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Abstract

An open exponential queueing network with signals

and impatient service is considered. Upon comple-

tion of service at a node, a positive customer passes

to another node with fixed probabilities either as a

positive customer or as a signal, or quits the network.

Every signal is activated during a random exponen-

tially distributed amount of time. Activated signals

with fixed probabilities either move a customer from

the node they arrive to another node or kill a pos-

itive customer. Each customer can be served in a

node at most a random time (”patient” time) dis-

tributed exponentially. When the patient service is

finished, the customer with fixed probabilities either

goes to another node or quits the network. The sta-

tionary state probabilities for such a G-network in

which positive customers are processed in each node

by a single server is derived in product form. The

solution for an analogous symmetrical G-network in

which service rate of a positive customer at each node

depends on the number of positive customers in this

node is expressed in product form too.

Keywords: G-networks, positive customers, impa-

tient service and product form solution.
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1 Introduction

In the last years queueing networks with ”negative

and positive customers, triggers, signals”, called G-

networks have been studied and solution in product

form have been obtained [Gelenbe and Pujolle, 1998].

Positive customers are ordinary customers and they

are served by the server in the normal way, instead a

negative customer deletes (kills) a positive customer,

or a trigger, which moves a positive customer from

a node to another one; a signal combines these two

kinds of customers and can act either as a negative

costomer or as a trigger. The analysis of this new

class of queueing networks was first inspired by the

study of neural networks. G-networks can be applied

too in performance evaluation of computer networks,

to model, for example, the effect of flow control [Ge-

lenbe and Pujolle, 1998]. A vast review of papers con-

cerning with G-networks is done in [Artalejo 2000].

We consider queueing networks with positive cus-

tomers and signals. External arrival flows of posi-

tive customers and signals are independent Poisson

processes. The service times of positive customers

at each node are exponentially distributed. Upon

completion of service at a node, a positive customer

passes to another node with fixed probabilities ei-

ther as a positive customer or as a signal, or quits

the network. Every signal is activated during a ran-

dom exponentially distributed amount of time. Ac-

tivated signals with fixed probabilities either move a

customer from the node they arrive to another node

or kill a positive customer. We assume additionally

that each customer can be served in a node at most

a random time (”patient” time) distributed exponen-

tially. When the patient service is finished, the cus-

tomer with fixed probabilities either goes to another

node or quits the network.

A G-network with instantaneous signal activation

is studied in [Gelenbe and Pujolle, 1998]. An analo-

gous G-network with random signal activation period

without impatient time is considered in [Bocharov

2002]. The stationary state distributions for the

networks considered in [Gelenbe and Pujolle, 1998],

[Bocharov 2002], were derived in product form. In

this paper, the stationary state distribution for a G-

network with random delay of signals and impatient

service in which positive customers are processed by

a single server is derived in product form. Moreover,

the solution for an analogous symmetrical G-network

in which service rate of a positive customer at each

node depends on the number of positive customers in

this node is expressed in product form too.

2 Mathematical model

We deal with G-networks with M nodes, positive cus-

tomers and signals. Positive customers and signals

arrive from outside (from node 0) according to inde-
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pendent Poisson processes. We denote, respectively,

with λ+
0i and λ−0i the arrival rate of external positive

customers and external signals at node i.

The service of a positive customer is completed at

node i with probability µ+
i (k)∆ + o(∆) in a time

interval (t, t+∆), provided that k positive customers

are present at this node at instant t.

Upon completion of service at node i, a positive

customer goes from node i to node j with probability

p+
ij as a positive customer, and with probability p−ij

as a signal. He leaves the network with probability

pi0 = 1−
M∑

j=1

(p+
ij + p−ij).

Every signal is activated during a random time. A

signal arriving at node i is activated in a time interval

(t, t + ∆) with probability µ−i (n)∆ + o(∆), provided

that n non activated signals are present at this node

at instant t.

After the completion of the activation period a sig-

nal:

- with probability q+
ij moves a positive customer

from node i to node j and retains him as a positive

customer (in this case, a signal acts as a trigger);

- with probability q−ij moves a positive customer

from node i to node j and retains him as a signal;

- with probability qi0 kills a positive customer at

node i and he vanishes (in this case, the signal acts

as a negative customer).

If there are not positive customers at node i an

activated signal at the node disappears.

The impatience time of a customer in the node i is

completed in a time interval (t, t+∆) with probability

γi(k)∆ + o(∆), provided that k positive customers

are present at this node at instant t. Then a positive

customer with probability r+
ij goes from node i to

node j as a positive customer, with probability r−ij as

a signal, and with probability ri0 = 1−
M∑

j=1

(r+
ij + r−ij)

he leaves the network.

3 Equilibrium equations

Let us denote with P+, P−, Q+, Q−, R+, R− the

matrices with elements p+
ij , p−ij , q+

ij , q−ij , r+
ij , r−ij , re-

spectively, i, j = 1,M , and let us set P = P+ + P−,

Q = Q+ + Q−, and R = R+ + R−.

The stochastic behaviour of the queueing network

under consideration can be described by an homoge-

neous Markov process {X(t), t ≥ 0} with the fol-

lowing state space:

X={((k1, n1), ..., (kM , nM )), ki ≥ 0, ni ≥ 0, i = 1,M}.

The state ((k1, n1), (k2, n2), ..., (kM , nM )) means that

at any instant there are k1 positive customers and n1

non-activated signals at node 1, k2 customers and n2

signals at node 2, ..., and finally, kM customers and

nM signals at node M .

Introducing vectors ~k = (k1, k2, ..., kM ) and

~n = (n1, n2, ..., nM ), let us take (~k, ~n) =

((k1, n1), (k2, n2), ..., (kM , nM )). We also introduce
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the vector ~ei with i − th component equal to 1 and

other components equal to 0. We also use the nota-

tion λ+
0 =

M∑
i=1

λ+
0i and λ−0 =

M∑
i=1

λ−0i.

Let p(~k, ~n) denote the stationary probability of

the state (~k, ~n). If the stationary distribution

{p(~k, ~n), ~k, ~n ≥ ~0} of the process {X(t), t ≥ 0}

exists, then the following system of equilibrium equa-

tions holds:

p(~k, ~n)(λ+
0 + λ−0 +

M∑
i=1

µ+
i (ki)(1− p+

ii) +
M∑
i=1

µ−i (ni)

+
M∑
i=1

γi(ki)(1− γ+
ii )) =

M∑
i=1

p(~k − ~ei, ~n)λ+
0iu(ki)+

M∑
i=1

p(~k, ~n− ~ei)λ−0iu(ni)+

M∑
i=1

p(~k + ~ei, ~n)µ+
i (ki + 1)pi0+

M∑
i=1

p(~k + ~ei, ~n + ~ei)µ−i (ni + 1)qi0+

M∑
i=1

p(~k + ~ei, ~n)γi(ki + 1)ri0+

M∑
i=1

p(~k, ~n + ~ei)µ−i (ni + 1)(1− u(ki))+

M∑
i=1

M∑
j=1,j 6=i

p(~k + ~ei − ~ej , ~n)µ+
i (ki + 1)p+

iju(kj)+

M∑
i=1

M∑
j=1

p(~k + ~ei, ~n− ~ej)µ+
i (ki + 1)p−iju(nj)+

M∑
i=1

M∑
j=1

p(~k + ~ei − ~ej , ~n + ~ei)µ−i (ni + 1)q+
iju(kj)+

M∑
i=1

M∑
j=1,j 6=i

p(~k + ~ei, ~n + ~ei − ~ej)µ−i (ni + 1)q−iju(nj)+

M∑
i=1

p(~k + ~ei, ~n)µ−i (ni)q−ii +

M∑
i=1

M∑
j=1,j 6=i

p(~k + ~ei − ~ej , ~n)γi(ki + 1)r+
iju(kj)+

M∑
i=1

M∑
j=1

p(~k + ~ei, ~n− ~ej)γi(ki + 1)r−iju(nj),

(~k, ~n) ∈ X ,

(1)

where µ+
i (0) = 0, µ−i (0) = 0, γi(0) = 0 and u(x) is a

unit Heavyside function.

4 Solution in product form

We can not possible find the general product-form of

the system of equations (1). Nevertheless, solutions

for two important cases are given.

4.1 Service of positive customers by a

single server

Consider a network in which positive customers are

served at every node by a single server and the ser-

vice time at node i is exponentially distributed with

parameter µ+
i . Therefore

µ+
i (ki) = u(ki)µ+

i , i = 1,M. (2)

We also assume that

γi(ki) = u(ki)γi, i = 1,M. (3)

Let us introduce the following notations:

qi =
λ+

i

λ−i + µ+
i + γi

, ρ−i (j) =
λ−i

µ−i (j)
, i, j = 1,M.

(4)

λ+
i = λ+

0i +
M∑

j=1

qj(µ+
j p+

ji + λ−j q+
ji + γjr

+
ji), i = 1,M,

λ−i = λ−0i +
M∑

j=1

qj(µ+
j p−ji + λ−j q−ji + γjr

−
ji), i = 1,M.

(5)

As in [1] we can prove that there exists a unique pos-

itive solution λ+
i , λ−i , i = 1,M of the system of equa-

tions (5).
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Besides let us denote

Λ0 =
M∑

j=1

qjµ
+
j pj0 +

M∑
j=1

qjλ
−
j qj0 +

M∑
j=1

qjγjrj0. (6)

From (4) - (6) we obtain

Λ0+
M∑

j=1

(λ+
j +λ−j ) = λ+

0 +λ−0 +
M∑

j=1

qj(µ+
j +λ−j +γj) =

λ+
0 + λ−0 +

M∑
j=1

λ+
j .

Therefore

Λ0 +
M∑

j=1

λ−j = λ+
0 + λ−0 . (7)

The following theorem holds.

Theorem 1 If the matrices P , Q, and R are irre-

ducible, conditions (2) and (3) hold, and a unique

positive solution of equations (5) exists such that

λ+
i < λ−i + µ+

i + γi, i = 1,M,

Gi =
∞∑

ni=0

ni∏
j=1

ρ−i (j) < ∞, i = 1,M,

then the Markov process {X(t), t ≥ 0} is ergodic

and its stationary distribution is represented in a

product form as

p(~k, ~n) =
M∏
i=1

p(ki, ni), (8)

where

p(ki, ni) = (1− qi)qki
i G−1

i

ni∏
j=1

ρ−i (j), ki, ni ≥ 0.

(9)

and
0∏

j=1

≡ 1.

Proof. The substitution of expressions (8), (9),

(4) for the stationary distribution of the process

{X(t), t ≥ 0} into the equilibrium system of equa-

tions (1) leads to the following equalities:

λ+
0 + λ−0 +

M∑
i=1

µ+
i u(ki) +

M∑
i=1

µ−i (ni) +
M∑
i=1

γiu(ki)=

M∑
i=1

λ+
0i

qi
u(ki) +

M∑
i=1

µ−
i

(ni)

λ−
i

λ−0i +
M∑
i=1

qiµ
+
i pi0+

M∑
i=1

qiλ
−
i qi0 +

M∑
i=1

qiγiri0 +
M∑
i=1

λ−i (1− u(ki))+

M∑
i=1

M∑
j=1

qi

qj
µ+

i p+
iju(kj)+

M∑
i=1

M∑
j=1

qi
µ−

j
(nj)

λ−
j

µ+
i p−ij +

M∑
i=1

M∑
j=1

qi

qj
λ−i q+

iju(kj)+

M∑
i=1

M∑
j=1

qi
µ−

j
(nj)

λ−
j

λ−i q−ij +
M∑
i=1

M∑
j=1

qi

qj
γir

+
iju(kj)+

M∑
i=1

M∑
j=1

qi
µ−

j
(nj)

λ−
j

γir
−
ij .

(10)

The latter equality takes place for all (~k, ~n) ∈ X .

Let us denote by

A =
M∑
i=1

µ−
i

(ni)

λ−
i

λ−0i +
M∑
i=1

M∑
j=1

qi
µ−

j
(nj)

λ−
j

µ+
i p−ij+

M∑
i=1

M∑
j=1

qi
µ−

j
(nj)

λ−
j

λ−i q−ij +
M∑
i=1

M∑
j=1

qi
µ−

j
(nj)

λ−
j

γir
−
ij .

Taking into account (5) we obtain

A =
M∑

j=1

µ−j (nj). (11)

Further let us denote by

B =
M∑
i=1

λ+
0i

qi
u(ki) +

M∑
i=1

M∑
j=1

qi

qj
µ+

i p+
iju(kj)+

M∑
i=1

M∑
j=1

qi

qj
λ−i q+

iju(kj) +
M∑
i=1

M∑
j=1

qi

qj
γir

+
iju(kj).

After some transformations of the right part with
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combination with (5) we obtain

B =
M∑

j=1

λ−
j

+µ+
j

+γj

λ+
j

[λ+
0j+

M∑
i=1

qi(µ+
i p+

ij + λ−i q+
ij + γir

+
ij)]u(kj) =

M∑
j=1

(λ−j + µ+
j + γj)u(kj).

(12)

Finally let us introduce

C = Λ0 +
M∑
i=1

λ−i (1− u(ki)). (13)

Then the right part of equalities (10) can be repre-

sented as A + B + C. Then we have

A + B + C =
M∑

j=1

µ−j (nj) +
M∑

j=1

(λ−j + µ+
j + γj)u(kj) + Λ0+

M∑
i=1

λ−i −
M∑
i=1

λ−i u(ki) =

M∑
j=1

µ−j (nj) +
M∑

j=1

(µ+
j + γj)u(kj) + Λ0 +

M∑
i=1

λ−i =

λ+
0 + λ−0 +

M∑
j=1

µ−j (nj) +
M∑

j=1

(µ+
j + γj)u(kj).

This coincides with the left part of equalities (10).

Thus the substitution of (8), (9) into the system of

equations (1) - (3) leads to a system of identities for

all (~k, ~n) ∈ X . Under the assumptions of the theorem

the expressions (8), (9) determine a positive solution

of the equilibrium system of equations (1) - (3) and

this solution is bounded. Moreover under theorem as-

sumptions the process {X(t), t ≥ 0} is irreducible.

Therefore, according to Foster’s theorem the process

is ergodic and the relations (8), (9) give us its unique

stationary distribution. Thus, the theorem is proved.

4.2 Symmetrical network

We consider the network described in the section 2

with (i, j = 1,M)

p+
ij = q+

ij = r+
ij , p−ij = q−ij = r−ij , pi0 = qi0 = ri0. (14)

It is convenient to call a queueing network under

these conditions as a symmetrical network.

Let us introduce the following notations:

qi(j) =
λ+

i

λ−i + µ+
i (j) + γi(j)

, ρ−(j) =
λ−i

µ−i (j)
,

i, j = 1,M. (15)

λ+
i = λ+

0i +
M∑

j=1

λ+
j p+

ji, i = 1,M,

λ−i = λ−0i +
M∑

j=1

λ+
j p−ji, i = 1,M.

(16)

If the matrix P is irreducible, the system (16) has a

unique positive solution for λ+
i , λ−i , i = 1,M .

Let us denote

Λ0 =
M∑
i=1

λ+
i pi0. (17)

From (16) and (17) we obtain

Λ0 +
M∑

j=1

(λ+
j + λ−j ) = λ+

0 + λ−0 +
M∑

j=1

λ+
j .

This yields

Λ0 +
M∑

j=1

λ+
j = λ+

0 + λ−0 . (18)

The relation (18) formally coincides with relation (7)

obtained for the case of single-server processing of

positive customers but the values of λ+
i and λ−i for
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the symmetrical network are determined from an-

other system of equations which is a linear one.

Theorem 2 If matrix P is irreducible and the fol-

lowing conditions hold (i = 1,M):

Fi =
∞∑

ki=0

ki∏
j=1

qi(j) < ∞, Gi =
∞∑

ni=0

ni∏
j=1

ρ−(j) < ∞,

then the Markov process {X(t), t ≥ 0} is ergodic

and its stationary distribution is represented in a

product form as

p(~k, ~n) =
M∏
i=1

p(ki, ni), (19)

where

p(ki, ni) = F−1
i G−1

i

ki∏
j=1

qi(j)
ni∏
l=1

ρ−l (j), ki, ni ≥ 0.

(20)

Proof. We make the substitution of (19), (20) into

the system of equations (1), for which the assump-

tions (14) take place.

After some algebraic transformations we obtain the

equality

λ+
0 + λ−0 +

M∑
i=1

µ+
i (ki) +

M∑
i=1

µ−i (ni) +
M∑
i=1

γi(ki) =

M∑
i=1

µ+
i (ki)p+

ii +
M∑
i=1

γi(ki)p+
ii +

M∑
i=1

λ+
0i

qi(ki)
u(ki)+

M∑
i=1

µ−
i

(ni)

λ−
i

λ−0i+

M∑
i=1

qi(ki + 1)µ+
i (ki + 1)pi0 +

M∑
i=1

qi(ki + 1)λ−i pi0+

M∑
i=1

qi(ki + 1)γ+
i (ki + 1)pi0 +

M∑
i=1

λ−i (1− u(ki))+

M∑
i=1

M∑
j=1,j 6=i

qi(ki+1)
qj(kj)

µ+
i (ki + 1)p+

iju(kj)+

M∑
i=1

M∑
j=1

µ−
j

(nj)

λ−
j

qi(ki + 1)µ+
i (ki + 1)p−ij+

M∑
i=1

M∑
j=1,j 6=i

qi(ki+1)
qj(kj)

λ−i p+
iju(kj)+

M∑
i=1

λ−i p+
iiu(ki) +

M∑
i=1

M∑
j=1

µ−
j

(nj)

λ−
j

qi(ki + 1)λ−i p−ij+

M∑
i=1

M∑
j=1,j 6=i

qi(ki+1)
qj(kj)

γi(ki + 1)p+
iju(kj)+

M∑
i=1

M∑
j=1

µ−
j

(nj)

λ−
j

qi(ki + 1)γi(ki + 1)p−ij .

(21)

This equality is true for all (~k, ~n) ∈ X .

Similarly to the proof of the theorem of the previ-

ous case we transform the right part of the equality

(21). Let us denote by

A =
M∑
i=1

µ−
i

(ni)

λ−
i

λ−0i+

M∑
i=1

M∑
j=1

µ−
j

(nj)

λ−
j

qi(ki + 1)µ+
i (ki + 1)p−ij+

M∑
i=1

M∑
j=1

µ−
j

(nj)

λ−
j

qi(ki + 1)λ−i p−ij+

M∑
i=1

M∑
j=1

µ−
j

(nj)

λ−
j

qi(ki + 1)γi(ki + 1)p−ij .

Taking into account the relation

qi(ki + 1)[λ−i + µ+
i (ki + 1) + γi(ki + 1)] = λ+

i ,
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we obtain

A =
M∑

j=1

µ−j (nj). (22)

Further let us denote by

B =
M∑
i=1

µ+
i (ki)p+

ii +
M∑
i=1

λ+
0i

qi(ki)
u(ki)+

M∑
i=1

M∑
j=1,j 6=i

qi(ki+1)
qj(kj)

µ+
i (ki + 1)p+

iju(kj)+

M∑
i=1

M∑
j=1,j 6=i

qi(ki+1)
qj(kj)

λ−i p+
iju(kj) +

M∑
i=1

λ−i p+
iiu(ki)+

M∑
i=1

γi(ki)p+
ii +

M∑
i=1

M∑
j=1,,j 6=i

qi(ki+1)
qj(kj)

γi(ki + 1)p+
iju(kj).

After some transformations of the right part with

combination with (15) and (16) we obtain

B =
M∑

j=1

(λ−j u(kj) + µ+
j (kj) + γj(kj)). (23)

Finally, introducing

C = Λ0 +
M∑
i=1

λ−i (1− u(ki)) (24)

we represent the right part of equalities (21) as A +

B + C.

Using (22) - (24), where Λ0, λ+
i and λ−i are deter-

mined by relations (16) and (17), we represent the

right part of the equality (21) in the following form:

A + B + C =
M∑

j=1

µ−j (nj) +
M∑

j=1

(λ−j u(kj) + µ+
j (kj) + γj(kj))+

Λ0 +
M∑
i=1

λ−i −
M∑
i=1

λ−i u(ki) =

M∑
j=1

µ−j (nj) +
M∑

j=1

(µ+
j (kj) + γj(kj)) + Λ0 +

M∑
i=1

λ−i =

λ+
0 + λ−0 +

M∑
j=1

µ−j (nj) +
M∑

j=1

(µ+
j (kj) + γj(kj)).

Thus the substitution of (19), (20) into the system

of equations (1), (14), for all (~k, ~n) ∈ X , leads to a

system of identities. Therefore, the expressions (19),

(20) give a solution of the equilibrium system of equa-

tions (1), (14) which under the assumptions of the

theorem is positive and bounded. As a consequence

of this result the process {X(t), t ≥ 0} is ergodic,

thus the theorem is proved.

4.3 Conclusion

G-networks provide a versatile class to model com-

plex systems in various applications fields such as

computer network and telecommunication systems.

In this paper we extended the results of G-netwowks

with product form solution introducing the impatient

service. We provided a proof of the product form re-

sults for a network in which positive customers are

processed by a single server at every node and for a

simmetrical networks.
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