent to an
MM1(β,a′,b′,c) source where a′ = ac/r+β(1−c/r)
and b′ = bc/r.

Using Lemmas 2 and 3, the output process of the
ith buffer, for 1 ≤ i ≤ M , is equivalent to an
MM1(Nλ,λi,µi,ci) source where λi = λ(N −ci/c0)
and µi = µci/c0. Therefore, the traffic intensity in
the ith buffer is given by ρi = c0Nλ/(ci(λ+µ)) and
the stability condition of the tandem fluid queues
is ρM < 1.

3 A BUFFER FED BY AN
MM1(β,a,b,r) SOURCE

We consider a single fluid buffer fed by an
MM1(β,a,b,r) source. The service rate of the
buffer is denoted by c, c < r. We derive an expres-
sion of the stationary buffer content distribution
in terms of a series whose coefficients correspond
to the successive powers of a key matrix G. The

generating function of G is expressed as a function
of the known generating function of a key matrix
T and is explicitly inverted.
The continuous time birth and death process as-
sociated with the MM1(β,a,b,r) source is denoted
by {Xt, t ≥ 0} and its infinitesimal generator A is
described by (1). We assume that a ≤ β.
The drifts of that fluid queue represent the differ-
ence between the input and the service rates. Let
dj be the drift when Xt is in the state j. We thus
have d0 = −c and dj = r− c, for every j ≥ 1. The
diagonal matrix containing these drifts is denoted
by D. Since we are concerned by the stationary be-
havior of that fluid queue, we suppose that a < b
and that the stability condition is satisfied. Since
the mean duration of on periods is 1/(b − a), we
have

ρ0 =
rβ

c(b − a + β)
< 1.

The stationary state of the Markov chain {Xt, t ≥
0} and the stationary amount of fluid in the buffer
are denoted X and Q respectively.
Let Fj(x) = Pr{X = j, Q ≤ x}. It is easy
to see that for j ≥ 1, we have Fj(0) = 0 and
it has been shown in [Sericola and Tuffin, 1999]
that F0(0) = 1 − ρ0. It is well-known, see e.g.
[Mitra, 1988], that the functions Fj satisfy, for
x > 0, the following system of differential equa-
tions F ′(x) = F (x)AD−1 where F (x) denotes
the infinite row vector containing the Fj(x) and
F ′(x) the derivative of F (x) with respect to x. It-
s solution is given by F (x) = F (0)eAD−1x. Us-
ing a method similar to the uniformization tech-
nique, we introduce the key matrix G defined by
G = I + AD−1/θ, where θ = (a + b)/(r − c) and
I is the identity matrix. We then have, for every
j ≥ 0,

Fj(x) = (1 − ρ0)
∞∑

n=0

e−θx (θx)
n!

n

Gn
0,j , (2)

where Gn
0,j denotes the (0, j) entry of matrix Gn.

In what follows, we focus on the calculation of Gn
0,j

using generating functions.

3.1 Generating Functions

Let us consider the complex matrices M indexed
on N×N. We define

ν(M) = sup
i∈N

∞∑
j=0

|Mij |

and denote by M the set of infinite complex ma-
trices M such that ν(M) is finite. ν is a norm on



M and (M, ν) is a Banach algebra. With each
M ∈ M, we associate the complex function ΦM ,
called potential kernel of M or generating func-
tion, defined by

ΦM (z) =
∞∑

k=0

Mkzk

for every z such that |z| < 1/ν(M). Note that for
M ∈ M and z such that |z| < 1/ν(M), we have
ΦM (z) ∈ M since ν (ΦM (z)) ≤ 1/(1− |z|ν(M)) <
+∞.
The following lemma is a classical straightforward
result, so we give it without proof.

Lemma 4 For every matrix H, HΦM is the only
solution to the matrix equation

X(z) = H + zX(z)M

for every z such that |z| < 1/ν(M).

We shall also need the following result, due to
[Leguesdron et al., 1991], which will be used along
with Lemma 4.

Lemma 5 For every M and N in M, we have
ΦM+N (z) = ΦM (z) + zΦM+N (z)NΦM (z)
for every z such that |z| < min{1/ν(M), 1/ν(M +
N)}.
Let us now introduce some notations. We define
the infinite matrices V , W , R and S as

Vi,j = Ii+1,j , Wi,j = Ii,j+1 , Ri,j = Ii,0I0,j

and Si,j = Ii,0I1,j for i and j ∈ N. We studied in
[Barbot and Sericola, 2002] the key matrix T as-
sociated to a fluid buffer fed by an M/M/1 queue
with arrival rate a and service rate b. The input
and service rates of the buffer are respectively r
and c. Therefore, the non-zero entries of T are
given by

T0,0 = q + pr/c , T0,1 = p , T1,0 = q − qr/c

T1,2 = p and for i ≥ 2, Ti,i−1 = q , Ti,i+1 = p

where p and q are defined by

p = a/(a + b) and q = b/(a + b) .

Notice that the stability condition of the flu-
id model associated with T is satisfied, that is
ρ = ra/cb < 1.
After some algebra, we easily obtain the following
relation between matrices G and T .

Lemma 6 We have G = T + U where U =
(p0 − p)((r/c − 1)R + S) and p0 = β/(a + b).

Since β ≥ a, we have p0 ≥ p and so ν(G) ≥ ν(T ).
Using Lemma 5, we obtain

ΦG(z) = ΦT (z) + zΦG(z)UΦT (z) (3)

for every z such that |z| < 1/ν(G). We define the
matrix L(z) as

L(z) = UΦT (z) .

For |z| < 1/ν(T ), we have ν(L(z)) = ν(UΦT (z)) ≤
ν(U)/(1 − |z|ν(T )), and so for every z such as
|z| < 1/(ν(T ) + ν(U)), we have |z| < 1/ν(L(z))
which proves that L(z) ∈ M. Lemma 4 applied to
Relation (3) with X(z) = ΦG(z), H = ΦT (z) and
M = L(z) leads to

ΦG(z) = ΦT (z)ΦL(z)(z) (4)

for |z| < min{1/ν(G), 1/(ν(T ) + ν(U))} where
ν(U) = (p0 − p)r/c.
In order to derive an expression of the potential
kernel ΦG given in (4), we first recall in the nex-
t lemma the expression of ΦT obtained in [Bar-
bot and Sericola, 2002]. For that, we introduce,
for z such that |z| ≤ 1/4, the function C(z) =
(1 −√

1 − 4z)/2z.

Lemma 7 Let |z| < 1 and η(z) = C(pqz2). Let
X(z) and Y (z) be the matrices defined by

Xi,j(z) = (qzη(z))i(pzη(z))j

Y (z) =
∞∑

k=0

W kX(z)V k .

For every z such that |z| < min{1/2, c/(qr + c)},
we have

ΦT (z) = η(z)Y (z)+

qzη2(z)
(1 + ρ − ρqzη(z))X(z)− r

c
WX(z)

(1 − qzη(z))(1 − ρqzη(z))
. (5)

Theorem 8 For every z such that |z| < 1/2, we
have

L(z) = u(z)RX(z) + η(z)(p0 − p)RX(z)V , (6)

ΦL(z)(z) = I +
z

1 − zu(z)
L(z) , (7)

where u(z) = (p0 − p)(r/c − 1)
η(z)

1 − ρqzη(z)
.



Proof. Let z be such that |z| < 1/2. Since RW = 0
and SW = R, we have by definition of X(z) and
Y (z)

RY (z) = RX(z) , SX(z) = qzη(z)RX(z)

and

SY (z) = qzη(z)RX(z) + RX(z)V .

Lemma 7 leads to

L(z) = η(z)(p0 − p)
(
(r/c − 1)R + S

)(
Y (z)+

qzη(z)
(1 + ρ − ρqzη(z))X(z)− r

c
WX(z)

(1 − qzη(z))(1 − ρqzη(z))

)

and using the relations above, we obtain (6). Con-
sider now the successive powers Lk(z) of matrix
L(z). Observing that V R = 0 and

X(z)RX(z) = X(z) , (8)

we easily get from (6) that L2(z) = u(z)L(z). It
follows by induction that for every k ≥ 0,

Lk+1(z) = uk(z)L(z) .

Since |z| < 1/2, it is easy to check, from the defi-
nition of the function C, that |η(z)| ≤ 2 and there-
fore |qzη(z)| < 1. Moreover, since ρ0 < 1, we have
(p0 − p)(r/c − 1) < q(1 − ρ) and so |u(z)| < 1.
Thus, we obtain

ΦL(z)(z) = I + z
∞∑

k=0

(zu(z))kL(z)

= I +
z

1 − zu(z)
L(z) .

Theorem 9 For |z| < min{1/2, c/(qr + c),
1/(ν(G) + ν(U))}, we have

ΦG(z) = η(z)Y (z)

+ η(z)
qzη(z)(1 + ρ − ρqzη(z)) +

zu(z)
1 − zu(z)

(1 − qzη(z))(1 − ρqzη(z))
X(z)

+
(

c

r − c

)
zu(z)

(1 − qzη(z))(1 − zu(z))
X(z)V

−
(r

c

) qzη2(z)
(1 − qzη(z))(1 − zu(z))

WX(z)

−
(

r

r − c

)
qz2η2(z)u(z)

(1 − qzη(z))(1 − zu(z))
WX(z)V (9)

Proof. Let z be such that |z| < min{1/2, c/(qr +
c), 1/(ν(G)+ ν(U))}. Replacing Relations (5) and
(7) in (4), we obtain

ΦG(z) = η(z)
(

I +
z

1 − zu(z)
L(z)

) (
Y (z)+

qzη(z)
(1 + ρ − ρqzη(z))X(z) − r

c
WX(z)

(1 − qzη(z))(1 − ρqzη(z))

)
. (10)

Now, since V R = 0, we obtain from (8) that
Y (z)RX(z) = X(z). We get from (6),

Y (z)L(z) = u(z)X(z) + η(z)(p0 − p)X(z)V

and using (8), X(z)L(z) = Y (z)L(z). Putting
these relations in (10), we obtain (9).

3.2 Explicit Solution For A Single
Buffer

We obtain in this section a closed-form expression

for Gn
0,j and so for Pr{Q ≤ x} =

∞∑
j=0

Fj(x). For

that purpose, we need the following well-known
lemma which gives an analytical expression of the
powers of η(z). For the proof, see e.g. [Riordan,
1968] page 154.

Lemma 10 For every k ≥ 1 and |z| ≤ 1/4, we

have Ck(z) =
∞∑

n=0

s(k, n)zn where s(k, n) are the

ballot defined by

s(k, n) = k
(2n + k − 1)!

n!(n + k)!
.

Theorem 11 For every x ≥ 0,

Pr{Q ≤ x} = (1 − ρ0)
∞∑

n=0

e−θx (θx)
n!

n

×
(

1 + (p0 − p)
θx

n + 1

) n∑
j=0

(
p

q

)j n−j∑
m=0

γm

×
�n−j−m

2 �∑
k=0

s(n − 2k + 1, k)pkqn−m−k

×
n−j−m−2k∑

h=0

(m + h)!
h!

ρh

where �u� denotes the largest integer less than or
equal to the real number u and

γ = (p0 − p)(r/c − 1) ∈ [0, 1] .



Proof. Let z be such that |z| < min{1/2, c/(qr +
c), 1/(ν(G) + ν(U))}. Since the first row of the
matrix WX(z) has all its entries equal to zero, we
have from (9), for every j ∈ N,

(ΦG(z))0,j = η(z)Y0,j(z)

+ η(z)
qzη(z)(1 + ρ − ρqzη(z)) +

zu(z)
1 − zu(z)

(1 − qzη(z))(1 − ρqzη(z))
X0,j(z)

+
(

c

r − c

)
zu(z)

(1 − zu(z))(1 − qzη(z))
(X(z)V )0,j

By definition of X(z), Y (z) and V , we can easily
verify that

Y0,j(z) = X0,j(z) = (pzη(z))j , (X(z)V )0,0 = 0

and
(X(z)V )0,j = (pzη(z))j−1 .

So, we obtain

(ΦG(z))0,0 =

η(z)
(1 − qzη(z))(1 − ρqzη(z))(1 − zu(z))

(11)

and for j ≥ 1

(ΦG(z))0,j =
pjzjηj+1(z)

(1 − qzη(z))(1 − ρqzη(z))(1 − zu(z))

+
(

c

r − c

)
pj−1zjηj−1(z)u(z)

(1 − qzη(z))(1 − zu(z))
. (12)

Before inverting the expressions (11) and (12), it
must be remembered that for |x| < 1 and n ∈ N

(1 − x)−n−1 =
∞∑

l=0

(n + l)!
l!

xl .

For |z| < 1/2, we have |u(z)| < 1 and |qzη(z)| < 1
and therefore, using the Cauchy product of two
series, we obtain

(ΦG(z))0,0 =
η(z)

(1 − qzη(z))(1 − ρqzη(z))

∞∑
n=0

(zu(z))n

=
η(z)

1 − qzη(z)

∞∑
n=0

(γzη(z))n(1 − ρqzη(z))−n−1

=
η(z)

1 − qzη(z)

∞∑
n,l=0

(γzη(z))n (n + l)!
l!

(ρqzη(z))l

= η(z)
∞∑

n,l=0

(γzη(z))n
l∑

h=0

(n + h)!
h!

(ρqzη(z))h

× (qzη(z))l−h

=
∞∑

n,l=0

zn+lηn+l+1(z)γnql
l∑

h=0

(n + h)!
h!

ρh .

From Lemma 10, we have

ηn+l+1(z) = Cn+l+1(pqz2)

=
∞∑

k=0

s(n + l + 1, k)pkqkz2k

which leads, by changing the order of summations,
to

(ΦG(z))0,0 =
∞∑

n,l,k=0

zn+l+2ks(n+l+1, k)γnpkql+k

×
l∑

h=0

(n + h)!
h!

ρh

=
∞∑

n=0

zn
n∑

m=0

γm

�n−m
2 �∑

k=0

s(n − 2k + 1, k)pk

× qn−m−k
n−m−2k∑

h=0

(m + h)!
h!

ρh .

Then, we have for every n ∈ N,

Gn
0,0 =

n∑
m=0

γm

�n−m
2 �∑

k=0

s(n − 2k + 1, k)pk

× qn−m−k
n−m−2k∑

h=0

(m + h)!
h!

ρh . (13)

Similary, for j ≥ 1, we obtain

(ΦG(z))0,j = zjpj
∞∑

n=0

zn
n∑

m=0

γm

�n−m
2 �∑

k=0

pkqn−m−k

× s(n − 2k + j + 1, k)
n−m−2k∑

h=0

(m + h)!
h!

ρh

+ zjpj−1(p0 − p)
∞∑

n=0

zn
n∑

m=0

γm

�n−m
2 �∑

k=0

pkqn−m−k

× s(n − 2k + j, k)
n−m−2k∑

h=0

(m + h)!
h!

ρh .

Therefore, Gn
0,j = 0 if n < j , and for n ≥ j

Gn
0,j =

(
p

q

)j n−j∑
m=0

γm

�n−j−m
2 �∑

k=0

pkqn−m−k

× s(n − 2k + 1, k)
n−j−m−2k∑

h=0

(m + h)!
h!

ρh

+
p0 − p

q

(
p

q

)j−1 n−j∑
m=0

γm

�n−j−m
2 �∑

k=0

pkqn−m−k

× s(n − 2k, k)
n−j−m−2k∑

h=0

(m + h)!
h!

ρh . (14)



Putting Relations (13) and (14) in (2), we obtain
the result by summing over j and changing the
order of summations.

4 THE FLUID CONTENT
OF THE (i+1)TH BUFFER

We suppose that the stability condition of the tan-
dem fluid queues is satisfied, that is, ρM < 1. For
1 ≤ i ≤ M − 1, we derive the distribution of the
stationary level Qi+1 of the (i + 1)th buffer.

Theorem 12 For every x ≥ 0 and 1 ≤ i ≤ M −1

Pr{Qi+1 ≤ x} = (1 − ρi)
∞∑

n=0

e−θix
(θix)
n!

n

×
(

1 +
λx

(n + 1)c0(1 − ci+1/ci)

) n∑
j=0

(
pi

qi

)j

×
n−j∑
m=0

γm
i

�n−j−m
2 �∑

k=0

s(n − 2k + 1, k)pk
i qn−m−k

i

×
n−j−m−2k∑

h=0

(m + h)!
h!

ρ′hi

where

λi = λ(N − ci/c0) , µi = µci/c0 ,

pi = λi/(λi + µi) , qi = 1 − pi ,

θi = (λi + µi)/(ci − ci+1) ,

ρ′i = ciλi/(ci+1µi) ,

γi = (ci/c0)(ci/ci+1 − 1)λ/(λi + µi) .

Proof. We saw that the stationary level of the
(i + 1)th buffer is equivalent to the stationary lev-
el of an infinite buffer with service rate ci+1 and fed
by an MM1(Nλ,λi,µi,ci). We then apply Theorem
11 to this fluid model and set β = Nλ, a = λi,
b = µi, r = ci and c = ci+1.
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