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of view. 
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1. INTRODUCTION 
 
Network devices can be described using classical 
process algebra which provides a means for 
constructing an abstract model of the device in 
question [Bernardo, 1998]. This model is used only to 
establish the correct functional behaviour by deriving 
qualitative properties such as freedom from deadlock 
or livelock [Benzekri, 2002]. Performance evaluation 
of the model was in a separate phase, after the fully 
design and implementation of the model. 
Consequently, if the performance is detected to be 
poor, the model will be redesigned with negative 
consequences for both design cost and time lost, 
where the need of integrating the performance 
analysis into the design process. 
 
Stochastic Process Algebra (SPA) has been 
developed for this purpose. It is a formal 
specification technique which extends classical 
process algebras via the inclusion of timing 
information by using random variables in the 
generated models, in order to express the durations of 
an activity [Benzekri, 2002; Brinksma and Hermanns, 
2001]. Once the model has been defined and 
parameterized, it can be used to investigate 
numerically the performance parameters. 
 
Designing Diffserv [Nichols and Blake, 1998] routers 
using SPA is a complicated task because there are 
many factors to be considered such as penalty policy 
of malicious traffic inside a class. This policy may 
fluctuate from delaying to dropping packets from this 
flow. In contrast, formal specification can be a 
valuable aid to routers designers as it allows a range 
of options for configuration to be explored in a 
precise setting, such as policy requirements which 
may be clarified during the performance evaluation 
of a router model, because it becomes evident what 

information about the state of the model is required to 
ensure that it operates effectively. For example, it 
would be possible for the designer to demonstrate 
that under any constraints, a minimum threshold for 
throughput and delay may be satisfied for such class 
of traffic. 
 
This paper is organized as follows. In section 2 we 
recall the syntax and semantics of Extended 
Markovian Process Algebra EMPA. In section 3 we 
recall the principle of the DiffServ technology. In 
section 4 we give the specification of a DiffServ 
router. In section 5 we analyze the performance of 
this model by using EMPA algebraic reward method 
and the CTMC diagram derived from model 
specification. Finally, conclusions work is presented. 
 
2. STOCHASTIC PROCESS ALGEBRA 
 
Stochastic Process Algebras are formal descriptions 
techniques used to describe the functionality of 
concurrent and distributed systems and to analyze 
their related performance [Benzekri, 2002; Brinksma 
and Hermanns, 2001]. Several SPA languages have 
been appeared in the literature, these include PEPA 
[Hillston, 1996], TIPP [Herzog, 1993], EMPA 
[Bernardo, 1998]. These languages have been 
introduced as an extension to classical process 
algebras like CCS [Milner, 1989] and CSP [Hoare, 
1985]. They are abstract languages constructed from 
a small set of powerful operators where it is possible 
to construct algebraic models whose key features are: 
compositionality (which allows the designer to build 
a complex model from smaller ones by means of 
languages operators, and to study the behaviour of 
each component separately), and abstraction (which 
allows the internal details of a system description to 



be hidden from an external observer at analysis time). 
In these languages, systems are modeled as a 
collection of entities, called agents or processes, 
which execute actions. These actions are the building 
blocks of these languages and they are used to 
describe sequential behaviours which may run 
concurrently by synchronizations or by 
communications between them. 
 
These languages propose the same approach to 
performance modeling: a random variable is 
associated with each action, representing its duration. 
This random variable is assumed to be exponentially 
distributed and this leads to a clear relationship 
between the process algebra model and a Continuous 
Time Markov Chains (CTMC). Via this underlying 
CTMC derived from the model semantic description 
[Benzekri, 2002], different types of analysis may be 
performed, like steady-state and transient probability 
distribution. This analysis is done through the 
compilation of the infinitesimal generator matrix of 
the Markov diagram. 
 
In this paper, we will use the Extended Markovian 
Process Algebra (EMPA) language [Bernardo, 1998] 
which is supported by a tool called TwoTowers. 
EMPA is inspired and developed on the basis of 
PEPA (Performance Evaluation Process Algebra 
[Hillston, 1996]) and TIPP (TImed Processes and 
Performability evaluation) languages [Herzog, 1993]. 
It extends these languages by including three 
different kinds of actions: exponentially timed 
actions, passive actions and prioritized weighted 
immediate actions. In addition to this reason, EMPA 
allows one to specify performance measures with the 
algebraic specifications of the system through atomic 
rewards attached to states and transitions of the 
Markov chains (MC for short). This leads to an 
automatic derivation of performance measures and 
may avoid a full scan of the CTMC diagram. The 
syntax of EMPA can be summarized by the following 
expression:  

 
P = 0│<a,λ>.P│<a,∞L,W>.P│<a,*>.P│P/L│P[φ]│ 

P + P│P ||s P│A 
 
Since the deadlock term "0", the prefix operator 
"<a,λ>._", the functional abstraction operator "_/L", 
the functional relabeling operator "_[φ]", the 
alternative choice operator "_+_", the cooperation 
operator "_||s_" and the constant operator are the 
same operators used in classical process algebras. 
Due to lack of space, the reader is referred to 
[Bernardo, 1998] for an extensive presentation of 
EMPA syntax and semantics. 
 
In EMPA, every activity is represented by <a,λ> 
which means the execution of action "a" after 
exponential distributed delay with rate "λ" (denoted 
by F(t)=1-e-λt). An immediate action is represented 

with rate λ = ∞ or "<a,∞L,W>", where L is used to 
express the priority level and W is used for the 
probability weight. In some cases, the rate of an 
action is outside the control of this component, such 
actions are carried out jointly with another 
component in order to model activities waiting for 
synchronization, so this component is playing a 
passive role and is recorded by the distinguished 
symbol "*". 
 
The choice in the alternative composition operator 
"_+_" is governed by the race policy, where the 
action with least duration will be executed. In this 
situation, immediate actions take precedence over 
exponentially distributed actions and over other 
immediate actions having small priority level with 
respect to their levels. If two immediate actions have 
the same priority level, they will be executed 
according to the probability associated with each one. 
 
3. THE DIFFSERV ROUTER 
 
Differentiated services (DiffServ) [Nichols and Blake 
1998] is a set of technologies which allow network 
service providers to offer services with different 
kinds of network quality of service (QoS) to different 
customers and their traffic streams, depending to a 
contract (Service Level Agreement or SLA) between 
them.  
 
DiffServ work by dividing traffic into many classes 
by marking a field in the IP packet header, called the 
Differentiated Services Code Point (DSCP) field. Its 
value depends on the customer profile and the traffic 
requirement. Network elements serve these classes 
with different priorities with respect to the DSCP 
field content. Applications requiring low loss, low 
latency, low jitter and assured bandwidth service 
generally send data as expedited forwarding (EF) 
class packets.  This class is used for loss and delay 
sensitive applications such as voice over IP (VoIP). 
Assured forwarding (AF) class offers a lower priority 
service from the previous one (EF), and itself is 
subdivided into four subclasses and each of these four 
classes is also divided into three subclasses (gold, 
silver, bronze) [Nichols and Blake 1998]. Generally 
AF carries best effort TCP data, such as HTTP and 
FTP traffic applications. 
 
Like we have seen that a DiffServ router has a large 
number of classes defined, but the most essential use 
of DiffServ is to provide support for the two most 
common applications: voice and video traffic with 
high priority level, and best effort data (TCP) with 
low priority level. This is why in the rest of this 
paper, we will be concerned only with the modelling 
of such a two classes router and we will denote these 
classes by H (high priority level) and L (low priority 
level), instead of modeling all classes in order to 
prevent a huge number of state and the state space 



explosion problem when analyzing the model by 
existing tools. 
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The DiffServ router is composed from a classifier and 
a traffic conditioner. Traffic conditioners may contain 
meters, markers, droppers and shapers. We must 
notice that some of these blocks may be aggregated 
in another block or may be omitted. For example, in 
the case where no traffic profile is in effect, packets 
may only pass through a classifier and a marker, and 
in the case of core routers, marker may be omitted 
because packets were coded at the ingress router. 
Readers interested about the DiffServ technology can 
refer to [Nichols and Blake, 1998; Blake, 1998]. 
 
4. THE SPECIFICATION 
 
We take advantage from the compositional feature of 
SPA in order to model the DiffServ router which 
appears in figure 1. This feature allows us to deal 
with five entities: classifier, marker, meter, dropper 
and priority queueing. 
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Figure 1. An ingress DiffServ router 
 
In this specification, we suppose that the customer 
has a service level specification (SLS) which 
specifies 2 service levels, to be identified to the 
provider by DSCP High and DSCP Low. Each 
components of this DiffServ router model [Bernet 
and Blake, 2002] can be specified as follows:  
 
Classifier: It takes a single traffic stream as input and 
generates N logically separated traffic streams as 
output. Figure 2 show a classifier that separates input 
traffic into one of two output streams based on 
matching filters: 
 
 
 
 
 

 

Figure 2. Classifier 
 
The specification of this agent using EMPA is: 
Classifier=    
         <packet_arrival,λ>.<check_pckt_header,θ>. 
         <classify,∞11>.(<send_messageH,λ1>.Classifier 
   +    <send_messageL,λ2>.Classifier); 
 
Marker: The marker sets the DS field of each packet 
received from the classifier to a particular code-point 

(e.g., DSCP). It can be represented logically by a box 
with one input one output like appear in figure 3.  
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Figure 3. Marker 
 
In our model, two markers are needed, one for the 
high priority level traffic and the other for the low 
priority level traffic. Their specification is the 
following: 
 
Marker_H =  <send_messageH,*>.<mark_DSCPH,α>. 
         <send_to_meterH,∞11>.Marker_H; 
Marker_L  =  <send_messageL,*>.<mark_DSCPL,α>. 
         <send_to_meterL,∞11>.Marker_L; 
 
Meter: It is used to monitor the traffic stream and 
sends malicious packets to the dropper agent, in order 
to prevent high level traffic from monopolizing the 
network resource. Figure 4 illustrates a simple meter 
with two levels of conformance. It will measure the 
rate of each traffic to determine its conformance. So, 
if the packet is judged conformed, then it will be sent 
to the priority queueing system in order to be served 
(forwarded to next hop), else the packet will be sent 
to the dropper. This agent can be specified by the 
following: 
 
 
 
 
 

Figure 4. Meter 
 
Meter0_H = <send_to_meterH,*>.<start_timer,∞11>. 
         <arrH,λH>.Meter1_H; 
Meter1_H = <send_to_meterH,*>. 
         <get_current_time,∞11>. 
         <compute_elapsed_time,∞11>. 
       (<time_elapsed,∞11>. 
         <average_conform,∞11>.<reset_timer,∞11>.             Unclassified    

  traffic       
Classified 
traffic          <arrH,λH>.Meter1_H  
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   +    <time_not_elapsed,∞11>. 
         <avrg_not_conform,∞11>. 
         <send_to_dropperH,γ>.Dropper_H  
   +    <timeout,η>. Meter0_H ); 
Meter0_L  = <send_to_meterL,*>.<start_timer,∞11>. 
         <arrL,λL>.Meter1_L; 
Meter1_L = <send_to_meterL,* >. 
         <get_current_time,∞11>. 
         <compute_elapsed_time,∞11>. 
        (<time_elapsed,∞11>. 
         <average_conform,∞11>.<reset_timer, ∞11>. 
         <arrL,λL>.Meter1_L  
   +    <time_not_elapsed,∞11>. 
         <avrg_not_conform,∞11>. 
         <send_to_dropperL,γ>.Dropper_L  



S = {send_to_meterH, send_to_meterL};    +    <timeout,η>.Meter0_L ); 
 M  = {send_to_dropperH, send_to_dropperL}; 
Dropper: The dropper discards some or all malicious 
packets in a traffic stream according to the service 
provider policy. The dropper can be implemented as 
a special case of shaper by setting the buffer size to 
zero. It can be represented logically by a box with 
one input one output and its specification is the 
following: 

Arr = {arrH, arrL}; 
Del = {deliverH, deliverL}; 
 
When the model is loaded in TwoTowers [Bernardo, 
1998], its descriptions are syntactically and 
semantically analyzed using a parser for detecting 
errors, then TwoTowers will find all possible states 
and transitions or in another expression the labelled 
transition diagram.  

 
Dropper_H = <send_to_dropper,*>.<discard,∞11>. 

            Meter1_H 
5. PERFORMANCE ANALYSIS Dropper_L = <send_to_dropper,*>.<discard,∞11>. 

           Meter1_L  
 TwoTowers will give us the steady state and the 

transient state distribution probability vector. So 
given the CTMC diagram and the value of the 
probability distribution in steady and transient states, 
we can evaluate the performance of the system by 
using queueing system theory. For example, the 
throughput which is given by the service rate 
multiplied by the stationary probability of being in a 
state where service action can be provided is given by 
the following formula: 

Priority queueing: The final agent is the queue where 
packets wait before being served (forwarded to next 
hop). We have taken a preemptive queue (e.g., 
arriving of high priority packet will interrupt the 
service of low priority packet already in service 
phase) with priority inter-arrival policy in the sense 
that if the queue is full and a high priority packet 
arrives, it will drop a low priority packet (if the queue 
contains at least one) in order to accept the high 
priority packet, but if it contains only a high priority 
packet, the arrival packet will be lost (dropped). The 
specification of this queue (M/M/1/N) [Thomas and 
Hillston, 1997] is the following:  

T = ∑  
=

πµ
N

2i
i.

The utilization rate was defined to be the percentage 
of time the router spent in doing useful work by the 
fraction of time, and which is the sum of the 
stationary probabilities of states where there is at 
least one packet in the system. It is given by the 
following formula: 

 
Queue0,0 = <arrH,*>. Queue1,0 + <arrL,*>. Queue0,1;  
Queuei,0 = <arrH,*>. Queuei+1,0 + <arrL,*>. Queuei,1             

                   + <deliverH,*>. Queuei-1,0;                  (if 0<i<N-1) 
Queue0,j = <arrH,*>. Queue1,j + <arrL,*>. Queue0,j+1    

                     + <deliverL,*>. Queue0,j-1;                      (if 0<j<N-1) 
U= =   ∑

=
π

N

2i
i ).1( ∑

=
π

N

2i
iQueuei,j = <arrH,*>. Queuei+1,j + <arrL,*>. Queuei,j+1               

                    + <deliverH,*>.Queuei-1,j The vector distribution probability πi for all states is 
given by TwoTowers and the utilisation rate can be 
calculated by a simple addition. 

             + <deliverL,*>.Queuei,j-1;  
                                                     (if i,j>0 and i+j<N-1) 
QueueN-1,0 = <deliverH,*>. QueueN-2,0; 
Queue0,N-1 = <deliverL,*>.Queue0,N-2 
                 + <arrH,*>.<looseL,∞2,1>.Queue1,N-2; 
Queuei,j =   <deliverH,*>.Queuei-1,j  
             +    <deliverL,*>.Queuei,j-1  
             +   <arrH,*>.<looseL,∞2,1>.Queuei+1,j-1; 
                                                                              (if i,j>0 and i+j = N-1) 
Pre_Server = <deliverH,∞2,1>.<serve,µ>.Pre_Server             

The Markovian analyzer implemented in TwoTowers 
allow an automatic derivation of performance model 
and may allow us to avoid the full scan to the CTMC 
diagram, which will be exceedingly expensive, 
especially if we have a large number of states. The 
performance aspects of a system model in EMPA, 
can be taken into account in the early stages of its 
design (with algebra description), where performance 
measures can be specified by attaching a yield reward 
yi to every state i, which expresses the rate at which 
reward is accumulated at state i, and by attaching a 
bonus reward bi,j to every transition from state i to 
state j, which expresses the instantaneous gain due to 
the execution of the transition from state i to state j. 
Readers interested about yield and bonus rewards can 
refer to [Bernardo, 1997]. Actions with reward will 
be specified by <a,r,y,b> instead of <a,r>, and the 
desired stationary performance measure can be 
computed in EMPA according to the following 
formula: 

 

                  + <deliverL,∞1,1>.ServePLLow; 
ServePLLow = <serve,µ>.Pre_Server  
              +   <deliverH, ∞2,1>.<serve,µ>. ServePLLow; 
 
In order to obtain the complete DiffServ router 
specification, the individual agents described above 
need to be composed like in the following expression: 
 
DiffServ = Classifier ||T Markers ||S Meters ||M   

              Droppers ||Arr Queue00 ||Del Pre_emp_Server 
Markers = Marker_L || Marker_H 
Meters =  Meter0_H || Meter0_L 
Droppers = Dropper_L || Dropper_H 
T = {send_msgH, send_msgL}; 
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Many performance measures can be obtained using 
this formula, for example: if we want to compute the 
throughput, we must replace every action of the form 
<serve,µ> with <serve,µ,µ,0> (e.g., yi=µ and bij=0) 
for obtaining the following equation: 

∑∑∑
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Mean system size 
    Mean packet arrival rate

EMPA will take into account all states that provide 
the action "serve" and will assign a reward to them. 
The first state is where no packet in the router and 
this is why it can not provide the action "serve". 
 
As a performance measure, we have computed the 
throughput and the router utilization by using the 
reward technique of EMPA. This is done by 
replacing every action <serve,µ> by <serve,µ ,µ,0> 
in our semantics model for obtaining the throughput, 
and by replacing every action <serve,µ> by 
<serve,µ,1,0> in order to obtain the utilization rate. In 
contrast, the algebra based method (reward 
technique) fails to determine the mean number and 
the mean waiting time of packets for each class due 
to the additivity assumption of transition labeled with 
"serve" action, and values for these performance 
aspects were calculated by a manual full scan to the 
transformed specification (CTMC diagram) and by 
using the probability distribution vector given by 
TwoTowers.   
The mean number of packet in the system can be 
obtained by using the following formula: 

The mean number of packet =  ∑
=

π
N

2i
i.i

 
And the mean packet delay (MPD) for each class is 
found by using Little’s law: 
 
               MPD = 
 
 

Mean packet arrival rate =  i

N

1i
i.πλ∑

=
 

 
Where λi take the value of λH for packet with high 
priority and λL for packet with low priority. 
 
The throughput was 2.38 packet/s, the utilisation rate 
was 33.34% and the mean waiting time was 1.12s for 
a packet in class high and 2.48s for packet in class 
low. These unacceptable results lead us to a set of 
experiment in order to detect the effect of each 
component at its performance. We begin by examine 
the effect of changing the rate (speed) of the marker 
at the system performance.  
 
Figure 5.a shows that the throughput increases by 
increasing marker speed but reaches a threshold 

afterwere there is no effect of increasing its speed at 
the system performance, and this effect can be 
explained by the limited speed of the classifier. 
However the utilisation rate of the marker decreases 
significantly by the fact of speeding the marker, 
because packets will spend a less time before being 
forwarded to next stage. The mean packets waiting 
time decreases slightly when we decrease the rate of 
this component because packets spend less time in 
this component. 
 

 
Figure 5. Effect of speeding up the marker 

 
We have experimented the effect of speeding up the 
meter (increasing its rate) at the performance model. 
Like expected the throughput and the utilisation rate 
of the model increase and reach quickly a maximum 
threshold value (curves variation are similar to those 
in Figure 5). 
 
The same experiment was repeated for the classifier 
and the queueing server. We have found that there 
was little profit from speeding up any of these 
components apart at the model performance.  
 
The result of these experiments motivate us to 
another set of experiments in order to investigate the 
effect of speeding up many components at the system 
performance, because every time we have increased 
the rate of a component we have found: the 
throughput of the system increases, the utilisation rate 
fluctuate, and the mean packet delay decreases for 
each class but still inside a specific margin.  
 
Figure 6 shows the result obtained by speeding up the 
marker and the queueing server, it can be seen from 
this figure that the increase of throughput is not at the 
expense of utilisation rate like we have seen when 
speeding up one component alone.   
 
We discover from these experiments that we can use 
relatively a slow classifier with no big influence at 



the system throughput in contrast like we have been 
thought. This result can be interpreted by the time 
that packets spend in other components especially in 
the server queueing. 
 

 
Figure 6. Effect of speeding up the marker and the server 

 
6. CONCLUSIONS  
 
The main aim of this work was to present a simple 
DiffServ router model and to analyze its functional 
and performance properties using stochastic process 
algebra. In order to achieve that, we begin by an 
algebraic description of this router using stochastic 
process algebra then we use EMPA tool 
(TwoTowers) for analyzing and detecting a 
missbehavioural functional error such as freedom 
from deadlock. After qualitative verification, a set of 
experiment has been done in order to detect the effect 
of each component at the performance of this model. 
Fortunately, the reward-based method in EMPA 
provides an automatic derivation for some 
performance aspect in our model (like throughput, 
utilisation rate...), but unfortunately not all. 
Therefore, a full scan to the CTMC diagram derived 
from the EMPA supported tool is necessary. 
 
These experiments lead us to discover some 
interesting information about which component limits 
the throughput and other performance aspect. It 
demonstrates that we can use a relatively slow 
component in the model with no significant 
difference in the throughput in contrast to that it has 
been thought originally. 
 
The coexistence of three kinds of actions in EMPA 
and especially the prioritized weighted action was a 
great characteristic because these actions are not 
taken in account in the performance semantic model 
(CTMC diagram) and this aids us to include only 
actions which are important for determining 
performance aspects. 
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