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Abstract. This paper presents some views on the problem of application-specific systems (ASCS) performance 
modelling based on statistical measurement during a program's run time. The probabilistic model considered in 
this paper defines a performance measure relative to a given domain of application tasks, and it may be used as a 
base for performance verification. This measure follows a random sum of random summands, corresponding to 
various runtime component execution times. We consider theoretically whether the current state-of-the-art of 
random sums' theory can be used as  the basis of applied ASCS performance modelling. Relying on the results of 
the analysis,  it is possible to construct a mathematical model which is based on a random sum of the program's  
operations execution times  
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1. INTRODUCTION 
 
Performance analysis to predict the execution time of 
target programs is the basis of the effective design of 
various application-specific computer systems 
[ASCS]. Let us consider the prototyping stage (either 
physical or virtual) of the design process (which may 
follow the high-level synthesis, simulation). Usually, a 
designer has a hardware platform variant by this time, 
as well as a sufficient suite of software modules. In the 
design phase, the designer tries to define the 
performance parameters of the application software by 
using a trace analysis tool. Let us call as 
"measurement-based", any approach to the execution 
time prediction, which is based on the results of the 
tracing and the profiling of a prototype of system 
design. Ideally, the timing performance verification at 
this design stage requires a mathematical model to 
represent the time in terms of some system 
characteristics, namely, in terms of the measured times 
of execution of some of the runtime components (e.g., 
function calls, basic blocks). Various mathematical 
models that enable the execution time prediction in 
terms of these measurements results have been 
suggested by [Saavedra and Smith, 1989; Li, 1996; 
Gautama, 1998]. Some of these models are 
deterministic in nature, and they just try to compute 
the execution time in terms of the various performance 
“indexes” (e.g., "cycles per instruction" (CPI) or their 
a high-level analog ) [Ferrari, 1983; Saavedra, 
1996;Hennessy, 1996]. Since applications' behavior 
are stochastic (e.g., due to data dependency in 
programs), the probabilistic performance models are 
most appropriate for this aim [Gautama, 1998]. 
However, these probabilistic models are not very 
practical, since on the one hand, they are based on 
some specific program models, and, on the other hand, 
they are fairly time-consuming. Since, in general, the 
execution time is a random sum of random durations 

of the above mentioned  runtime components, which  
may be random values, thereby, the number of these 
components are also often random, the random sums 
theory would be very helpful for the performance 
modelling. This paper considers theoretically whether 
the current state-of-the-art of random sums theory can 
be used as a basis of applied ASCS performance 
modelling. The rest of the paper is organized as 
follows. Section 2 describes some related work 
concerning programs' execution times prediction. 
Section 3 describes the structure of execution time. 
Section 4 describes random sums concerning the 
execution time definition. Section 5 describes a 
random sum based mathematical model in terms of 
programs' operation execution time. Section 6 
describes an example of an application-specific system 
performance analysis, which is based on the model. 
This paper, because of limited size, does not contain 
detailed statistical techniques description, but it only 
briefly explains some ideas.  
 
 
2.  MEASUREMENT-BASED PERFORMANCE  
     MODELS. RELATED WORKS  
 
Presently the prevalent approach to ASCS 
performance prediction is based on CPI conception 
(mentioned above), and represents the time spent  by a 
processor to complete the task [Hennessy, 1996]: 
 
CPU_time=Clock_Cycle_Time∑i=1,n(CPI(i)*IC(i))               (2.1)                
                                                                                                          
where CPI(i) is the average cycles per instruction for i-
th instruction class (e.g. float-pointed, arithmetic, etc.),  
IC(i) is the counter of i-th instruction, i=1,2,...n are the 
indexes of  the instructions set. 
More advanced deterministic ways of execution time 
prediction have been suggested in [Saavedra, 1996], 
where the machine model consists of a set of abstract 



operations of some particular programming language. 
The predicted execution time of program A on 
machine M is performed by using detailed measured 
information about the execution time of these 
constructs. Since the models are not probabilistic, they 
may not provide relevant devices to estimate the 
performance prediction accuracy for some target 
applications set. Since the goal of our work is to 
predict the execution time of a program on an 
application-specific system, we have to be able to 
estimate both the accuracy of the prediction and the 
representative features of the data sample used. It is 
clearly an impossibility to provide it in the framework 
of such deterministic conceptual model. 
 
Many probabilistic models of execution time 
estimation (applicable both for sequential and 
concurrent systems) have been suggested recently [Li, 
1996; Gautama, 1998]. These models have been 
developed in the framework of a "task graph" 
conception [Adve,1993]. A task graph is a directed 
acyclic graph (DAG) in which nodes represent some 
subtasks and arcs represent the data-dependencies 
among the subtasks (in terms of which the program is 
represented). Correspondingly, DAG-based models 
consider the programs as a set of tasks on a particular 
input, and consider the program trace in terms of a task 
set. In [Adve, 93] the focus of the work is on the 
behaviour of a parallel program for a single input data 
set, rather than across different input sets, that takes 
place in case of ASCS designing. In this case, a 
characteristic of execution time concerning some input 
domain would be more interesting. The program in 
this model is decomposed into computationally 
homogeneous subtasks, and the computational 
requirements for each subtask are determined. The 
application is assumed to consist of a set of non-
overlapping code segments that are totally ordered in 
time. The total execution time of the application is the 
sum of the execution times of all its code segments. 
 
In fact, current publications [Adve, 93; Gautama, 
1998] either assume that the execution time is 
normally distributed, or try to estimate the 
distributions by computing of moments of the program 
execution time. However, since by using various 
probability models we deal with decision rules like 
inequalities Prob( S<t), Prob( S>t), where S is a 
random value, t is a real one, dealing with so-called 
"distribution tails", the assumptions about distributions 
mentioned above may lead to situation of the dramatic 
loss of accuracy.  Secondly, the rate of convergence to 
the normal  distribution may turn out rather slow, so 
the using  the sum may be not suitable if we consider a 
trace as a sequence of several quite big tasks. Besides, 
these models deal, in fact, only with the deterministic 
sums of random items, whereas, the designers often 
deal with unknown numbers of sequential-performed 
activities that determine the total time execution, for 

example, as a result of a non-deterministic programs 
behaviour  due to branching, data dependencies. 
 
In  the above mentioned approaches, the programs-
and-data used for the model parameters estimation are 
assumed as sufficient to reflect the behaviour of all 
application domains of the designed system. The 
question is whether indeed set benchmarks are able to 
predict the machine performance on programs not 
included in the benchmark suite? For example, 
formula (2.1) assumes, in fact, that the CPI (i) values 
have to be estimated from a benchmark suite, while 
there is no any statistical model for its rational choice. 
 
 
3. STRUCTURE  OF  A  PROGRAM 
EXECUTION TIME 
 
Let us consider that we can apply special language 
features to split the program into intervals and to get 
performance characteristics for each interval. In 
general, the execution time of parallel programs on 
multiprocessor computers is determined by the various 
factors, e.g., a part of parallel calculations in the total 
volume of calculations time, or degree of overlapping 
of interprocessor communications with calculations. 
Ultimately, execution time is the maximum of the 
times of the program execution on each processor. 
 
Let us call as "Application Domain" (AD) any set of 
applied programs with all possible input data  to be 
executed on the designed applied platform. So, the 
application domain is defined by set of application 
programs {AP} with defined domains of their possible 
input data, that is an AD is  a set of pairs{ APi , IDi},  i 
is some integer, where each of APi is an applied 
program under input data IDi . 
 
Let O1. Oi ., Or be a set of some specific items ("basic 
operations" or some disjoint works, functions call,  
basic blocks), in terms of which we represent a 
program behaviour as a trace in a sequential manner. 
Each of Oi is characterized both by the type "i" (i=1,.r) 
and the random time of execution Xi with a 
distribution function Gi(Xi ) (in particular, they may be 
measured on some system prototype).  If the system 
can execute some operations simultaneously, thanks to 
either multiprocessing or availability of several 
executive units in one uni-processor (for example, as it 
is performed in Alpha 21264 [Alpha, 2000]), then we 
may consider corresponding individual combinations 
of operations that can be executed simultaneously. The 
time of the operations execution should be considered 
as some random variable. Note, that this randomness 
may take place both in multi-processors and single-
processor systems. The cache hit/miss, pipeline stalls 
due to hazard, may be considered as corresponding 
technical factors in a single processor.  
 



When we are able to describe a program runtime as a 
sequence of some activity pieces (which, in general, 
may be some aggregations of overlapped operations 
[Li, 1996]), the execution time of a program APi can 
be expressed as a sums of some summands, 
corresponding to the execution times, that is expressed 
as NP 
 
                            TP =  ∑i=1, NP (Xj)                         (3.1)                                                                                                                           
                                                                               
                                                 
where Xj  is the duration of j-th sequential actions in 
the trace, NP is the trace length, which should be 
considered as a random variable, because the different 
input data suites from a given program input domain 
may generate different paths in the program execution. 
 
For example, let us consider the distributed execution 
of any applications in a p-processors's  computer 
system [Ivannikov et al, 2000]. The application 
execution may be considered as an ordered system of n 
processes, where each of the processes is an activity 
dealing with a block of the application running, 
thereby there is a linear order of executions over the 
blocks set 1,.s, where s is the numbers of the blocks. 
Under some certain condition about the processes-and 
-block interactions (e.g. it is impossible to process 
each block more then on one processor 
simultaneously, each j-th blocks is distributed to j-th 
processor), and synchonization conditions (the end of 
a block in i-th processor coincides with the start of the 
next block execution in (i+1) processors),  the time of  
n concurrent processes execution is  
 
T =Σi=1,n-1

 max1 ≤u ≤ p [Σj=1,u tij - Σj=1, u-1 ti+1j ] 
+Σj=i,ptnj ,  

 
where tij is an execution time of j-th block of the i-th 
process.  
 
In practice, such times can be random ones, for 
example, because of some pipelining effects, the 
number of processes n may also be dependent of the 
program input data, .so we deal with the random sums. 
 
 
4. RANDOM SUMS  MODEL OF 
PERFORMANCE CHARACTERIZATION 
 
Let us consider some possibilities to estimate 
execution time using the random sums properties.       
We can consider the set of operation execution 
durations (which are the summands) as a  triangular 
array of independent non-negative integer-valued rv’s 
{τij }1≤j≤r, defined on a probability space (Ω,F,P), where 
F is a sigma-algebra, generated by random variables 
τij, r is a number of  operation types. "The columns" 
j=1,2….define the operations location in the sequence 
(in a program trace, in fact). In general, we may 

consider sampling sums deals with this "triangle array" 
scheme of random variables 
 
                                 Sn = Σm(j) vi.j τij                                    (4.1)                                             
 
 
where m(j) is a sequence of integer- random rv’s such 
that m(j) is a stopping time with respect to Fi

j,  that is 
{m(j)≤1}∈ Fi

j), vi.j are random variables taking values 
0 or 1, vij, τij are independent in each row. This sum 
corresponds to the scheme of random sampling from a 
population of real numbers without replacement, 
where the "population" is a set of arrays {τij }, each of 
which corresponds to a program trace. Note, that for 
some computer architectures, the operations duration 
can depend on the operation execution order because 
of pipelining and/or caching influence [Alpha, 2000].  
This circumstance is reflected in the sum (4.1 ), as vij, 
which determines implicitly the location of the 
operation "i" on a place "j" in program trace 
considered. 
 
So, in fact, (4.1) means that any program trace is a 
random sample from all possible traces, generated by 
input data (part of which, of course, can be understood 
as some "controls"). Any differences between traces 
are reflected in their operations composition, and rv's  
vi.j  just define if an operation "i" is present on j-th 
place in the trace, or it is absent. 
 
The key question of the execution time model choice 
is whether there exists a mathematical technique to 
compute such a distribution. 
 
 
4.1 Random Sums Theory:  an  Applied View 
 
The classical random sums theory results rely 
essentially on the Kolmogorov-Lindeberg  assumption 
[Zolotorev, 1997] about summands' smallness that is, 
in the general case, not to be justified for the execution 
times of program's operations. Some new results 
[Rahimov,1995] concern the asymptotic behaviour of 
(4.1) sums distribution, where the number of array 
rows (“i”) → ∞, where the above smallness 
assumptions have been transformed into more weak 
ones; that is the summand variances are decreasing as 
O( i2 ). However, this result is also not very practical, 
because it is asymptotical in nature, and, in fact, it 
requires to estimate a distribution of very sophisticated 
random value. 
 
To obtain more practical results we should include in 
the estimation model the knowledge about the 
distribution of numbers of summand Np in (3.1). For 
some creditable assumptions about the Poisson 
distribution of the number of operations, a uniform 
estimator for the sum distribution deviation about 
normal law has been obtained (The Berry-Essen 
inequality for Poisson random sums) [Bening and 



Korolev, 2002]. However, this result is also very 
difficult in  practice.  
 
Since our main goal is to characterize the performance 
relative to some set of programs ("application 
domain"), and, ultimately, presently the most practical 
execution time prediction techniques are various 
regression models (parametric, non-parametric), which 
deal with some conditional expectations values 
[Iverson, 1999], studying the expected value of 
execution time calculation issue is, perhaps, even more 
important then the probability distribution. 
 
 
4.2 Expected Value of Random Sums 
 
Speaking about expected values of execution time, we, 
in fact, should deal with various averaging techniques, 
that is just what we would have dealt with using any 
regression techniques of execution time estimation 
over a benchmarks set [Iverson et al, 1999]. 
One of the theoretical problems concerning the 
expected value definition is the Law of Large 
Numbers (LLN) conditions for the random sums. 
Strictly speaking, unlike the classical case of sums 
with non-random summands number, the limit for the 
"arithmetic mean" is a random value even for the 
independent identically distributed (i.i.d.) summands, 
thereby its distribution is completely determined by 
the asymptotic behavior of the random number of 
summands [Bening and Korolev, 2002]. So, one of 
questions is to provide some appropriate averaging.    
 
Formally, we can rely on fact that the above triangular 
array model corresponds to i.i.d  summands, where the 
distribution is a mixture of operation type duration 
distributions Gi(x) (Section 3 )  that is    
                   
           G(x)=Prob(τij ≤x ) =∑i=1,r pj

 Gi(x)            (4.2.1)                                                                       
 
where pj are  probabilities of appearance of each of the 
r operations type in the program traces. 
 
Following  the Wald identity, we can express the 
expected value of the execution time as 
   
                    E(TE )= E(Np)E(x)                           (4.2.2)                                                                 
 
where E(Np) is the expected value of the trace length 
Np over an application domain considered, 
 
E(X)= ∫ xG(x)dx =∑ i=1,r pi ∫xGi(x)dx = ∑i=1,r pi E(τi),  
           Гx                            Гx 
 
Гx is an integration domain (corresponding to x 
definition).  
  
So, the expected value of the execution time can be 
expressed as  
 

             E(TE)= E(Np)∑j=1,r pj E(τj)                      (4.2.3)                             
 
Taking into account above remark about logical 
difficulties of LLN performing due to randomness of 
the numbers of summands, the main question deals 
with the {pj }estimation, which, in classical case ( 
when Np is a deterministic value) would be estimated 
as Ki/ Np, where Ki is the numbers of i-th operations 
appearances in a representative set of traces from an 
application domain considered. To overcome this 
problem let us consider an obvious way of the 
execution time TE representation in terms of the i.i.d. 
rv's, corresponding to the  execution time structure 
(Section 3)   
 
                          TE=Σi=1,rΣj=1,Kiτij (4.2.4)                             
 
where the summands in the inner sum  are i.i.d.  rv’s,  
thereby, all the numbers of i-th operation appearances 
Ki  are mutually dependent (but they are  independent 
of the  r.v’s  τij),  K1+ ... + Kr= Np.  The Wald  identity 
can be expressed in this case [Khokhlov, 2003] as 
 
                        E(TE ) =Σi=1,r E(τi)E(Ki)              ( 4.2.5)                              
 
where single index “i” is used just to stand for the fact, 
that all operations of “i” types have the same 
distribution. Dividing the right side of (4.2.3) by 
E(Np), we obtain   
                                                 
    E(TE)/E(Np) = ∑i=1,r (E(Ki )/E(Np))E(τi)         (4.2.6)                               
   
Comparing (4.2.3) and (4.2.6) we can obtain the 
probability estimator pi= E(Ki )/E(Np).  
 
The fact of such averaging over the total numbers of 
the operations in each of traces, as well as over set of 
each of operations type is correlated with the above 
mentioned character of LLN for the random sums. 
 
The main question is what is a set of traces (program 
instances), over which this averaging should be 
performed. The answer is in interpretation both 
{Ki}set and Np as a statistics from a representative set 
of  serially run programs which are a rational 
“benchmarks” set.   
 
 
5. PERFORMANCE VERIFICATION   
    
Since our main goal is a computer system performance 
prediction, the question is whether we are able to 
predict the execution time TE of a program P of a 
length NP  with a sufficient accuracy as                                                                                  

                                 TE ≈ NP ∑ i=1,r pi E(τi)                        (5.1)                              
                                                                   
We may consider this approximation as a regression of 
TE  on NP that is as a conditional expected value given 
NP . Correspondingly, we may represent the execution 
time TP estimator as  



 

                                  TE = NP ∑ i=1,r pi E(τi) +ε                  (5.2)                                                               
                                                                    
where ε, is stochastic, that is represents the possible 
errors of time prediction [Iverson99].  
 
But what is a set of traces (program instances), over 
which this averaging should fulfillment to maximize 
(5.1) accuracy?  In the most general sense this 
accuracy is determined by both operation times 
distribution and accuracy of the (p1 ,.. , pr) vector 

estimations. It would be attractive to reduce the ε error 
analysis (5.2) to the rate of convergence for the Law of 
Large Numbers (e.g., rely on Kolmogorov inequality). 
However, while for the non-random sums case 
summands dispersions impact on convergence rate 
follows the Kolmogorov inequality [Feller,66], the 
situation for random sum is considerably sophisticated 
[Bening and Korolev, 2002]. Note, that following the 
Wald identity, dispersion of the random sum can be 
calculated by the formula [Bening and Korolev, 2002] 
 
             DTE   = ENpDx+DNp(Ex)2                                    (5.3)                                                                      
 
where its random summands have the distribution  
G(x) (4.2.1).    
 
The calculation of this mean and dispersion measure 
can be carried out over a statistics obtaining from a 
considered application domain, represented by a 
program’s set. When we are able to estimate the mean 
and the variance of the execution time, we will be able 
to estimate the accuracy of the (5.1) representation in a 
standard statistical manner, calculating the TE 
confidence interval size as a function of the variance 
[Pollard, 1977]. The problem is how to choose the 
programs/input data ("benchmarks"), to provide these 
estimations. If the times τj are measured very 
accurately, than the dispersions are defined only by the 
values of corresponding operations Ki that are used in 
a program. So, we can choose a program/input data set 
for the performance verification so as to provide the 
(p1 ,.. , pr ) vector estimation (where p1 ,.. , pr  are  from ( 
4.2.6 ) ) with a suitable accuracy. To achieve this we 
should know the distribution of vectors, representing 
the frequency of operations occurring in the program's 
trace [Frenkel, 1998]. It is easy to see that the 
distribution is a multinomial. Indeed, as we do not 
consider any information about the structure of any 
selected programs, then any events corresponding to 
the appearance of the basic operation Oi is independent 
of each other Oj, i≠j, and the appearance of each of 
them does not change the appearance probability. (In 
other words, the independence of these events means 
ignoring  the program's semantics). 
 
So, knowing the frequency distribution, we can reduce 
the problem of benchmarks choice to the well-known 
problem of providing suitable confidence ellipsoids for 
the vectors [Pollard,77]. We may define the size and 

the structure of a suite of programs, that provides a 
suitable closeness of the frequencies, calculated over 
this suite, to the probabilities, used in the above 
formulas. This (under the above mentioned 
assumptions about operation's time execution) may 
ensure the closeness of (5.1) execution time prediction 
to the true value,  allowing performance verification in 
terms of any target program execution time estimation 
at the design stages, when the programs may be run 
only on a host machine, but the operation's duration on 
the target HW are known with a good accuracy.  
Operations duration variability impact on prediction 
ability depends mostly on the times distribution. 
Briefly, it depends mostly on the "tails" of the 
distributions. If their cumulative distribution functions 
F(x) obey the condition 1-F(x)=∼cx- α ,  0<α<2,  where 
∼ means a limit (by x→∝)  of the fraction of the 
functions on the left and the right is 1. If F(x) ) is 
heavy tailed then  the  operations’ durations  values 
shows a very high variability. 
 
 
6. AN  EXAMPLE 
 
The methodology of performance evaluation was used 
in our practice for both FX!32 translator (in emulation 
mode) [Sites, 1992] of x86 applications on the Alpha 
platform performance optimization and the 
performance optimization  of a RTL ("register-transver 
- level) model of a designed microprocessor. The 
emulator corresponds to a ASCS since it has been 
designed given all Alpha processor both hardware 
issues (external cache memory, register file, etc.) and 
Alpha Windows NT operating system. Some x86 
applications sets ( for example, MS-Office) could be 
considered as the system application domain. We can 
state the problem of FX!32 performance evaluation 
relative to the application domain.  Since we have to 
define a probabilistic space to operate with the model, 
we have to understand what the randomness of the 
operations means in this case. Duration distributions 
(measured on the Alpha platform) depend on both 
environmental factors (Dcache miss) and some 
architectural properties of the emulator (e.g., how 
much the emulator tables match the x86 instruction 
structures). Some statistics can be found in http: 
//www.ipi.ac.ru/~lab24/frenkel. 
 
7. DISCUSSION AND CONCLUSION 
 
It is well-known that random summation has just as 
great a role in probabilistic models applications 
[Zolotorev, 1997; Bening and Korolev, 2002]. 
However, there is less evidences of its use in such 
important areas of contemporary computer science as 
"performance evaluation". In this paper we have 
discussed a  probabilistic and statistical models for the 
prediction of execution times of sequential and parallel 
programs in a given operational and hardware 
environment. These models deal mostly with the some 



random sums of random summands. Therefore, the 
main question of the modelling  is whether present-day 
state-of-the-art of such theory, mostly concerning the 
LLN and CLT issues, allows us to build a well-
grounded model of execution times prediction. This is 
possible based on expected values of the time 
predicted. Relying on this analysis, suggests an 
approach which discharges the necessary to consider 
summation of enormous numbers of operation times.  
 
The results are in contrast to the traditional approaches 
(like [Hennessy, 1996]) which express the program 
execution time in terms of average of cycles per 
instructions. The traditional approach does not provide 
any devices both to estimate the accuracy and choose a 
reasonable benchmarks set, like the considered model, 
which enables these things. In fact, we  encounter the 
usual difference between some naive statistical 
approaches, based only on the average numbers and 
counters of some events, and strong statistical 
methods, based on a well-grounded  probabilistic 
model,  when we can reduce the problem of 
benchmarks choice to the well-known problem of 
providing a suitable confidence ellipsoid for the 
estimated probabilities vector.  So, in spite of 
numerous unresolved questions in the random sums 
theory, its principal results can be used effectively for 
performance prediction. 
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