
FUNCTIONAL MODELLING AND PERFORMANCE
EVALUATION FOR TWO CLASS DIFFSERV ROUTER

USING STOCHASTIC PROCESS ALGEBRA

ABDELMALEK BENZEKRI and OSMAN SALEM

Institut de recherche en informatique de Toulouse,
Université Paul Sabatier,

118 Route de Narbonne - 31062 Toulouse Cedex 04 - France
Téléphone: +33 05 61 55 60 86 - Télécopie: +33 05 61 52 14 58

E-mail: {benzekri, osman}@irit.fr

Abstract: This paper describes the use of stochastic process algebra to model and to evaluate the performance of
a two class DiffServ router. This specification is done by means a set of powerful operators of Extended
Markovian Process Algebra (EMPA) language, and then studied from the functional and the performance point
of view.

Keywords: Stochastic Process Algebra; Markov Models; Performance Evaluation; DiffServ.

1. INTRODUCTION

Network devices can be described using classical
process algebra which provides a means for
constructing an abstract model of the device in
question [Bernardo, 1998]. This model is used only to
establish the correct functional behaviour by deriving
qualitative properties such as freedom from deadlock
or livelock [Benzekri, 2002]. Performance evaluation
of the model was in a separate phase, after the fully
design and implementation of the model.
Consequently, if the performance is detected to be
poor, the model will be redesigned with negative
consequences for both design cost and time lost,
where the need of integrating the performance
analysis into the design process.

Stochastic Process Algebra (SPA) has been
developed for this purpose. It is a formal
specification technique which extends classical
process algebras via the inclusion of timing
information by using random variables in the
generated models, in order to express the durations of
an activity [Benzekri, 2002; Brinksma and Hermanns,
2001]. Once the model has been defined and
parameterized, it can be used to investigate
numerically the performance parameters.

Designing Diffserv [Nichols and Blake, 1998] routers
using SPA is a complicated task because there are
many factors to be considered such as penalty policy
of malicious traffic inside a class. This policy may
fluctuate from delaying to dropping packets from this
flow. In contrast, formal specification can be a
valuable aid to routers designers as it allows a range
of options for configuration to be explored in a
precise setting, such as policy requirements which
may be clarified during the performance evaluation
of a router model, because it becomes evident what

information about the state of the model is required to
ensure that it operates effectively. For example, it
would be possible for the designer to demonstrate
that under any constraints, a minimum threshold for
throughput and delay may be satisfied for such class
of traffic.

This paper is organized as follows. In section 2 we
recall the syntax and semantics of Extended
Markovian Process Algebra EMPA. In section 3 we
recall the principle of the DiffServ technology. In
section 4 we give the specification of a DiffServ
router. In section 5 we analyze the performance of
this model by using EMPA algebraic reward method
and the CTMC diagram derived from model
specification. Finally, conclusions work is presented.

2. STOCHASTIC PROCESS ALGEBRA

Stochastic Process Algebras are formal descriptions
techniques used to describe the functionality of
concurrent and distributed systems and to analyze
their related performance [Benzekri, 2002; Brinksma
and Hermanns, 2001]. Several SPA languages have
been appeared in the literature, these include PEPA
[Hillston, 1996], TIPP [Herzog, 1993], EMPA
[Bernardo, 1998]. These languages have been
introduced as an extension to classical process
algebras like CCS [Milner, 1989] and CSP [Hoare,
1985]. They are abstract languages constructed from
a small set of powerful operators where it is possible
to construct algebraic models whose key features are:
compositionality (which allows the designer to build
a complex model from smaller ones by means of
languages operators, and to study the behaviour of
each component separately), and abstraction (which
allows the internal details of a system description to

be hidden from an external observer at analysis time).
In these languages, systems are modeled as a
collection of entities, called agents or processes,
which execute actions. These actions are the building
blocks of these languages and they are used to
describe sequential behaviours which may run
concurrently by synchronizations or by
communications between them.

These languages propose the same approach to
performance modeling: a random variable is
associated with each action, representing its duration.
This random variable is assumed to be exponentially
distributed and this leads to a clear relationship
between the process algebra model and a Continuous
Time Markov Chains (CTMC). Via this underlying
CTMC derived from the model semantic description
[Benzekri, 2002], different types of analysis may be
performed, like steady-state and transient probability
distribution. This analysis is done through the
compilation of the infinitesimal generator matrix of
the Markov diagram.

In this paper, we will use the Extended Markovian
Process Algebra (EMPA) language [Bernardo, 1998]
which is supported by a tool called TwoTowers.
EMPA is inspired and developed on the basis of
PEPA (Performance Evaluation Process Algebra
[Hillston, 1996]) and TIPP (TImed Processes and
Performability evaluation) languages [Herzog, 1993].
It extends these languages by including three
different kinds of actions: exponentially timed
actions, passive actions and prioritized weighted
immediate actions. In addition to this reason, EMPA
allows one to specify performance measures with the
algebraic specifications of the system through atomic
rewards attached to states and transitions of the
Markov chains (MC for short). This leads to an
automatic derivation of performance measures and
may avoid a full scan of the CTMC diagram. The
syntax of EMPA can be summarized by the following
expression:

P = 0│<a,λ>.P│<a,∞L,W>.P│<a,*>.P│P/L│P[φ]│

P + P│P ||s P│A

Since the deadlock term "0", the prefix operator
"<a,λ>._", the functional abstraction operator "_/L",
the functional relabeling operator "_[φ]", the
alternative choice operator "_+_", the cooperation
operator "_||s_" and the constant operator are the
same operators used in classical process algebras.
Due to lack of space, the reader is referred to
[Bernardo, 1998] for an extensive presentation of
EMPA syntax and semantics.

In EMPA, every activity is represented by <a,λ>
which means the execution of action "a" after
exponential distributed delay with rate "λ" (denoted
by F(t)=1-e-λt). An immediate action is represented

with rate λ = ∞ or "<a,∞L,W>", where L is used to
express the priority level and W is used for the
probability weight. In some cases, the rate of an
action is outside the control of this component, such
actions are carried out jointly with another
component in order to model activities waiting for
synchronization, so this component is playing a
passive role and is recorded by the distinguished
symbol "*".

The choice in the alternative composition operator
"_+_" is governed by the race policy, where the
action with least duration will be executed. In this
situation, immediate actions take precedence over
exponentially distributed actions and over other
immediate actions having small priority level with
respect to their levels. If two immediate actions have
the same priority level, they will be executed
according to the probability associated with each one.

3. THE DIFFSERV ROUTER

Differentiated services (DiffServ) [Nichols and Blake
1998] is a set of technologies which allow network
service providers to offer services with different
kinds of network quality of service (QoS) to different
customers and their traffic streams, depending to a
contract (Service Level Agreement or SLA) between
them.

DiffServ work by dividing traffic into many classes
by marking a field in the IP packet header, called the
Differentiated Services Code Point (DSCP) field. Its
value depends on the customer profile and the traffic
requirement. Network elements serve these classes
with different priorities with respect to the DSCP
field content. Applications requiring low loss, low
latency, low jitter and assured bandwidth service
generally send data as expedited forwarding (EF)
class packets. This class is used for loss and delay
sensitive applications such as voice over IP (VoIP).
Assured forwarding (AF) class offers a lower priority
service from the previous one (EF), and itself is
subdivided into four subclasses and each of these four
classes is also divided into three subclasses (gold,
silver, bronze) [Nichols and Blake 1998]. Generally
AF carries best effort TCP data, such as HTTP and
FTP traffic applications.

Like we have seen that a DiffServ router has a large
number of classes defined, but the most essential use
of DiffServ is to provide support for the two most
common applications: voice and video traffic with
high priority level, and best effort data (TCP) with
low priority level. This is why in the rest of this
paper, we will be concerned only with the modelling
of such a two classes router and we will denote these
classes by H (high priority level) and L (low priority
level), instead of modeling all classes in order to
prevent a huge number of state and the state space

explosion problem when analyzing the model by
existing tools.

Conforming pkt

Nonconforming pkt

 Meter

Unmetered traffic Metered traffic

The DiffServ router is composed from a classifier and
a traffic conditioner. Traffic conditioners may contain
meters, markers, droppers and shapers. We must
notice that some of these blocks may be aggregated
in another block or may be omitted. For example, in
the case where no traffic profile is in effect, packets
may only pass through a classifier and a marker, and
in the case of core routers, marker may be omitted
because packets were coded at the ingress router.
Readers interested about the DiffServ technology can
refer to [Nichols and Blake, 1998; Blake, 1998].

4. THE SPECIFICATION

We take advantage from the compositional feature of
SPA in order to model the DiffServ router which
appears in figure 1. This feature allows us to deal
with five entities: classifier, marker, meter, dropper
and priority queueing.

Classifier

Marker_H

Marker_L

Meter_H

Meter_L

Priority
queueing
system

Dropper_H

Dropper_L

Figure 1. An ingress DiffServ router

In this specification, we suppose that the customer
has a service level specification (SLS) which
specifies 2 service levels, to be identified to the
provider by DSCP High and DSCP Low. Each
components of this DiffServ router model [Bernet
and Blake, 2002] can be specified as follows:

Classifier: It takes a single traffic stream as input and
generates N logically separated traffic streams as
output. Figure 2 show a classifier that separates input
traffic into one of two output streams based on
matching filters:

Figure 2. Classifier

The specification of this agent using EMPA is:
Classifier=
 <packet_arrival,λ>.<check_pckt_header,θ>.
 <classify,∞11>.(<send_messageH,λ1>.Classifier
 + <send_messageL,λ2>.Classifier);

Marker: The marker sets the DS field of each packet
received from the classifier to a particular code-point

(e.g., DSCP). It can be represented logically by a box
with one input one output like appear in figure 3.

Marker

Marked
traffic

Unmarked
traffic

Figure 3. Marker

In our model, two markers are needed, one for the
high priority level traffic and the other for the low
priority level traffic. Their specification is the
following:

Marker_H = <send_messageH,*>.<mark_DSCPH,α>.
 <send_to_meterH,∞11>.Marker_H;
Marker_L = <send_messageL,*>.<mark_DSCPL,α>.
 <send_to_meterL,∞11>.Marker_L;

Meter: It is used to monitor the traffic stream and
sends malicious packets to the dropper agent, in order
to prevent high level traffic from monopolizing the
network resource. Figure 4 illustrates a simple meter
with two levels of conformance. It will measure the
rate of each traffic to determine its conformance. So,
if the packet is judged conformed, then it will be sent
to the priority queueing system in order to be served
(forwarded to next hop), else the packet will be sent
to the dropper. This agent can be specified by the
following:

Figure 4. Meter

Meter0_H = <send_to_meterH,*>.<start_timer,∞11>.
 <arrH,λH>.Meter1_H;
Meter1_H = <send_to_meterH,*>.
 <get_current_time,∞11>.
 <compute_elapsed_time,∞11>.
 (<time_elapsed,∞11>.
 <average_conform,∞11>.<reset_timer,∞11>. Unclassified

 traffic
Classified
traffic <arrH,λH>.Meter1_H

Classifier

 Match filter_H Output_1

 Match filter_L Output_2

 + <time_not_elapsed,∞11>.
 <avrg_not_conform,∞11>.
 <send_to_dropperH,γ>.Dropper_H
 + <timeout,η>. Meter0_H);
Meter0_L = <send_to_meterL,*>.<start_timer,∞11>.
 <arrL,λL>.Meter1_L;
Meter1_L = <send_to_meterL,* >.
 <get_current_time,∞11>.
 <compute_elapsed_time,∞11>.
 (<time_elapsed,∞11>.
 <average_conform,∞11>.<reset_timer, ∞11>.
 <arrL,λL>.Meter1_L
 + <time_not_elapsed,∞11>.
 <avrg_not_conform,∞11>.
 <send_to_dropperL,γ>.Dropper_L

S = {send_to_meterH, send_to_meterL}; + <timeout,η>.Meter0_L);
 M = {send_to_dropperH, send_to_dropperL};
Dropper: The dropper discards some or all malicious
packets in a traffic stream according to the service
provider policy. The dropper can be implemented as
a special case of shaper by setting the buffer size to
zero. It can be represented logically by a box with
one input one output and its specification is the
following:

Arr = {arrH, arrL};
Del = {deliverH, deliverL};

When the model is loaded in TwoTowers [Bernardo,
1998], its descriptions are syntactically and
semantically analyzed using a parser for detecting
errors, then TwoTowers will find all possible states
and transitions or in another expression the labelled
transition diagram.

Dropper_H = <send_to_dropper,*>.<discard,∞11>.

 Meter1_H
5. PERFORMANCE ANALYSIS Dropper_L = <send_to_dropper,*>.<discard,∞11>.

 Meter1_L
 TwoTowers will give us the steady state and the

transient state distribution probability vector. So
given the CTMC diagram and the value of the
probability distribution in steady and transient states,
we can evaluate the performance of the system by
using queueing system theory. For example, the
throughput which is given by the service rate
multiplied by the stationary probability of being in a
state where service action can be provided is given by
the following formula:

Priority queueing: The final agent is the queue where
packets wait before being served (forwarded to next
hop). We have taken a preemptive queue (e.g.,
arriving of high priority packet will interrupt the
service of low priority packet already in service
phase) with priority inter-arrival policy in the sense
that if the queue is full and a high priority packet
arrives, it will drop a low priority packet (if the queue
contains at least one) in order to accept the high
priority packet, but if it contains only a high priority
packet, the arrival packet will be lost (dropped). The
specification of this queue (M/M/1/N) [Thomas and
Hillston, 1997] is the following:

T = ∑
=

πµ
N

2i
i.

The utilization rate was defined to be the percentage
of time the router spent in doing useful work by the
fraction of time, and which is the sum of the
stationary probabilities of states where there is at
least one packet in the system. It is given by the
following formula:

Queue0,0 = <arrH,*>. Queue1,0 + <arrL,*>. Queue0,1;
Queuei,0 = <arrH,*>. Queuei+1,0 + <arrL,*>. Queuei,1

 + <deliverH,*>. Queuei-1,0; (if 0<i<N-1)
Queue0,j = <arrH,*>. Queue1,j + <arrL,*>. Queue0,j+1

 + <deliverL,*>. Queue0,j-1; (if 0<j<N-1)
U= = ∑

=
π

N

2i
i).1(∑

=
π

N

2i
iQueuei,j = <arrH,*>. Queuei+1,j + <arrL,*>. Queuei,j+1

 + <deliverH,*>.Queuei-1,j The vector distribution probability πi for all states is
given by TwoTowers and the utilisation rate can be
calculated by a simple addition.

 + <deliverL,*>.Queuei,j-1;
 (if i,j>0 and i+j<N-1)
QueueN-1,0 = <deliverH,*>. QueueN-2,0;
Queue0,N-1 = <deliverL,*>.Queue0,N-2
 + <arrH,*>.<looseL,∞2,1>.Queue1,N-2;
Queuei,j = <deliverH,*>.Queuei-1,j
 + <deliverL,*>.Queuei,j-1
 + <arrH,*>.<looseL,∞2,1>.Queuei+1,j-1;
 (if i,j>0 and i+j = N-1)
Pre_Server = <deliverH,∞2,1>.<serve,µ>.Pre_Server

The Markovian analyzer implemented in TwoTowers
allow an automatic derivation of performance model
and may allow us to avoid the full scan to the CTMC
diagram, which will be exceedingly expensive,
especially if we have a large number of states. The
performance aspects of a system model in EMPA,
can be taken into account in the early stages of its
design (with algebra description), where performance
measures can be specified by attaching a yield reward
yi to every state i, which expresses the rate at which
reward is accumulated at state i, and by attaching a
bonus reward bi,j to every transition from state i to
state j, which expresses the instantaneous gain due to
the execution of the transition from state i to state j.
Readers interested about yield and bonus rewards can
refer to [Bernardo, 1997]. Actions with reward will
be specified by <a,r,y,b> instead of <a,r>, and the
desired stationary performance measure can be
computed in EMPA according to the following
formula:

 + <deliverL,∞1,1>.ServePLLow;
ServePLLow = <serve,µ>.Pre_Server
 + <deliverH, ∞2,1>.<serve,µ>. ServePLLow;

In order to obtain the complete DiffServ router
specification, the individual agents described above
need to be composed like in the following expression:

DiffServ = Classifier ||T Markers ||S Meters ||M

 Droppers ||Arr Queue00 ||Del Pre_emp_Server
Markers = Marker_L || Marker_H
Meters = Meter0_H || Meter0_L
Droppers = Dropper_L || Dropper_H
T = {send_msgH, send_msgL};

∑∑∑
= ==

π+π
N

1i

N

1j
ijiij

N

1i
ii q..b.y

Many performance measures can be obtained using
this formula, for example: if we want to compute the
throughput, we must replace every action of the form
<serve,µ> with <serve,µ,µ,0> (e.g., yi=µ and bij=0)
for obtaining the following equation:

∑∑∑
= ==

π+π
N

1i

N

1j
ijiij

N

1i
ii q..b.y = ∑

=
πµ

N

2i
i.

Mean system size
 Mean packet arrival rate

EMPA will take into account all states that provide
the action "serve" and will assign a reward to them.
The first state is where no packet in the router and
this is why it can not provide the action "serve".

As a performance measure, we have computed the
throughput and the router utilization by using the
reward technique of EMPA. This is done by
replacing every action <serve,µ> by <serve,µ ,µ,0>
in our semantics model for obtaining the throughput,
and by replacing every action <serve,µ> by
<serve,µ,1,0> in order to obtain the utilization rate. In
contrast, the algebra based method (reward
technique) fails to determine the mean number and
the mean waiting time of packets for each class due
to the additivity assumption of transition labeled with
"serve" action, and values for these performance
aspects were calculated by a manual full scan to the
transformed specification (CTMC diagram) and by
using the probability distribution vector given by
TwoTowers.
The mean number of packet in the system can be
obtained by using the following formula:

The mean number of packet = ∑
=

π
N

2i
i.i

And the mean packet delay (MPD) for each class is
found by using Little’s law:

 MPD =

Mean packet arrival rate = i

N

1i
i.πλ∑

=

Where λi take the value of λH for packet with high
priority and λL for packet with low priority.

The throughput was 2.38 packet/s, the utilisation rate
was 33.34% and the mean waiting time was 1.12s for
a packet in class high and 2.48s for packet in class
low. These unacceptable results lead us to a set of
experiment in order to detect the effect of each
component at its performance. We begin by examine
the effect of changing the rate (speed) of the marker
at the system performance.

Figure 5.a shows that the throughput increases by
increasing marker speed but reaches a threshold

afterwere there is no effect of increasing its speed at
the system performance, and this effect can be
explained by the limited speed of the classifier.
However the utilisation rate of the marker decreases
significantly by the fact of speeding the marker,
because packets will spend a less time before being
forwarded to next stage. The mean packets waiting
time decreases slightly when we decrease the rate of
this component because packets spend less time in
this component.

Figure 5. Effect of speeding up the marker

We have experimented the effect of speeding up the
meter (increasing its rate) at the performance model.
Like expected the throughput and the utilisation rate
of the model increase and reach quickly a maximum
threshold value (curves variation are similar to those
in Figure 5).

The same experiment was repeated for the classifier
and the queueing server. We have found that there
was little profit from speeding up any of these
components apart at the model performance.

The result of these experiments motivate us to
another set of experiments in order to investigate the
effect of speeding up many components at the system
performance, because every time we have increased
the rate of a component we have found: the
throughput of the system increases, the utilisation rate
fluctuate, and the mean packet delay decreases for
each class but still inside a specific margin.

Figure 6 shows the result obtained by speeding up the
marker and the queueing server, it can be seen from
this figure that the increase of throughput is not at the
expense of utilisation rate like we have seen when
speeding up one component alone.

We discover from these experiments that we can use
relatively a slow classifier with no big influence at

the system throughput in contrast like we have been
thought. This result can be interpreted by the time
that packets spend in other components especially in
the server queueing.

Figure 6. Effect of speeding up the marker and the server

6. CONCLUSIONS

The main aim of this work was to present a simple
DiffServ router model and to analyze its functional
and performance properties using stochastic process
algebra. In order to achieve that, we begin by an
algebraic description of this router using stochastic
process algebra then we use EMPA tool
(TwoTowers) for analyzing and detecting a
missbehavioural functional error such as freedom
from deadlock. After qualitative verification, a set of
experiment has been done in order to detect the effect
of each component at the performance of this model.
Fortunately, the reward-based method in EMPA
provides an automatic derivation for some
performance aspect in our model (like throughput,
utilisation rate...), but unfortunately not all.
Therefore, a full scan to the CTMC diagram derived
from the EMPA supported tool is necessary.

These experiments lead us to discover some
interesting information about which component limits
the throughput and other performance aspect. It
demonstrates that we can use a relatively slow
component in the model with no significant
difference in the throughput in contrast to that it has
been thought originally.

The coexistence of three kinds of actions in EMPA
and especially the prioritized weighted action was a
great characteristic because these actions are not
taken in account in the performance semantic model
(CTMC diagram) and this aids us to include only
actions which are important for determining
performance aspects.

REFERENCES

Blake S. 1998, "An Architecture for Differentiated

Services", RFC 2475.
Benzekri A. 2002, "Qualitative and Quantitative

Evaluation using Process Algebra", The 17th

International Symposium on Computer and
Information Sciences, Florida USA, Pp415-
418.

Bernardo M. 1997, "An Algebra Based Method to
Associate Rewards with EMPA Terms", in
Proc. of the 24th Int. Coll. on Automata,
Languages and Programming (ICALP),
P.Degano, Lecture Notes in Computer
Science, Bologna, Pp358-368.

Bernardo M. 1998, "A Tutorial on EMPA: A Theory
of Concurrent Processes with
Nondeterminism, Priorities, Probabilities and
Time", Theoretical Computer Science, Pp1-54.

Bernet Y. and Blake S. 2002, "An Informal
Management Model for DiffServ Routers",
RFC 3290.

Brinksma Ed and Hermanns Holger 2001, "Process
Algebra and Markov Chains", Lecture on
Formal Methods and Performance Analysis,
Nijmegen, Pp183–231.

Herzog U. 1993, "TIPP: A Language for Timed
Processes and Performance Evaluation",
Proceedings of the First International
Workshop on PA and PM, University of
Edinburgh, UK.

Hillston J. 1996, "A Compositional Approach to
Performance Modelling", Cambridge
University Press.

Milner R. 1989, "Communication and Concurrency",
Prentice-Hall.

HOARE C.A.R 1985, "Communicating Sequential
Processes", Prentice-Hall.

Nichols K. and Blake S. 1998, "Definition of the
Differentiated Services Field (DS Field) in the
IPv4 and IPv6 Headers", RFC 2474.

Thomas N. and Hillston J. 1997, "Using Markovian
Process Algebra to Specify Interactions in
Queueing Systems", Technical Report,
University of Edinburgh, Pp151-164.

AUTHOR BIOGRAPHY

OSMAN SALEM is a first year PhD
student in Université Paul Sabatier,
UPS, Toulouse, France. He received his
engineering diploma in June 2001 and
his master degree in network and
telecommunication in September 2002.

His research and major interesting areas are formal
specification using stochastic process algebra, quality
of service protocol engineering and performance
evaluation.

	Institut de recherche en informatique de Toulouse,
	Université Paul Sabatier,
	118 Route de Narbonne - 31062 Toulouse Cedex 04 - France
	Téléphone: +33 05 61 55 60 86 - Télécopie: +33�
	E-mail: {benzekri, osman}@irit.fr

	c0: Proceedings 17th European Simulation Multiconference(c) SCS Europe BVBA, 2003 ISBN 3-936150-25-7

