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Abstract: In this paper we study a class of open queueing network where servers suffer breakdowns and are
subsequently repaired. The network topology is a pipeline with feedback from the final node to the first. Each node
consists of a number of queues each with an unreliable server. There are no losses from the queues in this system,
however jobs are routed according to the distribution of operational servers at each node in the pipeline. This model
is in general intractable, however an iterative technique is presented which combines a number of earlier results to
generate an approximation to steady state measures found by simulation.
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1. INTRODUCTION

Queueing networks with breakdowns are a class of
problem that are of obvious practical interest and have
consequently been considered for many years. How-
ever, the vast majority of studies that have been made
concern only single queue models or solve more gen-
eral topologies using simulation. A number of papers
have addressed the problem of queues in parallel, most
notably Mitrani and Wright [Mitrani and Wright, 1994]
who analysed a system of nodes in parallel which suf-
fered failures that caused all jobs to be lost, incom-
ing jobs were then routed away from failed nodes,
this resulted in an interesting trade off in performance
between response time and job loss. Models with-
out loss on failure are not without practical applica-
tion, particularly in transaction processing and manu-
facturing. Thomas and Mitrani [Thomas and Mitrani,
1995] started with the same basic model as [Mitrani
and Wright, 1994], but changed the nature of the fail-
ure so that queues were preserved during repair peri-
ods. The same authors also considered an extension
to their model [Thomas and Mitrani, 1998] where a
pipeline was constructed where each node was a sys-
tem of parallel queues. It was not possible to solve this
model exactly, instead they considered each node in se-
ries and compared a simple Poisson approximation with
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a Markov-modulated arrival process based on the con-
figuration of operational servers at the previous node in
the pipeline.

In this paper we present an extension to the model pre-
sented in [Thomas and Mitrani, 1998] to consider the
existence of a feedback loop which returns jobs to the
start of the pipeline with a given probability. The ex-
istence of such a loop means that the approach used
previously will no longer be applicable because all the
nodes are now dependent of their predecessor, whereas
in [Thomas and Mitrani, 1998] the first node had only
external arrivals. We employ an iterative approach re-
cently applied to Markovian process algebra [Thomas
et al, 2003]. In the context of the queueing systems de-
scribed here this iterative method is extremely close to
that applied recently in [Harrison et al, 2002]. The ap-
proach described in [Thomas et al, 2003] requires that
all shared actions (in queueing terms this refers to de-
partures from one node which become arrivals at an-
other) are represented in a reduced model to estimate
the marginal distribution for each component (node) in
turn. The method is repeated until convergence over a
particular measure is reached and hence all the marginal
distributions are found. In this paper the reduced model
is a single queue with Markov-modulated arrivals and
convergence is required of the parameters of the ar-
rival process at each node. As in earlier studies these
marginal queue size distributions do not in general give
rise to a product form solution, but nevertheless can be
used to find many performance measures of interest,
such as average response time and utilisation.



2 THE MODEL

Jobs arrive into the system in a Poisson stream with
rate � . There are � nodes in series and in node �
there are 	�
 servers in parallel, each with an associ-
ated unbounded queue, to which incoming jobs may
be directed. Server � at node � goes through alternat-
ing independent operative and inoperative periods, dis-
tributed exponentially with means 
���� 
�� � and 
���� 
�� � re-
spectively. While it is operative, the jobs in its queue
receive service of an exponentially distributed duration
with mean 
�����
�� � , and leave the node upon comple-
tion to proceed to the next (if any) node in the pipeline.
When a server becomes inoperative (breaks down), the
corresponding queue, including the job in service (if
any), remains in place. Services that are interrupted in
this way are eventually resumed from the point of in-
terruption. On completion of service at the final node a
proportion of jobs, ��������
 , leave the system and the
remainder return to the first node. The system model is
illustrated in Figure 1.
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Figure 1. A single source to a pipeline of �
nodes, split between the queues in each
node

The external arrival rate is given in Figure 1 as � 
 , and
since no jobs are lost the overall arrival rate at all nodes
will be the same, namely, �@�"� . However, since the
arrivals at node � depend on the departures from node�A:B
 then the arrival stream will, in general, cease
to be Poisson (the only case where this is not true is
for node 1 if �DCE
 ). The system configuration at any
moment is specified by the subset, F , of servers that
are currently operative (that subset may be empty, or it
may be the set of all servers): F�GIH # , where H # CJLK 
NMO
QPRM K 
SMUTSPVMXWOWXWVM K 
NMU	 + PVM K TYMO
QPVMOWXWOWRM K �ZM)	�[\P^] ,
where the pair

J �^M_�8] represents server � at node � .
There are of course T # possible system configurations,
where 	`Cba [
dc%+ 	 
 . In general it is more convenient
to consider the subset Fe
 whose elements are those
servers at node � which are operative. The set of

all servers at node � is denoted by H;#f$ . ClearlyF8
gGhHi#f$�GhHi# and F8
gGjF . The steady-state
marginal probability, k@lO$ , of configuration F 
 at node �
is given by

k l $mC`n�Ro lQ$ �S
'� �� 
�� �qp � 
�� � n�Ro l"$ �X
�� �� 
�� �qp � 
�� � MrF8
sG�Hi#%$qM
And the steady-state marginal probability, k2l , of con-
figuration F is given by

k l Chn
'� �Ro l �N
�� �� 
�� �tp � 
'� � n
'� �Ro l �O
'� �� 
'� �tp � 
'� � MuFuG�Hi#vM
where F2
 is the complement of Fe
 with respect to H;#%$ ,F is the complement of F with respect to H;# and an
empty product is by definition equal to 1. These ex-
pressions follow from the fact that servers break down
and are repaired independently of each other.

If, at the time of arrival at node � , a new job finds the
node in configuration F 
 , then it is directed to the queue
at server � with probability  
�� � K Fe
/P . These decisions
are independent of each other, of past history, of the
sizes of the various queues and of the state of any other
node in the pipeline. Thus, a routing policy at node � is
defined by specifying T # $ vectors,w 
 K F 
 PmCyx  
�� + K F 
 PVM  
'� ( K F 
 PRMXWOWXWXM  
�� # $ K F 
 P/zMrF 
 G�H # $^M
such that for every Fe
 ,#f${�)c%+  
�� � K Fe
_PmCb

There are clearly many strategies that can be employed
using this system and a number have been studied pre-
viously. Intuitively, it seems better not to send jobs to
queues where the server is inoperative, unless that is un-
avoidable. This suggests the following strategy: If the
subset of operative servers at node � in the current sys-
tem configuration is F 
 , and that subset is non-empty,
send jobs to queue � only if �g|�F 
 , with probability
proportional to  � : � K F8
}PmC  �a�~ o l  ~ M���|�F�W
If F is empty (i.e. all servers are broken), send jobs to
queue � with probability  � K ��C�
NMUT�MXWOWXWVM)	 
 P . Note
that this strategy does not take account of the states of
servers at other nodes in the system. However the ex-
istence of other nodes may have an effect on the op-
timal routing vector for a given strategy, for instances



in spreading jobs when all preceding servers are oper-
ative, but directing jobs only to fast servers when few
preceding servers are operative.

The system state at time � is specified by the pairx � K �>PVM>� K �>P/z , where � K �>P indicates the current configura-
tion (the configurations can be numbered, so that � K �>P is
an integer in the range ��MO
NMOWXWXWVM^T # :<
 ), and � K �>P is an
integer vector whose � ’th element, �Y� K �>P , is the number
of jobs in queue � K ��CB
SMUTYMOWXWOWVM)	�P . The integer � is
used here instead of the pair �^M_� for simplicity, the rela-
tionship between � and �^M/� is a simple 1 to 1 mapping
such that

� p 
'��+{� c%+ 	 � Cg�
Under the assumptions that have been made, � CJ x � K �>PRM,� K �>P}zqM;�D���Y] is an irreducible Markov pro-
cess. The condition for ergodicity of � is that, for every
queue �^M_� , the overall arrival rate is lower than the over-
all service capacity:{ � l $ �e
�k l $  
'� � K F8
/P�����
'� � �N
�� �� 
'� �tp � 
'� �Ms�sC�
NM^TiWXWOWRM)��M_��C�
NM^TYMOWXWXWXM)	 
 W
When the routing probabilities at each node depend on
the system configuration, the process � is not separable
(i.e., it does not have a product-form solution). Conse-
quently, the problem of determining its equilibrium dis-
tribution is intractable in general. On the other hand, the
quantities of principal interest are expressed in terms
of averages only; they are the steady-state mean queue
sizes, �t� , and the overall average response time, � ,
given by

�hC 
�
[{ 
dc%+
#%${�)c%+ � 
'� � W

To determine those performance measures, it is not nec-
essary to know the joint distribution of all queue sizes;
the marginal distributions of the 	 queues in isolation
are sufficient. Unfortunately, the isolated queue pro-
cesses,

J �L� K �>P�M;�D���Y] K ��Cj
SMUT�MXWXWOWRM)	�P , are not
Markov. As mentioned earlier the arrival stream at any
node � is not Poisson since it depends on the activity
of all the previous nodes (ad infinitum given �y��
 ),
this makes an exact solution of the marginal queue size
distributions almost as intractable a problem as solv-
ing the joint distribution of all queue sizes. However,
it is possible to obtain good approximate solutions for
the marginal queue size distributions by assuming the

arrival stream at node � to be Markov-modulated Pois-
son. However, unlike the pipeline model presented in
[Thomas and Mitrani, 1998], there is no explicit start
point in this model where the arrival process at a node
is known, therefore an iterative solution is employed
and a further approximation is used to start the process.
This iterative process and the formation of the Markov-
modulated arrival processes are discussed in Sections 3
and 4.

Consider the stochastic processes �2
'� � ,
� 
'� �¡C J x �L¢ K �>PVMX�S
�� � K �>P}z_M��t�£�Y]M��sC�
NM^TYMOWXWXWXM)�`M¤��Cb
NM^TYMXWOWXWVMU	¥
)M

which model the joint behaviour of the configuration
and the size of an individual queue �^M_� , where � ¢ K �>P in-
dicates the current mode of the Markov-modulated ar-
rival process (MMPP). The state space of �@
�� � is infinite
in one dimension only, which simplifies the solution
considerably and makes it tractable for reasonably large
values of the number of modes in the MMPP, �O¦;§ � . The
important observation here is that, with the assumption
of a Markov-modulated Poisson process, � 
'� � is an irre-
ducible Markov process, for every �^M_� . This is because
the arrivals into, and departures from queue �^M_� during
a small interval

K � M)� p<¨ �>P depend only on the approx-
imated system configuration and the size of queue �^M_�
at time � , and not on the sizes of the other queues. As
mentioned earlier, without the approximation of the ar-
rival stream to a Markov-modulated Poisson process,
this statement would not be true, since a job only ar-
rives at node � p 
 after successfully completing service
at node � , therefore making the queue size at any node
dependent on all previous nodes of service. It is then
necessary to find the equilibrium distribution of � 
'� � :

ke
�� � K'© M>ª�P«C­¬¯®d°±�²´³rµ x �Y¢ K �>P«C © M2�S
�� � K �>PmC¶ª·zM © Cg��MO
NMXWOWXWVMU�R¦;§ � :�
¸Muª�Cg��MX
SMXWOWXW
Given the probabilities k 
�� � K'© M)ª�P , the average size of
queue �^M/� is obtained from

� 
'� � C ³{¹ c%+ ªiº/»¤¼>½
�2+{� c2¾ k 
'� � K�© M)ªYP

There are three established approaches to solving sys-
tems of this kind, matrix geometric methods [Neuts,
1981], solution by generating functions and spectral
expansion [Mitrani and Chakka, 1995]. We have em-
ployed spectral expansion due primarily to familiarity
with this technique and this choice is somewhat arbi-
trary. The use of spectral expansion has some issues



regarding stability with respect to deriving eigenvalues,
although the method is well known, elegant and effi-
cient. Since it appears in detail elsewhere we do not
present the application of the spectral method here and
the interested reader is directed to that earlier work [Mi-
trani and Chakka, 1995].

3 APPROXIMATION USING AN MMPP

In the previous section it was stated that the arrivals at
node � could be approximated by a Markov-modulated
arrival process. In the study of the simpler pipeline
model [Thomas and Mitrani, 1998] a comparison was
made between a simple Poisson approximation and an
MMPP where the modes correspond to the operational
state at the preceding node, i.e. F 
��2+ , thus the MMPP
used at node � will have T #%$'¿·À modes. In each mode
the arrival rate is calculated as the sum of the departure
streams in that operational state:

# ${�)c%+ ��
�� � K k l $Á:�ke
�� �)� ¾ K Fe
_P)P
If this model was specified using Markovian process
algebra and the technique described in [Thomas et al,
2003] applied then there would in fact be Â # $'¿·À modes
in the MMPP. This is because the separation of actions
in process algebra gives rise to separate modes not only
when each server is operational or not, but also whether
its queue is empty or not. Hence the mode in the MMPP
is described by the superset of the pairs

KÄÃ 
 M)Å 
 P , whereÃ 
 |b
SM)� indicates whether the server � is operational
or not and Å 
 |<��MO
 indicates whether the queue at � is
empty or not. The arrival rate in each mode is the sum
of service rates for each server that is both working and
has a non-empty queue. The transitions between modes
in this case are somewhat more complex. Clearly the
transitions arising from a change in operational state
are the same as previously, and the transition rate from
empty to non-empty is simply the average arrival rate
into that queue in that operational state. The transition
from non-empty to empty is calculated as the service
rate multiplied by the probability that there is exactly
job in the queue given that it is non-empty. Clearly this
requires knowing the probabilities k 
��2+V� � K F 
'��+ MU�SP andk 
'��+^� � K F 
��2+ M)�·P for all � and F 
��2+ , except F 
 CgÆ . 1 The
number of modes in the MMPP clearly has implications
for the amount of work required to solve the model.
Therefore a move from T #%$'¿·À to Â #%$'¿·À is clearly not

1Clearly the predecessor of node 1 is node Ç , hence we interpretÈ�ÉÊÈ
as Ç in this instance.

desirable when 	�
'��+ is large except if there is a signif-
icant increase in accuracy of the approximation.

4 ITERATIVE SOLUTION

If the probability of leaving the system after the last
node is not certain, �I�Ë
 , then there is no node for
which the input process is entirely known. To address
this problem an iterative approach is adopted (from
[Thomas et al, 2003] to tackle this problem as follows.

1. Calculate the rate of an equivalent Poisson arrival
process at node 1.

2. Solve to find the approximate marginal queue size
probabilities at node 1.

3. Use the calculated queue empty probabilities to
generate a Markov-modulated arrival process at
the next node.

4. Use this to calculate the approximate marginal
queue size probabilities at the next node.

5. Repeat steps 3 and 4 until convergence criterion is
satisfied (or abandon).

The convergence criterion employed is that the same
MMPP is calculated twice in succession (to some num-
ber of decimal places) for any given node. The equiv-
alent Poisson stream at node 1 is easily shown to have
rate +Ì � in steady state since there is no job loss.

5 NUMERICAL RESULTS

Figures 2 and 3 show illustrate that the MMPP approx-
imation based on the operative state at the preceding
node is generally very successful at predicting average
response time except when the periods of operation and
inoperation were very long (Figure 3) and at high load
(Figure 2). One of the reasons for this inaccuracy is
that during long inoperative periods the number of jobs
at the preceding node will become much larger (all the
servers may be broken or sufficient such that the re-
mainder are saturated) and so on repair there will be
a period of continuous service before steady state be-
haviour can eventually be resumed. The more com-
plex MMPP approximation including states where the
preceding queues are empty are similar in accuracy to
the MMPP case. The advantage of these two methods
of approximation is that they appear to offer an upper



and lower bound respectively, but only in the absence
of feedback.

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8
l

W

Simulation

MMPP Approximation

Iterative approximation

Poisson Approximation

Figure 2. Average response time at node
2 against arrival rate; ��
%Cv
O�8M>�N
¤Cg��Wd
NM)�X
¤C�8W �8
NMU�ÍCv


The divergence between a simple Poisson approxima-
tion and the MMPP approximation becomes more ex-
aggerated when the feedback probability � is decreased
Under these conditions the traffic at each node be-
comes increasingly less Poisson and the accuracy of
both approximations diminishes dramatically. Unlike
the pipeline case these approximations give an over es-
timate of the average response time in the presence of
feedback. This is due to the tightly coupled nature of
this model. The key point to observe is when the bulk of
the arrivals occur into a queue, not how bursty they are.
If node 1 breaks down then all arrivals into node 2 are
blocked and so (after a number of services at node 2) is
the feedback. This means that during most of the break-
down period the arrivals into node 1 are just the exter-
nal arrivals. The same happens during breakdowns at
node 2, although obviously here the external jobs have
to pass through node 1 before reaching node 2. Thus
in both cases relatively few jobs arrive at a node when
it is broken so the queue sizes don’t grow too much.
Contrast this to the Poisson approximation; here jobs
are assumed to arrive at a node regardless of its state,
a constant rate of �@�"� . Hence in the feedback case the

0

4

8

12

16

20

24

28

10 1 0.1 0.01
h

W

Simulation

MMPP Approximation

Iterative approximation

Poisson Approximation

Figure 3. Average response time at node
2 against repair rate; ��
AC�
O��M^��CÏÎ�M>�X
AC�N
}�L
Q��MU�ÍC�


Poisson approximation ceases to be a lower bound. The
more complex approximation captures some of this be-
haviour, but it’s still fairly crude.

Figures 4 and 5 show the behaviour of the same two
node model where �vCÐ�8W Î . In Figure 4 the average
system response time is shown when the external arrival
rate is varied. Note that the effective rate of arrivals is
in fact twice the rate given on average, but the arrivals
are made much more bursty by the occurrence of break-
downs. At low load the iterative approach clearly gives
the best approximation, but this becomes less accurate
as load increases. At even higher load, nearer satura-
tion, the Poisson approximation becomes more accu-
rate. This is due to the fact that the queue lengths are
generally so large that the queues rarely empty during
a breakdown at the other node, and so the ”steady” ar-
rivals of the Poisson approximation are more realistic.

6 CONCLUSIONS

The method proposed here seeks to extend the pipeline
model to include a feedback which is incorporated into
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the solution method using an iterative approach. The
class of models that it is possible to consider using this
method includes more general network structures, al-
though it is evaluated here with a simple loop. Simple
approximations work well under most conditions but
become increasingly less accurate as load and inoper-
ative periods increase. These approximations form a
lower bound to the exact solution when there is no feed-
back, but become overly pessimistic when feedback ex-
ists. The more complex approximation with iterative
solution method performs somewhat better under these
conditions, but there is still considerable room for im-
provement, particularly at high load. Incorporating a
burst of services following repair may increase the ac-
curacy of this method, this remains an area of continu-
ing investigation.
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