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Abstract: This paper presents analytical results of a TCP (Transmission Control Protocol) model based on a Markov
chain, refining the previous works on performance evaluation of one bulk transfer TCP flow among exogeneous traf-
fic. While most of these works are mainly focused on the mean throughput evaluation, our model allows with low
cost, a study of many other performance measures and thus a more detailed study of the TCP behavior.
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1 INTRODUCTION

The Transmission Control Protocol TCP represents a
large part of today’s Internet transfers. It has been,
for that reason, the subject of many studies, centered
either on live Internet measurements (downstream),
simulations or modeling (upstream). TCP principle is
to make sure that all data are actually received by the
endpoint. When lost, a segment – i.e. a TCP packet –
is retransmitted. Based on a sliding window dynamic,
new segments are released into the network each time
an acknowledgment (ACK), a small packet sent by the
receiver to confirm the arrival of a segment, arrives.
The function of TCP is to modify the window size,
that can be correlated to an instantaneous through-
put, according to an algorithm defined in the RFC2001
([Stevens, 2001]) : an exponential increase (slow start)
under a variable threshold, and then successive linear
increases (congestion avoidances) separated by loss
events that halve the window size.

A basic, but efficient, model presented in [Mathis et al,
1997] has shown that the mean throughput � of a TCP
connection was in the order of ����� � , where � denotes
the segment loss rate. Among earlier papers propos-
ing a TCP model, many use a continuous-time and
fluid approach ([Lakshman and Madhow, 1997], [Ku-
mar, 1998], [Misra et al, 1999], [Altman et al, 1997],
[Abouzeid et al, 1999] and [Altman et al, 1999]) and
are usually and mainly interested in getting an ana-
lytical expression for the mean throughput of a single
steady-state TCP connection. The case of multiple
TCP connections is the subject of [Ait-Hellal et al,
1997], and [Brown, 2000] for instance, and an original
modeling approach is provided in [Baccelli and Hong,

2000] by using the max-plus algebra.

Our paper is based on the reference works of [Padhye
et al, 1998], [Padhye et al, 1999], and [Cardwell et
al, 2000] which consider a discrete-time model and
a discrete evolution of the window size. We present
here the results of a discrete-time Markov chain model
that we introduced in [Fortin and Sericola, 2001], and
which aims to give analytical expressions not only for
the mean throughput, but also for various performance
measures, of a bulk transfer TCP-Reno flow among
exogenous traffic (a flow may represent the transfer of
a large data file as well as the global TCP traffic from
one ftp server to another for instance).

The organization of this paper is as follows : after a
presentation of the model in Section 2, we comment,
in Section 3, our results for the mean throughput with
a comparison to [Mathis et al, 1997] and [Padhye et
al, 1998]. We then give in Section 4 other examples
of performance measures which are the proportion of
time during which the throughput is maximum, and the
time-interval between two consecutive losses.

2 TCP MODELING

The choice of a discrete-time Markov chain model-
ing the congestion window evolution has been inspired
from the pioneering work [Padhye et al, 1998], where
the authors introduced the notion of round also used
in [Padhye et al, 1999], [Cardwell et al, 2000] and
[Fortin and Sericola, 2001]. A round is the period of
time between the departure of the first segment of the
current window and the arrival of its ACK. This defi-



nition is coherent when the dispatch duration of all the
segments and all the ACKs held in a given window is
negligible compared to the round trip time RTT. Note
that the duration of a round is thus close to the round
trip time.

2.1 Presentation Of The Markov Chain

We model the window behavior by a discrete-time
Markov chain ���������	�
���� with two components�������������� ������ � . ���� denotes, when positive, the� -th round congestion window size and the null value
for ���� is used to represent the time-out period. ������
denotes the value of the slow start threshold during the� -th round. We denote by � the number of segments
validated per ACK. Typically, � is equal to � or � (in the
case of delayed ACKs). TCP-Reno congestion control
mechanisms can be described as follows:� slow start (ss) : increase of 1 segment per ACK,

that is ������� � ����"!$# ���� ���&% , as long as
�(')����+* ������ and no loss occurs,� congestion avoidance (ca) : increase of ���,� �
segment per ACK, that is increase of 1 segment
every � rounds, as long as ������ '-���� '-�/.1032
and no loss occurs (when �4�� reaches the maxi-
mum receiver’s buffer capacity �5.1032 , it remains
constant),� segment loss detection by three dupli-
cate ACKs ( 687 ) : after the first ACK indicating
that segment number � is the next expected one,
the reception of three successive ACKs indicat-
ing that it is still missing notifies the loss of seg-
ment number � . � ����� �$9�:<;=�?>@� �� �,�BADC �E� ,��������F �G9�:<;(�B>����� ���<ADCH�I� , and then a new
congestion avoidance phase initiates,� segment loss detection by time-out ( 6KJ ) :
when its ACK has not arrived before a timer
( 6ML ) expiry : �N����F � O and ��������� �9P:�;(�E>����� ���<ADCH�,� , then enter a new time-out pe-
riod,� time-out period (to) : just after a 6KJ detec-
tion, the segment is retransmitted as long as no
ACK for this segment arrives (the timer value
doubling from 6�L to �<6ML , QI6RL , S�6ML , T?TUT untilV Q,6ML ), and then a new slow start phase begins
with ������� � � .

An illustration of the window evolution is given in Fig-
ure 1.

Because the state space W of the Markov chain is such
that WYX�ZEO � TUT?T � �/.1032\[^]5ZB� � T?TUT � �/.1032 �,��[ �
its size is less than or equal to �@�5.1032 ! �E�_���`.1032 ���ba �B� .
The number of states of W is thus less than or equal to��OIO,OIO for �/.1032 * ��OIO , and less than or equal to c�OIO,O
for �/.10
2 * �EO,O . In both cases, the state space is quite
small for the Markov chains computing methods.

2.2 Some Transition Probabilities

All transition probabilities of this Markov chain can
be found in [Fortin and Sericola, 2001]. However,
for a better understanding of this model, it is interest-
ing to detail the two following phases. We denote bydDegf�h i3jkegfml@h i3lgj

the transition probability from state ��n �ko � to
state �pnrq ��o qs� .
2.2.1 Time-out Period

The time-out period corresponds to the case where���� �tO . In order to make the mean duration of a
time-out period equal to u(6v6 times the mean number
of successive visits to the state ��O �ko � , we define the two
following transitions from each state �@O ��o � ,� dwe L h i3jke L h i3j � �Ka u(6v6Wyx 6 ��zH{ : lost segment not yet

ACKed,� dwe L h i3jke  h i3j � u(6v6W|x 6 ��z&{ : the ACK has just arrived,

where Wyx 6 ��z&{ �)6 L } � �R��~a � a�uK686
is the mean duration of a time-out period (see [Fortin
and Sericola, 2001]), and} � �R�D� � ! � ! ��� ! Q ��� ! S ��� ! � V �R� !/� � �R�BT
2.2.2 Congestion Avoidance

In congestion avoidance the congestion window is in-
creased by 1 every � rounds, thus for a completely ac-
curate model, we would have to define our model using
three components : �N�� , ������ , and a counter u(� going
from 1 to � (see [Padhye et al, 1999]), with :� � ����� ��� �� and u ���� ��u � ! � if u � * �

and no loss occurs (case 1),� ������� �������! � and u(����(� � if u(�y��� and
no loss occurs (case 2).

However, that would first of all significantly increase
the size of the Markov chain and thus any computing
time. Secondly, that would not change the measures
of interest since the stationary distribution on the state
space of the original Markov chain remains the same
if we define the transition probabilities such that the
mean sojourn time of the Markov chain in a state �pn �ko � ,
with o '�n * �/.10
2 , remains equal to � , that is, lasts �
rounds. We thus have� dwegf�h i3jkegf�h i3j �N� �Da �R� f1� �~a ���� (no loss, case 1),

� dwegf�h i3jkegf �� h i3j �4� �~a �R� f �� (no loss, case 2),



� dDegf�h i3jke L h � ��� e�� f�� � � h � j�j �
	 �~a � �va �M� f��� f ( 6KJ -
type loss),� dDegf�h i3jke�� ��� e�� f�� � � h  jkh � ��� e�� f�� � � h � j�j � 	 �Uav� �Ua �M� f �  f
( 687 -type loss),

where the probability that a loss (in a round of size n )
is a 6KJ -type loss is f � � �8a � �~a �M� ��� �F � 	 � ! � �~a �R� ��� �� a�� �~a �R� f ��~a�� �~a �R� f
if n�� �I� ! � , and

 f � � otherwise (see [Padhye et
al, 1998]). This formula is obtained by the study of
partial rounds, called the residual rounds.

This notion is based on the asumption that, when a
segment loss occurs, all the following segments in its
round get also lost, because the congestion responsible
of that loss has not yet disappeared when the last seg-
ment of the round arrives. In Figure 2, if the ��� ! �B� -th
segment (and thus all the following ones) of the cur-
rent window is lost, the � first segments will generate
ACKs, and thus the congestion window will slide a lit-
tle and release � new segments that form the residual
round.

2.3 Stationary Distribution

Long term TCP transfers are supposed to reach a sta-
tionary regime. We will therefore focus on the cyclic
stationary behavior of TCP (one ss phase, followed by
successive ca phases until the next 6KJ loss that causes
a time-out period, and so on).

Note that, because of the exponential growth during
slow start, the Markov chain does not reach all couples�pn �ko � for O�'�n+' �/.1032 and � ' o ' >��/.10
2 �,�BA .
For instance, for ��� � then the successive conges-
tion window values in slow start are 1, � !4# ���,�H%K�-� ,� ! # �����H% � Q , 8, 16, 32, 64, TUT?T , and for ���Y� they
are 1, � ! # ���,�H%=��� , � !Y# � ���&% � � , 5, 8, 12, 18, TUTUT
Excluding the states �pn ��o � which are not reached by
the Markov chain, we obtain an irreducible and aperi-
odic finite state Markov chain. Therefore, the station-
ary probability distribution, denoted by � , exists and
satisfies � d ��� , where

d
is the transition probabili-

ties matrix.

2.4 Results

Several measures of interest as, for instance, the speed
of convergence to stationary regime, the proportion of
time spent in slow start, the mean time-interval be-
tween two consecutive losses, the mean number of seg-
ments sent and received (successfully transmitted) be-
tween two losses or two time-out periods, the propor-
tion of time in which the maximum window size is
reached, and of course the mean throughput, can be ex-
pressed as functions of � , u(6v6 , 6�L and the stationary
probabilities �D�pn ��o � . Some of them have been explored
in [Fortin and Sericola, 2001]. We consider, in the fol-
lowing sections, the evaluation of the throughput, the

mean time-interval between consecutive losses and the
maximum window size.

3 THROUGHPUT COMPUTA-
TION

3.1 Send Rate And Goodput

First of all, let us make an important distinction be-
tween the throughput in terms of number of segments
sent per second which is called the send rate (the input
rate) and denoted by � , and the throughput in terms of
number of segments received by the endpoint which is
called the goodput (the output rate) and denoted by � L .
The send rate is given by the following formula

� � Wyx � ��z { ! W|x � ���U����� { !�� �mz! � Wyx �#"!" {W|x 6 ��z { ! Wyx 6 ���U����� { ! u(6v6�� � �gz$ � a �B� �%"$" �
where :� W|x � ��z { , W|x � ���U����� { and W|x �#"!" { denote the average

number of segments sent during, respectively,
each time-out period (to), each cycle (one ss and
successive ca until the next 6KJ -loss detection),
and each residual round (rr),� W|x 6 ��z&{ and W|x 6 ���U�����3{ denote the average dura-
tion of, respectively, each time-out period and
each cycle,� � �gz! & denotes the average number of losses per
cycle,� �'"!" denotes the probability that a residual round
is not empty, which means that at least one seg-
ment of the round that has experienced a loss,
has been ACKed (the last residual round of a cy-
cle, i.e. the one due to a 6KJ -type loss, is not
taken into account because it is considered as in-
cluded in the following time-out period).

Similarly, the goodput is given by

�\LK� W|x � L ���?����� { !�� �gz$ � Wyx � L "!" {W|x 6 ��z { ! W|x 6 ���U����� { ! u(6v6�� � �gz$ � a �E� �%"$" �
where W|x � L ���U����� { and W|x � L "$" { represent the mean num-
ber of segments successfully transmitted, respectively,
during a cycle and during a residual round.

The expressions of all these quantities are detailed in
[Fortin and Sericola, 2001].

For illustration, the expressions of the mean number
of segments, respectively sent and received, during a
cycle (between two successive time-out periods) are
given by :

Wyx � ���U�����H{ �
(*),+�-.f�/  n � (*),+�- � � �.i!/ � �D�pn ��o �
��L � ( )%+0- � � �.i!/ � �D�@O ��o � �



and

Wyx � L ���U����� { �
� �~a �M�

�
( )%+0-� f�/  � �~a � �~a �M� f �

� ( ),+�- � � ��i!/ � �D��n ��o �
� L � ( ),+�- � � �.i!/ � �D�@O �ko � �

where ��L^�Nu(6v6 ��W|x 6 ��z { � dwe L h i3jre  h i3j (which means

that ��L . � ( )%+0- � � �i!/ � �D��O ��o � is the probability that a cy-
cle starts with the slow start threshold equal to o ).
3.2 Comparison To Reference Models

Figure 3 shows that the results of our model are very
close to the reference models presented in [Mathis et
al, 1997] and [Padhye et al, 1998].

However, our results are slightly lower than theirs.
This is explained by the accuracy of our model which,
for instance, includes slow start phases and window
size limitation. This difference is more obvious for
lower u(6v6 values, as shown in Figure 4.

The goodput gives similar results.

3.3 Efficiency

We call efficiency, the ratio �=� � L � � (output rate over
input rate). This ratio represents the percentage of use-
ful data among the transfer load. The remaining load
constitutes the retransmission of lost segments. Figure
5 shows the efficiency � for different values of �".10
2 .
It confirms that, the higher the throughput is allowed to
be (large �/.1032 ), the more the transfer suffers losses.

4 OTHER EXAMPLES OF PER-
FORMANCE MEASURES

As we said in Section 2.4, many performance mea-
sures can be done with this model. Here we choose
to present, in a first Section, the proportion of time
� .1032 during which the congestion window size is max-
imum (the instantaneous send rate is �5.1032 segments
per RTT), and in a second Section, the time-interval
between two consecutive losses.

4.1 Maximum Window Size

Figure 6 shows the evolution of

� .1032 � � ( ),+�- � � ��i!/ � �D�@� .1032 �ko � �
for different values of � .1032 . Although it is not sur-
prising that � .1032 is sensitive to � .10
2 , this figure
shows that for high values of �5.10
2 and low values
of � , neglecting a maximum size for the congestion
window would not have much impact on the results.
This is absolutely wrong for lower values of � � � � and
higher values of � , e.g. for �5.1032 � � � and � � O T OIO �
we have ��.10
2�� �I��� .

This means that during one third of the time, the win-
dow size is equal to � .10
2 and is not growing anymore.
Any model that does not consider a window limita-
tion will thus significantly overestimate the connection
throughput.

4.2 Time-interval Between Two Consecu-
tive Losses

Figure 7 shows the mean time-interval between two
consecutive losses in a cycle, denoted by W|x � 6 �gz$ � { ,
and equal to the mean duration W|x 6 � � { of a congestion
avoidance phase. In [Fortin and Sericola, 2001], we
proved that

W|x 6 � � { �
� ( )%+0- � � �.i!/ � � � i �
	 � i ! 	 � i �FU� ! ������������ i��� ( ),+�- � � �.i!/ � ��	 � i ! 	 � i �� ! � i � �

where� 	 f � 	 �~a�� �va �R� f�� � �~a  f � � ( ),+�- � � �.i!/ � �D�pn �ko � ,� � i � �D��� � � �ko �_� �~a �R� � ��
,� � f �-uK686�� � a �M����� �"!#� $ �
%& � ( ),+�- � .

� / f('�� !*) � ,

� ' � �4� �~a �R�+� ,-!#,.$ �
%& �~a � �~a �M� � �
�~a�� �~a �R� � ,

� ) � � �~a �M�/��0
),+�-

!10
),+�-

$ �
%&
�~a � �~a �M� ( )%+0- .

When �`.1032 increases, the rounds are likely to reach
bigger sizes, and therefore, the risk of a segment loss
also increases. That is why the bigger the �".10
2 , the
higher the loss frequency, and the lower the W|x � 6 �gz$ � { .
5 CONCLUSION

This paper is based on a Markov model, and extends
the well-known discrete model of [Padhye et al, 1998]
which is a reference in modeling the TCP stationary
behavior. We have shown that our results for the mean
throughput are consistent with previous works led on
the subject.

However, we believe that we got more various and
accurate results than many other models, without us-
ing neither too complex mathematical theories, nor too
heavy computation methods. The examples of per-
formance measures that we developed in this paper
only represent an sample of what our model can bring.
What is more, its strength also lies in its easy adapt-
ability to other additive increase and multiplicative de-
crease parameters than ���,� and � ��� , and also to other
functions of increase and decrease with relatively rea-
sonable modifications. Such a generalization will be
the object of further work.
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