
RANDOM SUMMATION AND ITS APPLICATION TO THE
PERFORMANCE MODELLING OF COMPUTER SYSTEM

S.L. FRENKEL

The Institute of Informatics Problems, Russian Academy of Sciences,

Vavilova 44,2, 117333, Moscow, Russia, E-mail: slf-ipiran@mtu-net.ru

Abstract. This paper presents some views on the problem of application-specific systems (ASCS) performance
modelling based on statistical measurement during a program's run time. The probabilistic model considered in
this paper defines a performance measure relative to a given domain of application tasks, and it may be used as a
base for performance verification. This measure follows a random sum of random summands, corresponding to
various runtime component execution times. We consider theoretically whether the current state-of-the-art of
random sums' theory can be used as the basis of applied ASCS performance modelling. Relying on the results of
the analysis, it is possible to construct a mathematical model which is based on a random sum of the program's
operations execution times

Keywords: performance modeling, performance evaluation, random sums, statistical prediction.

1. INTRODUCTION

Performance analysis to predict the execution time of
target programs is the basis of the effective design of
various application-specific computer systems
[ASCS]. Let us consider the prototyping stage (either
physical or virtual) of the design process (which may
follow the high-level synthesis, simulation). Usually, a
designer has a hardware platform variant by this time,
as well as a sufficient suite of software modules. In the
design phase, the designer tries to define the
performance parameters of the application software by
using a trace analysis tool. Let us call as
"measurement-based", any approach to the execution
time prediction, which is based on the results of the
tracing and the profiling of a prototype of system
design. Ideally, the timing performance verification at
this design stage requires a mathematical model to
represent the time in terms of some system
characteristics, namely, in terms of the measured times
of execution of some of the runtime components (e.g.,
function calls, basic blocks). Various mathematical
models that enable the execution time prediction in
terms of these measurements results have been
suggested by [Saavedra and Smith, 1989; Li, 1996;
Gautama, 1998]. Some of these models are
deterministic in nature, and they just try to compute
the execution time in terms of the various performance
“indexes” (e.g., "cycles per instruction" (CPI) or their
a high-level analog) [Ferrari, 1983; Saavedra,
1996;Hennessy, 1996]. Since applications' behavior
are stochastic (e.g., due to data dependency in
programs), the probabilistic performance models are
most appropriate for this aim [Gautama, 1998].
However, these probabilistic models are not very
practical, since on the one hand, they are based on
some specific program models, and, on the other hand,
they are fairly time-consuming. Since, in general, the
execution time is a random sum of random durations

of the above mentioned runtime components, which
may be random values, thereby, the number of these
components are also often random, the random sums
theory would be very helpful for the performance
modelling. This paper considers theoretically whether
the current state-of-the-art of random sums theory can
be used as a basis of applied ASCS performance
modelling. The rest of the paper is organized as
follows. Section 2 describes some related work
concerning programs' execution times prediction.
Section 3 describes the structure of execution time.
Section 4 describes random sums concerning the
execution time definition. Section 5 describes a
random sum based mathematical model in terms of
programs' operation execution time. Section 6
describes an example of an application-specific system
performance analysis, which is based on the model.
This paper, because of limited size, does not contain
detailed statistical techniques description, but it only
briefly explains some ideas.

2. MEASUREMENT-BASED PERFORMANCE
 MODELS. RELATED WORKS

Presently the prevalent approach to ASCS
performance prediction is based on CPI conception
(mentioned above), and represents the time spent by a
processor to complete the task [Hennessy, 1996]:

CPU_time=Clock_Cycle_Time∑i=1,n(CPI(i)*IC(i)) (2.1)

where CPI(i) is the average cycles per instruction for i-
th instruction class (e.g. float-pointed, arithmetic, etc.),
IC(i) is the counter of i-th instruction, i=1,2,...n are the
indexes of the instructions set.
More advanced deterministic ways of execution time
prediction have been suggested in [Saavedra, 1996],
where the machine model consists of a set of abstract

operations of some particular programming language.
The predicted execution time of program A on
machine M is performed by using detailed measured
information about the execution time of these
constructs. Since the models are not probabilistic, they
may not provide relevant devices to estimate the
performance prediction accuracy for some target
applications set. Since the goal of our work is to
predict the execution time of a program on an
application-specific system, we have to be able to
estimate both the accuracy of the prediction and the
representative features of the data sample used. It is
clearly an impossibility to provide it in the framework
of such deterministic conceptual model.

Many probabilistic models of execution time
estimation (applicable both for sequential and
concurrent systems) have been suggested recently [Li,
1996; Gautama, 1998]. These models have been
developed in the framework of a "task graph"
conception [Adve,1993]. A task graph is a directed
acyclic graph (DAG) in which nodes represent some
subtasks and arcs represent the data-dependencies
among the subtasks (in terms of which the program is
represented). Correspondingly, DAG-based models
consider the programs as a set of tasks on a particular
input, and consider the program trace in terms of a task
set. In [Adve, 93] the focus of the work is on the
behaviour of a parallel program for a single input data
set, rather than across different input sets, that takes
place in case of ASCS designing. In this case, a
characteristic of execution time concerning some input
domain would be more interesting. The program in
this model is decomposed into computationally
homogeneous subtasks, and the computational
requirements for each subtask are determined. The
application is assumed to consist of a set of non-
overlapping code segments that are totally ordered in
time. The total execution time of the application is the
sum of the execution times of all its code segments.

In fact, current publications [Adve, 93; Gautama,
1998] either assume that the execution time is
normally distributed, or try to estimate the
distributions by computing of moments of the program
execution time. However, since by using various
probability models we deal with decision rules like
inequalities Prob(S<t), Prob(S>t), where S is a
random value, t is a real one, dealing with so-called
"distribution tails", the assumptions about distributions
mentioned above may lead to situation of the dramatic
loss of accuracy. Secondly, the rate of convergence to
the normal distribution may turn out rather slow, so
the using the sum may be not suitable if we consider a
trace as a sequence of several quite big tasks. Besides,
these models deal, in fact, only with the deterministic
sums of random items, whereas, the designers often
deal with unknown numbers of sequential-performed
activities that determine the total time execution, for

example, as a result of a non-deterministic programs
behaviour due to branching, data dependencies.

In the above mentioned approaches, the programs-
and-data used for the model parameters estimation are
assumed as sufficient to reflect the behaviour of all
application domains of the designed system. The
question is whether indeed set benchmarks are able to
predict the machine performance on programs not
included in the benchmark suite? For example,
formula (2.1) assumes, in fact, that the CPI (i) values
have to be estimated from a benchmark suite, while
there is no any statistical model for its rational choice.

3. STRUCTURE OF A PROGRAM
EXECUTION TIME

Let us consider that we can apply special language
features to split the program into intervals and to get
performance characteristics for each interval. In
general, the execution time of parallel programs on
multiprocessor computers is determined by the various
factors, e.g., a part of parallel calculations in the total
volume of calculations time, or degree of overlapping
of interprocessor communications with calculations.
Ultimately, execution time is the maximum of the
times of the program execution on each processor.

Let us call as "Application Domain" (AD) any set of
applied programs with all possible input data to be
executed on the designed applied platform. So, the
application domain is defined by set of application
programs {AP} with defined domains of their possible
input data, that is an AD is a set of pairs{ APi , IDi}, i
is some integer, where each of APi is an applied
program under input data IDi .

Let O1. Oi ., Or be a set of some specific items ("basic
operations" or some disjoint works, functions call,
basic blocks), in terms of which we represent a
program behaviour as a trace in a sequential manner.
Each of Oi is characterized both by the type "i" (i=1,.r)
and the random time of execution Xi with a
distribution function Gi(Xi) (in particular, they may be
measured on some system prototype). If the system
can execute some operations simultaneously, thanks to
either multiprocessing or availability of several
executive units in one uni-processor (for example, as it
is performed in Alpha 21264 [Alpha, 2000]), then we
may consider corresponding individual combinations
of operations that can be executed simultaneously. The
time of the operations execution should be considered
as some random variable. Note, that this randomness
may take place both in multi-processors and single-
processor systems. The cache hit/miss, pipeline stalls
due to hazard, may be considered as corresponding
technical factors in a single processor.

When we are able to describe a program runtime as a
sequence of some activity pieces (which, in general,
may be some aggregations of overlapped operations
[Li, 1996]), the execution time of a program APi can
be expressed as a sums of some summands,
corresponding to the execution times, that is expressed
as NP

 TP = ∑i=1, NP (Xj) (3.1)

where Xj is the duration of j-th sequential actions in
the trace, NP is the trace length, which should be
considered as a random variable, because the different
input data suites from a given program input domain
may generate different paths in the program execution.

For example, let us consider the distributed execution
of any applications in a p-processors's computer
system [Ivannikov et al, 2000]. The application
execution may be considered as an ordered system of n
processes, where each of the processes is an activity
dealing with a block of the application running,
thereby there is a linear order of executions over the
blocks set 1,.s, where s is the numbers of the blocks.
Under some certain condition about the processes-and
-block interactions (e.g. it is impossible to process
each block more then on one processor
simultaneously, each j-th blocks is distributed to j-th
processor), and synchonization conditions (the end of
a block in i-th processor coincides with the start of the
next block execution in (i+1) processors), the time of
n concurrent processes execution is

T =Σi=1,n-1

 max1 ≤u ≤ p [Σj=1,u tij - Σj=1, u-1 ti+1j]
+Σj=i,ptnj ,

where tij is an execution time of j-th block of the i-th
process.

In practice, such times can be random ones, for
example, because of some pipelining effects, the
number of processes n may also be dependent of the
program input data, .so we deal with the random sums.

4. RANDOM SUMS MODEL OF
PERFORMANCE CHARACTERIZATION

Let us consider some possibilities to estimate
execution time using the random sums properties.
We can consider the set of operation execution
durations (which are the summands) as a triangular
array of independent non-negative integer-valued rv’s
{τij }1≤j≤r, defined on a probability space (Ω,F,P), where
F is a sigma-algebra, generated by random variables
τij, r is a number of operation types. "The columns"
j=1,2….define the operations location in the sequence
(in a program trace, in fact). In general, we may

consider sampling sums deals with this "triangle array"
scheme of random variables

 Sn = Σm(j) vi.j τij (4.1)

where m(j) is a sequence of integer- random rv’s such
that m(j) is a stopping time with respect to Fi

j, that is
{m(j)≤1}∈ Fi

j), vi.j are random variables taking values
0 or 1, vij, τij are independent in each row. This sum
corresponds to the scheme of random sampling from a
population of real numbers without replacement,
where the "population" is a set of arrays {τij }, each of
which corresponds to a program trace. Note, that for
some computer architectures, the operations duration
can depend on the operation execution order because
of pipelining and/or caching influence [Alpha, 2000].
This circumstance is reflected in the sum (4.1), as vij,
which determines implicitly the location of the
operation "i" on a place "j" in program trace
considered.

So, in fact, (4.1) means that any program trace is a
random sample from all possible traces, generated by
input data (part of which, of course, can be understood
as some "controls"). Any differences between traces
are reflected in their operations composition, and rv's
vi.j just define if an operation "i" is present on j-th
place in the trace, or it is absent.

The key question of the execution time model choice
is whether there exists a mathematical technique to
compute such a distribution.

4.1 Random Sums Theory: an Applied View

The classical random sums theory results rely
essentially on the Kolmogorov-Lindeberg assumption
[Zolotorev, 1997] about summands' smallness that is,
in the general case, not to be justified for the execution
times of program's operations. Some new results
[Rahimov,1995] concern the asymptotic behaviour of
(4.1) sums distribution, where the number of array
rows (“i”) → ∞, where the above smallness
assumptions have been transformed into more weak
ones; that is the summand variances are decreasing as
O(i2). However, this result is also not very practical,
because it is asymptotical in nature, and, in fact, it
requires to estimate a distribution of very sophisticated
random value.

To obtain more practical results we should include in
the estimation model the knowledge about the
distribution of numbers of summand Np in (3.1). For
some creditable assumptions about the Poisson
distribution of the number of operations, a uniform
estimator for the sum distribution deviation about
normal law has been obtained (The Berry-Essen
inequality for Poisson random sums) [Bening and

Korolev, 2002]. However, this result is also very
difficult in practice.

Since our main goal is to characterize the performance
relative to some set of programs ("application
domain"), and, ultimately, presently the most practical
execution time prediction techniques are various
regression models (parametric, non-parametric), which
deal with some conditional expectations values
[Iverson, 1999], studying the expected value of
execution time calculation issue is, perhaps, even more
important then the probability distribution.

4.2 Expected Value of Random Sums

Speaking about expected values of execution time, we,
in fact, should deal with various averaging techniques,
that is just what we would have dealt with using any
regression techniques of execution time estimation
over a benchmarks set [Iverson et al, 1999].
One of the theoretical problems concerning the
expected value definition is the Law of Large
Numbers (LLN) conditions for the random sums.
Strictly speaking, unlike the classical case of sums
with non-random summands number, the limit for the
"arithmetic mean" is a random value even for the
independent identically distributed (i.i.d.) summands,
thereby its distribution is completely determined by
the asymptotic behavior of the random number of
summands [Bening and Korolev, 2002]. So, one of
questions is to provide some appropriate averaging.

Formally, we can rely on fact that the above triangular
array model corresponds to i.i.d summands, where the
distribution is a mixture of operation type duration
distributions Gi(x) (Section 3) that is

 G(x)=Prob(τij ≤x) =∑i=1,r pj

 Gi(x) (4.2.1)

where pj are probabilities of appearance of each of the
r operations type in the program traces.

Following the Wald identity, we can express the
expected value of the execution time as

 E(TE)= E(Np)E(x) (4.2.2)

where E(Np) is the expected value of the trace length
Np over an application domain considered,

E(X)= ∫ xG(x)dx =∑ i=1,r pi ∫xGi(x)dx = ∑i=1,r pi E(τi),
 Гx Гx

Гx is an integration domain (corresponding to x
definition).

So, the expected value of the execution time can be
expressed as

 E(TE)= E(Np)∑j=1,r pj E(τj) (4.2.3)

Taking into account above remark about logical
difficulties of LLN performing due to randomness of
the numbers of summands, the main question deals
with the {pj }estimation, which, in classical case (
when Np is a deterministic value) would be estimated
as Ki/ Np, where Ki is the numbers of i-th operations
appearances in a representative set of traces from an
application domain considered. To overcome this
problem let us consider an obvious way of the
execution time TE representation in terms of the i.i.d.
rv's, corresponding to the execution time structure
(Section 3)

 TE=Σi=1,rΣj=1,Kiτij (4.2.4)

where the summands in the inner sum are i.i.d. rv’s,
thereby, all the numbers of i-th operation appearances
Ki are mutually dependent (but they are independent
of the r.v’s τij), K1+ ... + Kr= Np. The Wald identity
can be expressed in this case [Khokhlov, 2003] as

 E(TE) =Σi=1,r E(τi)E(Ki) (4.2.5)

where single index “i” is used just to stand for the fact,
that all operations of “i” types have the same
distribution. Dividing the right side of (4.2.3) by
E(Np), we obtain

 E(TE)/E(Np) = ∑i=1,r (E(Ki)/E(Np))E(τi) (4.2.6)

Comparing (4.2.3) and (4.2.6) we can obtain the
probability estimator pi= E(Ki)/E(Np).

The fact of such averaging over the total numbers of
the operations in each of traces, as well as over set of
each of operations type is correlated with the above
mentioned character of LLN for the random sums.

The main question is what is a set of traces (program
instances), over which this averaging should be
performed. The answer is in interpretation both
{Ki}set and Np as a statistics from a representative set
of serially run programs which are a rational
“benchmarks” set.

5. PERFORMANCE VERIFICATION

Since our main goal is a computer system performance
prediction, the question is whether we are able to
predict the execution time TE of a program P of a
length NP with a sufficient accuracy as

 TE ≈ NP ∑ i=1,r pi E(τi) (5.1)

We may consider this approximation as a regression of
TE on NP that is as a conditional expected value given
NP . Correspondingly, we may represent the execution
time TP estimator as

 TE = NP ∑ i=1,r pi E(τi) +ε (5.2)

where ε, is stochastic, that is represents the possible
errors of time prediction [Iverson99].

But what is a set of traces (program instances), over
which this averaging should fulfillment to maximize
(5.1) accuracy? In the most general sense this
accuracy is determined by both operation times
distribution and accuracy of the (p1 ,.. , pr) vector

estimations. It would be attractive to reduce the ε error
analysis (5.2) to the rate of convergence for the Law of
Large Numbers (e.g., rely on Kolmogorov inequality).
However, while for the non-random sums case
summands dispersions impact on convergence rate
follows the Kolmogorov inequality [Feller,66], the
situation for random sum is considerably sophisticated
[Bening and Korolev, 2002]. Note, that following the
Wald identity, dispersion of the random sum can be
calculated by the formula [Bening and Korolev, 2002]

 DTE = ENpDx+DNp(Ex)2 (5.3)

where its random summands have the distribution
G(x) (4.2.1).

The calculation of this mean and dispersion measure
can be carried out over a statistics obtaining from a
considered application domain, represented by a
program’s set. When we are able to estimate the mean
and the variance of the execution time, we will be able
to estimate the accuracy of the (5.1) representation in a
standard statistical manner, calculating the TE
confidence interval size as a function of the variance
[Pollard, 1977]. The problem is how to choose the
programs/input data ("benchmarks"), to provide these
estimations. If the times τj are measured very
accurately, than the dispersions are defined only by the
values of corresponding operations Ki that are used in
a program. So, we can choose a program/input data set
for the performance verification so as to provide the
(p1 ,.. , pr) vector estimation (where p1 ,.. , pr are from (
4.2.6)) with a suitable accuracy. To achieve this we
should know the distribution of vectors, representing
the frequency of operations occurring in the program's
trace [Frenkel, 1998]. It is easy to see that the
distribution is a multinomial. Indeed, as we do not
consider any information about the structure of any
selected programs, then any events corresponding to
the appearance of the basic operation Oi is independent
of each other Oj, i≠j, and the appearance of each of
them does not change the appearance probability. (In
other words, the independence of these events means
ignoring the program's semantics).

So, knowing the frequency distribution, we can reduce
the problem of benchmarks choice to the well-known
problem of providing suitable confidence ellipsoids for
the vectors [Pollard,77]. We may define the size and

the structure of a suite of programs, that provides a
suitable closeness of the frequencies, calculated over
this suite, to the probabilities, used in the above
formulas. This (under the above mentioned
assumptions about operation's time execution) may
ensure the closeness of (5.1) execution time prediction
to the true value, allowing performance verification in
terms of any target program execution time estimation
at the design stages, when the programs may be run
only on a host machine, but the operation's duration on
the target HW are known with a good accuracy.
Operations duration variability impact on prediction
ability depends mostly on the times distribution.
Briefly, it depends mostly on the "tails" of the
distributions. If their cumulative distribution functions
F(x) obey the condition 1-F(x)=∼cx- α , 0<α<2, where
∼ means a limit (by x→∝) of the fraction of the
functions on the left and the right is 1. If F(x)) is
heavy tailed then the operations’ durations values
shows a very high variability.

6. AN EXAMPLE

The methodology of performance evaluation was used
in our practice for both FX!32 translator (in emulation
mode) [Sites, 1992] of x86 applications on the Alpha
platform performance optimization and the
performance optimization of a RTL ("register-transver
- level) model of a designed microprocessor. The
emulator corresponds to a ASCS since it has been
designed given all Alpha processor both hardware
issues (external cache memory, register file, etc.) and
Alpha Windows NT operating system. Some x86
applications sets (for example, MS-Office) could be
considered as the system application domain. We can
state the problem of FX!32 performance evaluation
relative to the application domain. Since we have to
define a probabilistic space to operate with the model,
we have to understand what the randomness of the
operations means in this case. Duration distributions
(measured on the Alpha platform) depend on both
environmental factors (Dcache miss) and some
architectural properties of the emulator (e.g., how
much the emulator tables match the x86 instruction
structures). Some statistics can be found in http:
//www.ipi.ac.ru/~lab24/frenkel.

7. DISCUSSION AND CONCLUSION

It is well-known that random summation has just as
great a role in probabilistic models applications
[Zolotorev, 1997; Bening and Korolev, 2002].
However, there is less evidences of its use in such
important areas of contemporary computer science as
"performance evaluation". In this paper we have
discussed a probabilistic and statistical models for the
prediction of execution times of sequential and parallel
programs in a given operational and hardware
environment. These models deal mostly with the some

random sums of random summands. Therefore, the
main question of the modelling is whether present-day
state-of-the-art of such theory, mostly concerning the
LLN and CLT issues, allows us to build a well-
grounded model of execution times prediction. This is
possible based on expected values of the time
predicted. Relying on this analysis, suggests an
approach which discharges the necessary to consider
summation of enormous numbers of operation times.

The results are in contrast to the traditional approaches
(like [Hennessy, 1996]) which express the program
execution time in terms of average of cycles per
instructions. The traditional approach does not provide
any devices both to estimate the accuracy and choose a
reasonable benchmarks set, like the considered model,
which enables these things. In fact, we encounter the
usual difference between some naive statistical
approaches, based only on the average numbers and
counters of some events, and strong statistical
methods, based on a well-grounded probabilistic
model, when we can reduce the problem of
benchmarks choice to the well-known problem of
providing a suitable confidence ellipsoid for the
estimated probabilities vector. So, in spite of
numerous unresolved questions in the random sums
theory, its principal results can be used effectively for
performance prediction.

ACKNOWLEDGMENTS
I am very grateful to professors of Moscow State
University V.Yu. Korolev and Yu.S. Khokhlov for
their comments on some mathematical issues
concerning this paper.

REFERENCES

Adve V. 1993, Analyzing the Behavior and
Performance of Parallel Programs, Ph.D Thesis
Department, Computer SciencesUniversity of
Wisconsin-Madison.

Alpha 21264 Microprocessor Hardware Reference
Manual, Compaq Computer Corporation, 2000.

Benning V.E., Korolev V.Yu. 2002, “Generalized
Poisson Models”, VSP, Utrecht.

Feller W. 1966, An Introduction to Theory of
Probability and its Applications, Willey & Sons.Inc,
New York.

Ferrari D. et al 1983, Measurement and Tuning of
Computer Systems, Prentice-Hall.
Frenkel S. L. 1998, Performance Measurement
Methodology-and-Tool for Computer System with
Migrating Applied Software, BRICS Notes Series, NS-
98-4, Aalburg, Denmark, June, Pp.83-86.

Gautama H. 1998, A Probabilistic Approach to the
Analysis of Program Execution Time Technical
Report No. 1-68340-44(1998)06, Faculty of
Information Technology and Systems Delft University
of Technology.

Hennessy J. and Patterson D. 1996, Computer
Architecture: A Quantitative Approach, Second
Edition, Morgan Kaufmann Publishers Inc.

Ivannikov V. P. et al 2000, On the Minimal Time
Required for Execution of Distributed Concurrent
Processes in Synchronous Modes, “Programming and
Computer Software vol.26, N5.

Iverson M. et al 1999, Statistical Prediction of Task
Execution Times through Analytic Benchmarking for
Scheduling in a Heterogeneous Environment IEEE
Trans. on comp., Vol 48, N 12, Pp1374-1379.

Khokhlov Yu. S. 2003, Private Communication,
Moscow State University.

Li Y. A. 1996, A probabilistic framework for
estimation of execution time in heterogeneous
computing systems, Ph.D Thesis, the Faculty of
Purdue University.

Pollard J.H. 1977, A Handbook of Numerical and
Statistical Techniques, Cambridge University.

Rahimov I 1995, Random Sums and Branching
Stochastic Processes, Lecture Notes in Statistics,
Springer Verlag.

Saavedra R.H. and Smith A.J. 1996, Analysis of
benchmark characteristics and benchmark
performance prediction, ACM Transactions on
Computer Systems, vol. 14, Pp. 344-384.

Sites R L. et al 1992, “Binary Translation”, Digital
Technical Journal, Vol. 4, No. 4.

Zolotarev V.M. 1997, Modern Theory of Summation
of Random Variables, VSP, Utrecht.

Sergey L.Frenkel holds M.S. degree both in Radio
Communication and Applied Mathematics, and Ph.D
degree in Computer Science. He is a senior researcher
at the Institute of Informatics Problems Russian
Academy of Sciences, and he is an associate professor
in Moscow State Tech. University “MIREA”. His
research interests mainly include probabilistic
modelling of digital/computer systems. He has written
papers on a variety of topics in mathematical
modeling, testability, performance evaluation, as well
as one textbook.

	c0: Proceedings 17th European Simulation Multiconference
(c) SCS Europe BVBA, 2003 ISBN 3-936150-25-7

