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Abstract:

In the study of stochastic process algebra it is necessary to consider not only how systems are to be

specified, but also how complex systems can be simplified and solved efficiently. In this paper a relationship between
the behaviour of stochastic systems and a product form solution over components is explored. A number of char-
acterisations of increasing complexity are derived which extend the class of model subject to product form solution

that have been defined for Markovian process algebra.
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1. INTRODUCTION

In recent years some effort has been made to identify
efficient methods for analysing and solving stochastic
process algebra models by decomposition (see [Hill-
ston, 2001]). Such solutions are derived on the basis
that the components in the model are statistically inde-
pendent in their steady state behaviour and so the steady
state solutions for components may be found in isola-
tion without the need to generate the entire state space
of the model. Clearly product form solutions are an ex-
tremely efficient mechanism in deriving important nu-
merical solutions.

The aim of this paper is to address the issue of how
the behaviour of the model may be used to directly
show product form results in general models without
relying on additional insight from the modeller. The
product form solutions that are derived here are related
to the class of model previously defined by Boucherie
[Boucherie, 1994]. This class of model gives a prod-
uct form over components interacting only through a
resource, to which exclusive access is granted to one
component at a time. No other interaction is possible
between components and without the resource a com-
ponent may only carry out internal actions.

The paper begins by re-introducing Hillston’s
Markovian process algebra, PEPA [Hillston, 1996], to-
gether with the set of concepts required to describe fea-
tures of a model and then briefly discusses the notion
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of behavioural independence and control. In Section 3
the exploitation of behavioural independence is made
in relation to simple product form decomposition. In
Section 4 this is developed to consider more complex
classes of model. Finally some conclusions and future
work directions are presented.

2. PEPA

A formal presentation of PEPA is given in [Hill-
ston, 1996], in this section a brief informal summary
is presented. PEPA, being a Markovian Process Alge-
bra, only supports actions that are negative exponen-
tially distributed at given rates. Specifications written in
PEPA represent Markov processes and can be mapped
to a continuous time Markov chain (CTMC). Systems
are specified in PEPA in terms of activities and compo-
nents. An activity (a,r) is described by the type of the
activity, a, and the rate of the associated negative ex-
ponential distribution, ». This rate may be any positive
real number, or given as unspecified using the symbol
T. The syntax for describing components is given as:

P:u=(a,r).P|P+Q|P/LIPBIQ|A

The component (a,r).P performs the activity of
type « at rate r and then behaves like P. The compo-
nent P+ () behaves either like P or like @, the resultant
behaviour being given by the first activity to complete.
The component P/ L behaves exactly like P except that



the activities in the set I are concealed, their type is
not visible and instead appears as the unknown type .
Concurrent components can be synchronised, P >1@Q,
such that activities in the cooperation set L involve the
participation of both components. In PEPA the shared
activity occurs at the slowest of the rates of the partic-
ipants and if a rate is unspecified in a component, the
component is passive with respect to the activities of
that type. The parallel combinator || is used as short-
hand to denote synchronisation with no shared activi-
ties, i.e. P||Q = P Rﬁ Q. A = P gives the constant A
the behaviour of the component P. A small number of
addition definitions are required.

DEFINITION 1: Fertileaction. An action + is said to
be fertile in derivative P; if P; —» P; and i # j.

DEFINITION 2: Current fertileaction type set. The
current fertile action type set of P, denoted Af(P), is
the set of all action types of actions that are fertile in the
current derivative of P.

DEFINITION 3: Complete fertile action type set.
The complete fertile action type set of P, denoted
/ff (P), is the set of all action types of actions that are
fertile in at least one derivative of P.

3. BEHAVIOURAL INDEPENDENCE

Put simply the notion of behavioural independence
is simply that a component in a model behaves iden-
tically regardless of the current behaviour of the other
components in the model.

DEFINITION 4: Behavioural Independence. The
component P is said to be behaviourally independent
in the model P X @ if for every P; € ds(P)

V Q;,Qr € ds(Q) st. (P PNQ;), (P BQk) €
ds(P B Q)

Act (P D1Q;)/{A(P: D1 Q;)[{As(P) N L}})

Act (P DIQu)/AAP, DA Qu) {Af(P) N L}})

Obviously the trivial case for behavioural indepen-
dence is where there are no shared actions, i.e. P||Q,
however this is not the only case where components
may be considered to be behaviourally independent.
Furthermore, the fact that no actions are shared be-
tween two components does not mean they will always

be behaviourally independent in the presence of other
components. For example, in (P||Q) B R the inter-
action between P and R may influence the interaction
between ) and R, causing P and @ to be behaviourally
dependent. If a component is not behaviourally inde-
pendent then it must be dependent on some other com-
ponent to perform one of more actions during its evolu-
tion. This dependence is referred to by saying that com-
ponent P controls component () over actions K C L in
P I>§ @ if the rate at which an action of type £ € K can
happen in @; € ds@ depends on the current derivative
of P. Clearly, if P controls @) over K then @) cannot
be behaviourally independent, but the independence, or
otherwise, of P is not known by this statement.

3.1 Exploiting behavioural independence

It is clear that if a component is behaviourally in-
dependent (even it is also controlling) then it may be
studied in isolation without affecting its behaviour, sub-
ject to the rates of shared actions being set. If a shared
action is not enabled by the partner in the cooperation
then the rate of that action will be zero when that com-
ponent is considered in isolation, otherwise the rate of
the shared action will be determined by the rates speci-
fied in each participating component. To illustrate such
a situation, consider a number of queues in sequence.
If all the queues are basic M /M /1 /oo then the system
is clearly a simple Jackson network and has a product
form solution. However, even if this is not the case then
the first queue will still be behaviourally independent
(unless there is blocking at the server) and so may be
studied in isolation.

As well as being used to identify independent be-
haviour leading to decomposition, behavioural indepen-
dence and control can also be used to identify cases
where product form solutions exist. Such a case is the
queueing model with breakdowns illustrated below.

Queuey = (arrival, T).Queue;
Queue; = (arrival, T).Queue;q
+(service, T).Queue;—1
, 1<j<N-1
Queuey = (service, T).Queuen_1
Servero, = (fail, &).Server,ys

+(arrival, \).Server,,

+(service, p).Server,y,



Serveryfy £ (repair,n).Servery,

Server,,

{service,arrival}

Queueg

It is clear that the Server component is behaviourally
independent in this model as neither of the shared ac-
tions affects its evolution. Similarly it is clear that the
Server component controls the Queue component over
the actions service and arrival. A number of other
important factors are also apparent: all the actions of
Queue are shared actions, all shared actions are en-
abled in Server,,, no shared actions are enabled in
Server,sy, the action fail does not alter the deriva-
tive of Queue. These six factors mean that a product
form solution exists over the Server and Queue com-
ponents such that the joint steady state probabilities are

given as T(Server; ,Queue;) — TServer; -TQueue; where
je{on,of ftand0 <i < N.

The model illustrated in here is reversible and it
is possible to derive a product form solution using
the characterisation derived in [Hillston and Thomas,
1998]. In fact an example with the same structure, re-
ferred to as the drinking gambler appeared in [Hillston
and Thomas, 1998]. That approach required the iden-
tification of reversible components and the application
of restrictions on the cooperation between them. This
requires a detailed study of both the components and
the interface, whereas the approach described here only
requires a simple inspection of the components, only
adherence to the five criteria.

1. Component, A, of a pair A l>§ B is behaviourally
independent.

2. Component, B, is controlled by A over all the ac-
tions in the cooperation set, K(B) = L.

3. The complete action type set of 4, A(B) is con-
tained within its interface, A(B) = L.

4. All actions in the cooperation set, L, are enabled
in exactly one derivative of A, A;.

5. No actions in the cooperation set, L, are enabled
in any other derivative of A.

6. Any action « such that A; = A;, A; # A; is
not fertile in B.

This product form solution relies on the fact that com-
ponent A turns the interaction in the model off and on;
and when it turns back on the system returns to ex-
actly the same global state as it was before it turned

off. Hence, as long as these 5 stated conditions are not
broken then the model illustrated above can be easily
adapted to incorporate additional (non-reversible) fea-
tures, such as batch service, without compromising the
product form solution.

Queuey = (arrival, T).Queue;

Queue; = (arrival, T).Queue;t1
+(service, T).Queuegy
, 1<j<N-1
Queuey = (service, T).Queueg
Servery, = (fail,§).Serverys¢
+(arrival, \).Server,y,
+(service, p).Server,,
Serverysy = (repairl,n).Serveriandsy
Serversiandsy e (repair2,nq).Server,,
Queueq B>] Server,,

{service,arrival}

4. PARTIAL BEHAVIOURAL INDEPENDENCE

The simple product form developed in Section 3 can
be extended by considering parts of components as be-
haviourally independent and parts which exert control.
This may be achieved by observing that component P
controls Q over the set of actions K, but that the actions
in K are not affected by changes in derivative within a
subset of P.

DEFINITION 5: Partial Behavioural Independence
The component P is said to have partial behavioural in-
dependence in the model P l>§ @ with respect to the
subset D(Q) C ds(Q), if for every P; € ds(P)

V Q;,Qr € D) st. (PDNQ;),(FBQk) €
ds(P B4 Q)

Act ((P: Q) /{A(P: D1 Q))/{Af(P) N L}})

Act (P D1 Qu) HA(P: PAQu) /1A (P) N L}})

This definition states that the P will behave identi-
cally as long as ) behaves as some derivative Q); €
D(Q). Clearly there may be many such subsets for any
given component. In product form solution introduced
in Section 3.1, the component A has two subsets; one
subset consists of the single derivative where all actions



in the cooperation set, L, are enabled, and the other sub-
set consists off all the other derivatives where no actions
in the cooperation set are enabled. The single “on” be-
haviour restriction from A can be relaxed as long as
the result of returning to “on” always returns to exactly
the same derivative of A as immediately before turning
"off”.

1. Component, A, of a pair A l>§ B is behaviourally
independent.

2. Component, B, is controlled by A over all the ac-
tions in the cooperation set, X(B) = L.

3. The complete action type set of B, /l'(B) is con-
tained within its interface, A(B) = L.

4. 1t is possible to divide the derivatives of A into
N subsets Dy (A),...,Dn(A), N > 2, such that
UL, Di(4) = ds(A), Di(A) N'D;(4) = 0,4 #
4, and B has partial behavioural independence in
A B B with respectto D;(A),i =1,..., N.

5. All actions in the cooperation set, L, are enabled
in all derivatives in D1 (A).

6. No actions in the cooperation set, L, are enabled
in any derivative in D;(A), i > 2.

7. Forany [ > 2, there exists at most one derivative,
Az' € D, (A) such that Az — Aj and Ak — Az
where A;, Ay € Di(A).

8. Forany ¢ # j, > 2 there are no derivatives A, €
D;(A) and A; € D;(A) suchthat A, — A;.

9. Any action « such that 4; — A;, A; € D;(A),
A; ¢ Di(A), ais not fertile in B.

This set of rules allows for multiple “on” behaviours
and multiple "off” behaviours, by partitioning the "off”
behaviours into distinct subsets that do not have any sin-
gle actions linking them. However, this definition still
imposes the restriction the ”on” and “off” behaviours
are controlled by a single behaviourally independent
component. It is possible to relax even this restriction,
however, this can be done only if the actions in the "on”
subset, D; (A) are restricted to the actions in the coop-
eration set. This further restriction would mean that two
components A and C, could both control B over L, and
also that A controls C' over L and C controls A over
L. In fact it it not necessary for the component B to
be constrained by its interface, and it can in fact be an
on-off component in the same way as A.

DEFINITION 6: Restricted Partial Behavioural In-
dependence The component P is said to have restricted
partial behavioural independence in the model P B Q
with respect to the subsets D(Q) C ds(Q) and D(P) C
ds(P), if for every P; € D(P)

V Q;;Qr € D@Q) st (PBQ;), (P BIQg) €
ds(P B1Q)

Act (P Q) AP DA1Q))/{Af(P) N L}})

Act (P DX Qu)/{A(P: DI Qu)/{As(P) N L))

Thus it is possible to derive a product form solution
in a model without a resource component subject to the
following conditions.

1. Two components, A and B in A D§ B are con-
trolled and controlling over all the actions in the
cooperation set, K(B) = K(A) = L.

2. It is possible to divide the derivatives of A into
N distinct subsets Dy(A),...,Dn(4), N >
2, and the derivatives of B into M subsets
Dy(B),...,Dy(B), M > 2 such that B
has restricted partial behavioural independence in
A B B with respect to D;(A4) and Dy(B), i =
1,..., N and A has restricted partial behavioural
independence in A B B with respect to D;(B)
andD,(A4),j=1,...,M.

3. All actions in the cooperation set, L, are enabled
in all derivatives in D; (A) and all derivatives in
D1(B).

4. No actions in the cooperation set, L, are enabled in
any derivative in D;(A), ¢ > 2, or any derivative

5. The current action type set of all A; € D;(A4),
A(4;), is contained within its interface; A(4;) C
L,VA; € Di(A).

6. The current action type set of all B; € D;(B),
A(B;j), is contained within its interface; A(B;) C
L, VB]' S Dl(B)

7. Forany !l > 2, there exists at most one derivative,
A; € Di(A) suchthat A; — Aj and 4 — A;
where A;, A, € Di(A).

8. Forany i # j, > 2 there are no derivatives 4, €
D;(A) and A; € D;(A) such that A, — A;.



9. For any [ > 2, there exists at most one derivative,
B; € D;(B) suchthat B — B; and B, — B;
where Bj, By, € Dy(B).

10. For any ¢ # j, > 2 there are no derivatives By, €
D;(B) and B; € D;(B) such that B, — B;.

11. Any action « such that A; - A;, A; € D;1(A),
Aj ¢ D1(A) is not fertile in B.

12. Any action § such that B; — B;, B; € D1(B),
B; ¢ Dy(B) is not fertile in A.

These conditions follow as a simple consequence of
the earlier discussion. All interaction between A and
B is restricted to the subsets Dy (A) and Ds(B). If A
enters a behaviour outside D;(A), then all actions of
B will be blocked until A returns to D(A). Further-
more, if A was behavingas A; € D;(A) and the action
« occurred causing A to behave as A} ¢ D;(A) then
B will be blocked until A is once again behaving as
Aq. Likewise B will block the actions of A if its be-
haviour leaves the subset D, (B). Clearly therefore this
characterisation gives rise to a separable system, but
in general this does not mean a product form solution
will exist. This is only guaranteed if each of the activ-
ities in L are fertile in at most one component in every
derivative of A B B, A’ X1 B', such that A’ € D; (4)
and B’ € D;(B) (the same condition is present in the
Boucherie product form). This gives a product form so-
lution of the following structure.

1
T(A;,Br) = X TA;-T By

where 1/X is the normalising constant resulting from
the fact that not all combinations of derivatives of A and
B are reachable in A Dfl B.

4.1 Security guardsexample

In this simple example there are a pair of security
guards. The only stipulation is that at least one must
be awake and on duty at any time. Thus, any guard
may choose to go to sleep only if another of his col-
leagues is awake. The correctness is held by the fact
that in order to make the transition from G, Awake to
G, Asleep, each guard must have the (passive) cooper-
ation of his colleague. Once asleep however, the guards
are incapable of communicating, and so the guard who
is awake must remain so.

GaAwake = (afallAsleep,r2).G 4 Asleep +

(bfallAsleep, T).G aAwake
GaAsleep = (wakeup,rs).GaAwake
GpAwake = (bfallAsleep,rs).GpAsleep

+(afallAsleep, T).G pAwake

GpAsleep = (wakeup,rs).GpAwake

GrAwake GpAwake

{afallAsleep,bfallAsleep}
Thus the model has the excluded state of
G Asleep|GpAsleep, and a trivial product form
over the remaining states, given by,

T(GaY,GBZ) = %WGAY-WG’BZ
where Y,Z = {Awake, Asleep} and X =
TG 4 Awake-TG g Awake T+ TGy Awake-TTG g Asleep +
TG 4 Asleep-TGu Awake- 1€ model can be made slightly
more interesting if guards go out on patrol. There are a
number of possibilities in this regard.

e Both guards patrol together at all times.

GaAwake = (goOut,r7).GaPatrol
+(afall Asleep,r3).G 4 Asleep
+(bfall Asleep, T).G aAwake

G sPatrol £ (goBack,rs).G 4 Awake

GpAwake <= (goOut,r7).Gp Patrol
+(bfall Asleep,rs).GgAsleep
+(afall Asleep, T).G g Awake

GgPatrol = (goBack,rs).GgAwake

G pAwake {goOut,goBack, GpAwake

afallAsleep,bfall Asleep}

e One or both of the guards go out, the other must

be awake.

GaAwake = (goOut,r7).G 4 Patrol
+(goOut, T).G s Awake
+(afall Asleep, r2).G 4 Asleep
+(bfall Asleep, T).G aAwake

GaPatrol = (goBack,rs).GaAwake

GpAwake = (goOut,r9).Gp Patrol
+(goOut, T).GgAwake
+(bfall Asleep, r5).Gp Asleep
+(afall Asleep, T).G g Awake

GgPatrol = (goBack,rs).GgAwake



G aAwake

{afallAsleep,bfall Asleep,goOut}

GpAwake

Here both components might be simultaneously passive
on goOut, however this is not a fertile action in this
case. This case only has a product form if r; = rg.

e Either guard may go out at anytime regardless of
whether the other is awake or not.

GaAwake = (goOut,r7).G 4 Patrol
+(goOut, T).G 4 Awake
+(afall Asleep,rs).G 4 Asleep

+(bfallAsleep, T).G s Awake

G aPatrol = (goBack,rs).GaAwake
+(bfall Asleep, T).G s Awake
GpAwake = (goOut,ry).GpPatrol

+(goOut, T).GgAwake
+(bfall Asleep,r2).GgAsleep
+(afallAsleep, T).G pAwake
(goBack,rs).G g Awake
+(afall Asleep, T).G gAwake

GgPatrol =

G s Awake GpAwake

{afallAsleep,bfallAsleep}

This final model is not captured by the characteri-
sation presented here, but instead belongs to a further
class of model where independent actions are allowed
to continue. Capturing this class of model remains on-
going work.

5. CONCLUSIONS

In this paper a discussion of the notions of be-
havioural independence and control has been presented
in relation to product form solution. It is probable that
many additional classes of product form solution will
have subclasses that can be defined using behavioural
independence and control, although this remains to be
proved. By exploring these subclasses of solutions it
will be possible to gain greater understanding of the
links between different product form solutions and near
and non-product form solutions and where they may
overlap. The class of product form here is related to
the class defined by Boucherie [Boucherie, 1994] and
is thus related to an earlier characterisation in PEPA
[Hillston and Thomas, 1999], although it is conceptu-
ally somewhat simpler than either of these cases. These

earlier characterisations have some advantages over that
presented here, however the class defined here differs
from those earlier characterisations in three important
ways. The equivalent of the resource component used
here is not redundant. This means that queues (and
other state dependent structures) can be used under a
Boucherie-like framework. Furthermore, by develop-
ing the notion of restricted partial behavioural inde-
pendence it has been possible to achieve a characterisa-
tion without an explicit resource. Given the Boucherie
result it should be possible to relax the on-off behaviour
such that component B in A D§ B will still be able to
perform internal actions even if A is in some derivative
A" ¢ Dy (A). This remains as future work.
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