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Abstract: Packet and burst switching have been proposed for optical networks because they can better accommodate bursty
traffic generated by IP applications. In optical packet switching networks the payload and the header of the same packet are
conveyed in the same channel, while burst switching networks allow the separate transportation of the payload and the header
of the same burst. In this paper we consider an optical packet switching node that assigns arriving packets to channels in a
link with c available data channels (wavelengths) and a buffer ofL − c size. The paper applies the novel MM

∑K
k=1 CPPk

/GE/c/L G-queue to model optical packet switching nodes. It is worth emphasizing that our method can be applied to model
burst switching nodes as well. Moreover, we show that a model previously presented in the literature is only the special case of
our model. Numerical results quantitatively demonstrate that the characteristics (e.g.: burstiness) of the offered traffic have a
significant impact on the performance of optical nodes.
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1 INTRODUCTION

To efficiently accommodate bursty IP data traffic two
technical solutions (packet and burst switching) are be-
ing proposed for networks based on optical technology.
The final aim is to have networks that switch packets of
constant or variable length while the payload data stays
in the optical domain. In burst switching networks pay-
load data and its control data (header) are transported
in different channels, while packet switching networks
convey payload data and its header in the same channel
[El-Bawab and Shin, 2002, Yao et al., 2002].

In this paper we develop a new model for optical nodes
operating in either optical packet switching or burst
switching networks. To evaluate the performance of op-
tical nodes a decomposition approach is used. Namely,
the performance of an optical node is determined if
we can evaluate the performance of multiplexers be-
fore the transmission links. That is, we consider an
optical packet (or burst) switching multiplexer that as-
signs arriving packets (or bursts) toc available data
channels (wavelengths) and has a buffer forL − c
packets (or bursts). Therefore, we propose the use
of the MM

∑K
k=1 CPPk/GE/c/L G-queue to model

nodes in both kinds of networks (burst and packet
switching), which queue has been proposed recently in
[Chakka et al., 2003]. This is a homogeneous multi-
server queue withc servers, GE service times and with
K independent customer arrival streams, each of which
is a CPP, i.e. a Poisson point process with batch arrivals
of geometrically distributed batch size.

The use of the MM
∑K

k=1 CPPk process to model
packet or burst arrival process is motivated by the fol-
lowing reason. Recent studies have shown that the
traffic in today’s telecommunications systems often ex-
hibits burstiness – i.e. batches of transmission units
(e.g. packets) arrive together – and correlation among
interarrival times. As a consequence different mod-

els have been proposed. These models include the
compound Poisson process (CPP) in which the inter-
arrival times are assumed to have generalized expo-
nential (GE) probability distribution [Kouvatsos, 1994],
the Markov modulated Poisson process (MMPP)
and self-similar traffic models such as Fractional
Brownian Motion (FBM) [Mandelbrot and Ness, 1968,
Norros, 1994]. A CPP traffic model often gives a
good representation of burstiness of the traffic from
one or more sources, e.g. [Bhabuta and Harrison, 1997,
Fretwell and Kouvatsos, 1999], but not of the auto-
correlations observed in real traffic. Conversely,
the MMPP models can capture auto-correlation but
not burstiness, e.g. [Fretwell and Kouvatsos, 1997,
Meier-Hellstern, 1989]. The self-similar models such
as FBM can account for both auto-correlation and
burstiness, but they are analytically intractable in a
queueing context. Often, the traffic to a node is
the superposition of traffic from a number of sources
complicating the system analysis further. The MM∑K

k=1 CPPk captures the burstiness and correla-
tion of the traffic, and its parameterK can be
used to model various traffic passing optical nodes
from different sources in a flexible manner. More-
over, the Markov modulated

∑K
k=1 CPPk/GE/c/L G-

queue is mathematically tractable with efficient ana-
lytical solution for the steady state probabilities with
the use of mathematically oriented transformations
[Chakka et al., 2003]. To obtain the steady state
probabilities and thus the performance measures ei-
ther the spectral expansion method [Chakka, 1995] or
Naoumov’s method [Naoumov et al., 1997] extended
for QBD processes, or the matrix-geometric solution
method [Neuts, 1995] can be used.

Related to the performance analysis aspect, Turner has
proposed a birth-death process to analyze a multiplexer
in optical burst switched networks [Turner, 1999]. How-
ever, Turner’s model has some limitations like the as-



sumption of exponential burst arrival process, expo-
nential service times and constant burst size. It can
be shown and numerically demonstrated that Turner’s
model is the special case of our model. Moreover, our
model overcomes the limitations of Turner’s model as
regards the arrival process.

The rest of the paper is organized as follows. The pro-
posed model is described in Section 2. Some numerical
results are then presented in Section 3. The paper con-
cludes in Section 4.

2 MODEL DESCRIPTION

Since we consider a multiplexer before a transmission
link with c available data channels (wavelengths) and a
buffer for L − c packets (or bursts), a queueing model
for a multiplexer hasc servers andL queueing capacity1

for packets (or bursts). In what follows we outline the
important characteristics of the proposed model.

2.1 The Arrival Process

The arrival and service processes are modulated by the
same continuous time, irreducible Markov phase pro-
cess withN states. LetQ be the generator matrix of
this process, given by

Q =


−q1 q1,2 . . . q1,N

q2,1 −q2 . . . q2,N

...
...

...
...

qN,1 qN,2 . . . −qN

 ,

whereqi,k(i 6= k) is the instantaneous transition rate
from phasei to phasek, and

qi =
N∑

j=1

qi,j , qi,i = 0 (i = 1, . . . , N)

Let r = (r1, r2, . . . , rN ) be the vector of equilib-
rium probabilities of the modulating phases. Then,r
is uniquely determined by the equations:

rQ = 0 ; reN = 1 .

where eN stands for the column vector withN ele-
ments, each of which is unity.

The arrival process (MM
∑K

k=1 CPPk) is the super-
position ofK independent CPP arrival streams of cus-
tomers2, in a Markov modulated environment. The cus-
tomers of different arrival streams are not distinguish-
able. The parameters of the GE inter-arrival time distri-
bution of thekth (1 ≤ k ≤ K) customer arrival stream
in phasei are(σi,k, θi,k). Thus, all theK arrival point-
processes are Poisson, with batches arriving at each

1Including the packets (or bursts) in service.
2A customer denotes either a packet or a burst

point having geometric size distribution. Specifically,
the probability that a batch is of sizes is (1− θi,k)θs−1

i,k ,
in phasei, for thekth stream of customers.

Let σi,., σi,. be the average arrival rate of customer
batches and customers in phasei respectively. Letσ, σ
be the overall average arrival rate of batches and cus-
tomers respectively. Then,

σi,. =
K∑

k=1

σi,k ; σi,. =
K∑

k=1

σi,k

(1− θi,k)
(1)

σ =
N∑

i=1

σi,.ri ; σ =
N∑

i=1

σi,.ri

Because of the superposition of many CPP’s, the over-
all arrivals in phasei can be considered as bulk-Poisson
(M [x]) with arrival rateσi,. and with a batch size distri-
bution{πl/i} (the probability of batch size beingl given
that the phase isi) that is more general than mere geo-
metric. The probability that this batch size isl is given
by,

πl/i =
K∑

k=1

σi,k

σi,.
(1− θi,k)θl−1

i,k (2)

∞∑
l=1

πl/i = 1.0 (3)

The overall batch size distribution is then given by,

πl/. =
N∑

i=1

riπl/i (4)

Defineπi,l as the probability that a given batch arrival is
during phasei and is of sizel, thenπi,l = riπl/i.

2.2 The GE Multi-server

Each data channel will be modelled as a server. There-
fore there arec homogeneous servers in parallel,
each with GE-distributed service times with parameters
(µi, φi) in phasei. The service discipline is FCFS and
each server serves at most one customer at any given
time. The operation of the GE server is similar to that
described for the CPP arrival processes above.L de-
notes the queueing capacity in all phases, including the
packets in service, if any.L can be finite or infinite.
When the number of packets isj and the arriving batch
size of customers is greater thanL − j (assuming a fi-
niteL), we assume that onlyL− j customers are taken
in and the rest are rejected.

However, the batch size associated with a service com-
pletion is bounded by one more than the number of cus-
tomers waiting to commence service at the departure in-
stant. For queues of lengthc ≤ j < L + 1 (including
any packets in service), the maximum batch size at a
departure instant isj − c + 1, only one server being



able to complete a service period at any one instant un-
der the assumption of exponentially distributed batch-
service times. Thus, the probability that a departing
batch has sizes is (1− φi)φs−1

i for 1 ≤ s ≤ j − c and
φj−c

i for s = j − c + 1. In particular, whenj = c, the
departing batch has size 1 with probability one, and this
is also the case for all1 ≤ j ≤ c since each packet is al-
ready engaged by a server and there are then no packets
waiting to commence service.

It is assumed that the first packet in a batch arriving at
an instant when the queue length is less thanc (so that at
least one server is free)neverskips service, i.e. always
has an exponentially distributed service time. How-
ever, even without this assumption the methodology de-
scribed in this paper is still applicable.

2.3 Negative Customers

The parameters of the GE inter-arrival time distribution
of negative customers are(ρi, δi) in phasei. That is,
the inter-arrival time probability distribution function is
1 − (1 − δi)e−ρit for the negative customers in phase
i. Thus, the negative customer arrivalpoint-process is
Poisson, with batches arriving at each point having geo-
metric size distribution.

A negative customer removes a positive customer in the
queue, according to a specifiedkilling discipline. When
a batch of negative customers of sizel (1 ≤ l < j −
c) arrives, l positive customers are removed from the
end of the queue leaving the remainingj − l positive
customers in the system. Ifl ≥ j − c ≥ 1, thenj − c
positive customers are removed, leaving none waiting to
commence service (queue length equals toc). If j ≤ c,
the negative arrivals have no effect.

ρi, the average arrival rate of negative customers in
phasei andρ, the overall average arrival rate of nega-
tive customers are given by,

ρi =
ρi

1− δi
; ρ =

N∑
i=1

riρi (5)

Negative customers remove (positive) customers in
the queue and have been used to model random
neural networks, task termination in speculative par-
allelism, faulty components in manufacturing sys-
tems and server breakdowns [Fourneau et al., 1996,
Fourneau and Hernandez, 1993]. The name G-queue
has been adopted for queues with negative customers
in acknowledgement of Gelenbe who first introduced
them. This queueing model can account for burstiness
and correlation, but in addition the negative customers,
with an appropriate killing discipline, can represent ad-
ditional behaviours such as breakdowns, killing signals,
cell losses and load balancing. We show in Section 3
how negative customers can be used to model packet
losses.

2.4 Condition for Stability

WhenL is finite, the system is ergodic since the repre-
senting Markov process is irreducible. Otherwise, i.e.
when L = ∞, the overall average departure rate in-
creases with the queue length, and its maximum (the
overall average departure rate when the queue length
tends to∞) can be determined as,

µ = c
N∑

i=1

riµi

1− φi
. (6)

Hence, we conjecture that the necessary and sufficient
condition for the existence of steady state probabilities
is

σ < ρ + µ . (7)

2.5 The Steady State Balance Equations

The state of the system at any timet can be speci-
fied completely by two integer-valued random variables,
I(t) and J(t). I(t) varies from1 to N , represent-
ing the phase of the modulating Markov chain, and
0 ≤ J(t) < L + 1 represents the number of posi-
tive customers in the system at timet, including any
in service. The system is now modelled by a contin-
uous time discrete state Markov process,Y (Y if L is
infinite), on a rectangular lattice strip. LetI(t), the
phase, vary in the horizontal direction andJ(t), the
queue length orlevel, in the vertical direction. We
denote the steady state probabilities by{pi,j}, where
pi,j = limt→∞ Prob(I(t) = i, J(t) = j), and letvj =
(p1,j , . . . , pN,j).

The processY evolves due to the following instanta-
neous transition rates:

(a) qi,k – purely lateral transition rate – from state
(i, j) to state(k, j), for all j ≥ 0 and1 ≤ i, k ≤
N (i 6= k), caused by a phase transition in
the Markov chain governing the arrival phase pro-
cess;

(b) Bi,j,j+s – s-step upward transition rate – from
state(i, j) to state(i, j + s), for all phasesi,
caused by a new batch arrival of sizes customers.
For a givenj, s can be seen as bounded whenL
is finite and unbounded whenL is infinite;

(c) Ci,j,j−s – s-step downward transition rate – from
state(i, j) to state(i, j − s), (j − s ≥ c + 1) for
all phasesi, caused by a batch service completion
of sizes, or a batch arrival of negative customers
of sizes;

(d) Ci,c+s,c – s-step downward transition rate – from
state(i, c + s) to state(i, c), for all phasesi,
caused by a batch arrival of negative customers
of size≥ s or a batch service completion of size
s (1 ≤ s ≤ L− c);



(e) Ci,c−1+s,c−1 – s-step downward transition rate,
from state(i, c − 1 + s) to state(i, c − 1), for
all phasesi, caused by a batch departure of size
s (1 ≤ s ≤ L− c + 1);

(f) Ci,j+1,j – 1-step downward transition rate, from
state(i, j +1) to state(i, j), (c ≥ 2 ; 0 ≤ j ≤ c−
2), for all phasesi, caused by a single departure.

Define,

Bj−s,j = Diag[B1,j−s,j , B2,j−s,j , . . . , BN,j−s,j ]
(j − s < j ≤ L) ;

Bs = Bj−s,j (j < L)

= Diag

[
. . . ,

K∑
k=1

σi,k(1− θi,k)θs−1
i,k , . . .

]
;

Σk = Diag[σ1,k, σ2,k, . . . , σN,k]
(k = 1, 2, . . . ,K) ;

Θk = Diag[θ1,k, θ2,k, . . . , θN,k]
(k = 1, 2, . . . ,K) ;

Σ =
K∑

k=1

Σk ;

R = Diag[ρ1, ρ2, . . . , ρN ] ;
∆ = Diag[δ1, δ2, . . . , δN ] ;
M = Diag[µ1, µ2, . . . , µN ] ;
Φ = Diag[φ1, φ2, . . . , φN ] ;

Cj = jM (0 ≤ j ≤ c) ;
= cM = C (j ≥ c) ;

Cj+s,j = Diag[C1,j+s,j , C2,j+s,j , . . . , CN,j+s,j ] ;

E = Diag(e
′

N ) .

Then, we get,

Bs =
K∑

k=1

Θs−1
k (E −Θk)Σk ;

B1 = B =
K∑

k=1

(E −Θk)Σk ;

BL−s,L =
K∑

k=1

Θs−1
k Σk ;

Cj+s,j = C(E − Φ)Φs−1 + R(E −∆)∆s−1

(c + 1 ≤ j ≤ L− 1 ; s = 1, 2, . . . , L− j) ;

= C(E − Φ)Φs−1 + R∆s−1

(j = c ; s = 1, 2, . . . , L− c) ;
= CΦs−1

(j = c− 1 ; s = 1, 2, . . . , L− c + 1) ;
= 0 (c ≥ 2 ; 0 ≤ j ≤ c− 2 ; s ≥ 2) ;
= Cj+1 (c ≥ 2 ; 0 ≤ j ≤ c− 2 ; s = 1) .

The steady state balance equations are,

(1) For theLth row or level:

L∑
s=1

vL−sBL−s,L + vL [Q− C −R] = 0 ; (8)

(2) For thejth row or level:

j∑
s=1

vj−sBs + vj [Q− Σ− Cj −RIj>c] +

L−j∑
s=1

vj+sCj+s,j = 0 (0 ≤ j ≤ L− 1) ; (9)

(3) Normalization

L∑
j=0

vjeN = 1 . (10)

where,Ij>c = 1 if j > c else0, andeN is a column
vector of sizeN with all ones.

Each equation ((8, 9, 10)) hasall the unknown vectors
vj’s. If L is unbounded, then each of these are infinite
number of equations in infinite number of unknowns,
vj’s, and each equation is infinitely long containing all
the infinite number of unknowns. Also, the coefficient
matrices ofvj are j-dependent. It may be noted that
there has been neither a solution nor a solution method-
ology to solve these equations. In [Chakka et al., 2003],
a novel methodology is developed to solve these equa-
tions exactly and efficiently. First these complicated
equations aretransformedto a computable form by
using certain mathematically oriented transformations.
The resulting transformed equations are of the QBD-M
type (QBD with simultaneous-multiple-bounded births
and simultaneous-multiple-bounded deaths) and hence
can be solved by one of the several available meth-
ods, viz. the spectral expansion method, Bini-Meini’s
method or the matrix-geometric method with folding or
block size enlargement [Haverkort and A.Ost, 1997].

2.6 Performance Measures

Some performance measures can be derived as follows:

• Packet loss probability

L∑
j=0

∞∑
l=L−j+1

vj(π1,l, . . . , πN,l)
′ l − (L− j)

l

(11)

• Average departure rate of positive customers

ν =
L−c+1∑

s=1

sνs (12)



where

νn =
N∑

i=1

L∑
j=c+n

pi,j(1− φi)φn−1
i cµi+

N∑
i=1

pi,c+n−1φ
n−1
i cµi (n = 2, ..., L− c + 1)

(13)

and
ν1 =

N∑
i=1

c∑
j=1

pi,jjµi +
N∑

i=1

L∑
j=c+1

pi,j(1−φi)cµi

(14)

3 NUMERICAL RESULTS

Three numerical results are presented. First, we show
that Turner’s model is the special case of our model.
Next, we present the impact of bursty traffic on the per-
formance of the system. Note that in the first two cases,
no negative customers are allowed in the system. Then,
we show how the throughput of connections can be de-
termined through the presence of negative customers.

3.1 Turner’s Model is the Special Case of our
Model

In this section we demonstrate that Turner’s model for
burst switching is the special case of our model by let-
ting K = 1, N = 1,

[
qi,j

]
=

[
0
]
, θ1,1 = 0, φ1 =

0, µ1 = 1. It easy to prove that the traffic load is deter-
mined byσ1,1.
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Figure 1: Packet loss probability vs load andc

Figure 1 is exactly the same as Figure 2 in
[Turner, 1999], except that the data was produced by
our model with the parameter settings mentioned ear-
lier. In order to demonstrate the equivalence, the results
were calculated and compared to 20 significant digits
using both models for a subset of the parameter set dis-
played on Figure 1. The calculations were executed on
a Sun Ultra 60 Workstation, which had a machine ep-
silon3 ε = 1.9 ∗ 10−34. Table 1 summarizes the out-
come. It is clear that the differences between the results
produced by the two models areO(ε).

3The machine epsilon is the smallest floating point number that
bounds the roundoff in individual floating point operations.

Table 1: Numerical comparison of Turner’s model and
the MM

∑K
k=1 CPPk/GE/c/L model forc = 32

load number of identical digits exponent of numerical value

b 0 8 16 24 32 0 8 16 24 32

0.2 20 16 9 4 0 -13 -18 -24 -30 -35
0.3 20 20 16 13 9 -9 -13 -17 -21 -25
0.4 20 20 20 18 15 -6 -9 -12 -16 -19
0.5 20 20 20 20 20 -4 -7 -9 -12 -14

...
...

1.2 20 20 20 20 20 -1 -1 -1 -1 -1

3.2 Impact of Bursty Traffic

In this section we show the impact of the burstiness of
the offered traffic on the performance of the multiplexer.
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Figure 2 plots the packet discard probability for this nu-
merical example where batch arrivals are allowed. It
is clearly observed that batch arrivals have a signifi-
cant impact on the performance of the system and batch
arrivals can be better handled by increasing the buffer
space (at the expense of some queueing delay) than by
increasing the number of channels. The performance
of 256 channels with no buffer is worse than that of 32
channels with a buffer for 8 packets in our example for
relative load values above 0.4.

3.3 Impact of the Connection Loss on the Connec-
tion Throughput

In this section we present an approximation to calculate
the performance parameter (throughput) of a connection
based in the presented queueing model. We also illus-
trate, then, the impact of a packet loss on the perfor-
mance of a connection. The considered problem here
is the approximation of the throughput of two commu-
nicating peers in optical networks. A preliminary ap-
proximation can be proposed as follows. The through-
put of two communicating peers can be approximated
with the queueing model of a single node incorporat-
ing the packet loss phenomena along the path. It is
showed based on measurements in [Yajnik et al., 1999]
that packet loss can be modelled as a 2-state Markov
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Figure 3: Effect of the negative customer arrival process

chain model. Therefore, the MM
∑K

k=1 CPPk /GE/c/L
G-queue can be applied in this case, where negative cus-
tomers model the loss along the path, and the departure
rate of positive customers is the performance measure
related to the throughput of a connection.

Figure 3 illustrates the dependency of the customer de-
parture rate on the parameter controlling the packet loss
process (modelled by negative customers). It can be ob-
served that the correlation of the packet losses has a sig-
nificant impact on the performance of the system.

4 CONCLUSIONS

We have applied a new queueing model for the perfor-
mance analysis of optical packet switching nodes, which
model overcomes some of the limitations of the previ-
ous work. Moreover, it is shown that Turner’s model is
the special case of our model. Numerical results quanti-
tatively demonstrate that the characteristics (e.g.: bursti-
ness) of the offered traffic have a significant impact on
the performance of optical nodes. In addition the pro-
posed model is able to handle large or unbounded batch
sizes, both in arrivals and services, with great compu-
tational efficiency and hence may have definite advan-
tages over BMAP based models.
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