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Abstract: Packet and burst switching have been proposed for optical networks because they can better accommodate bursty
traffic generated by IP applications. In optical packet switching networks the payload and the header of the same packet are
conveyed in the same channel, while burst switching networks allow the separate transportation of the payload and the header
of the same burst. In this paper we consider an optical packet switching node that assigns arriving packets to channels in a
link with ¢ available data channels (wavelengths) and a buffdr ef ¢ size. The paper applies the novel MEszl CPPy

IGE/c/L G-queue to model optical packet switching nodes. It is worth emphasizing that our method can be applied to model
burst switching nodes as well. Moreover, we show that a model previously presented in the literature is only the special case of
our model. Numerical results quantitatively demonstrate that the characteristics (e.g.: burstiness) of the offered traffic have a
significant impact on the performance of optical nodes.
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1 INTRODUCTION els have been proposed. These models include the
compound Poisson process (CPP) in which the inter-
To efficiently accommodate bursty IP data traffic twgrrival times are assumed to have generalized expo-
technical solutions (packet and burst switching) are hgential (GE) probability distribution [Kouvatsos, 1994],
ing proposed for networks based on optical technologife Markov modulated Poisson process (MMPP)
The final aim is to have networks that switch packets Qﬁd self-similar traffic models such as Fractional
constant or variable length while the payload data stagfownian Motion (FBM) [Mandelbrot and Ness, 1968,
in the optical domain. In burst switching networks payNorros, 1994]. A CPP traffic model often gives a
load data and its control data (header) are transportRsbd representation of burstiness of the traffic from
in different channels, while packet SWitChing netWOf'l@ne or more sources, e.g. [Bhabuta and Harrison, 1997,
convey payload data and its header in the same cham@twell and Kouvatsos, 1999], but not of the auto-
[El-Bawab and Shin, 2002, Yao et al., 2002]. correlations observed in real traffic.  Conversely,
. . the MMPP models can capture auto-correlation but
In this paper we develop a new model for optical nOdﬁ%t burstiness, e.g. [Fretwell and Kouvatsos, 1997
operating in either optical packet switching or burﬁleier-Hellstern: 1989]. The self-similar models’ such’

?W'thh":jg netv(\jlorks. To e_:(aluate the pﬁr_formagcle\lof 055 FBM can account for both auto-correlation and
Ical nodes a decomposilion approach IS Used. NaMy oinass  put they are analytically intractable in a
the performance of an optical node is determined

luate th : £ multiol o eueing context. Often, the traffic to a node is
we can evaluate the performance of mulliplexers b, superposition of traffic from a number of sources
fore the transmission links. That is, we consider

tical ket burst tchi ol that at:f?t)mplic:ating the system analysis further. The MM
optical packet (or burst) switching multiplexer tha asz:le CPP; captures the burstiness and correla-
signs arriving packets (or bursts) toavailable data

h | lenath 4 h buffer fo tion of the traffic, and its parametek can be
channels (wavelengths) and has a bulier for- ¢ used to model various traffic passing optical nodes
packets (or bursts). Therefore, we propose the

Y96m different sources in a flexible manner. More-
K .
of the MM 3, CPP,/GE/C/L G-queue to model o e the Markov modulated"r_, C PP,/GE/c/L G-

nodes in both kinds of networks (burst and paqubeue is mathematically tractable with efficient ana-

S(\;Vk']tcrl'(ng)iwlh'ggg; eue_:”r]]_a s_beenhproposed recentl{wcal solution for the steady state probabilities with
[Chakka etal., ] IS 1S a homogeneous muligy \,ge of mathematically oriented transformations

server queue with servers, GE service times and wit hakka et al., 2003] To obtain the steady state
K independent customer arrival streams, each of whigh, -\ i o .a’md thL.JS the performance measures ei-

is a CPP, i'.e' a Po'iss.on point process with batch arriv 2r the spectral expansion method [Chakka, 1995] or
of geometrically distributed batch size. Naoumov’'s method [Naoumov et al., 1997] extended
The use of the MMZszl CPP, process to model for QBD processes, or the matrix-geometric solution
packet or burst arrival process is motivated by the fdR€thod [Neuts, 1995] can be used.

Itov#_ng_ r(teajonl. tFIQecent stu_d|e{c_, have sthown ftthat tﬂ%lated to the performance analysis aspect, Turner has
raffic in today's telecommunications systems often e roposed a birth-death process to analyze a multiplexer

hibits burstiness — i.e. batches of transmission un F\Soptical burst switched networks [Turner, 1999]. How-

(6.0. packets) arrive together — and correlation amog\ger, Turner's model has some limitations like the as-

interarrival times. As a consequence different mod-
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sumption of exponential burst arrival process, exppeint having geometric size distribution. Specifically,
nential service times and constant burst size. It ctre probability that a batch is of sizés (1 —Hi,k)efgl,

be shown and numerically demonstrated that Turnejfsphase, for thek!” stream of customers. ’
model is the special case of our model. Moreover, our

model overcomes the limitations of Turner's model dset o; ,o;. be the average arrival rate of customer
regards the arrival process. batches and customers in phagsespectively. Let, &

be the overall average arrival rate of batches and cus-
The rest of the paper is organized as follows. The pr@mers respectively. Then,

posed model is described in Section 2. Some numerical

results are the_n presented in Section 3. The paper con- B K _ _ K Tik 1

cludes in Section 4. 9%, = ZJW v T = Z (1—0:1) @
k=1 ’

N
o= E ;.75 ; o= E 04,75
i=1 i

2 MODEL DESCRIPTION

Since we consider a multiplexer before a transmission
link with ¢ available data channels (wavelengths) and a

buffer for . — ¢ packets (or bursts), a queueing modglecayse of the superposition of many CPP's, the over-

for a multiplexer hag servers and queueing capacity | arrivals in phase can be considered as bulk-Poisson
for packets (or bursts). In what follows we outline th@M[m]) with arrival rates; and with a batch size distri-

important characteristics of the proposed model. bution{, ;} (the probability of batch size beirigjiven
that the phase i§) that is more general than mere geo-
metric. The probability that this batch sizelis given

The arrival and service processes are modulated by Bye

2.1 The Arrival Process

K

same continuous time, irreducible Markov phase pro- Tik -1
cess withNN states. LetQ be the generator matrix of T =) ?(1 = 0ir)0; (2)
this process, given by kz 7
> =10 ©)
-4 4dq12 --- Q@1,N =1
421 —q2 ... (g2 N
Q= . . . ) The overall batch size distribution is then given by,
gN1 N2 .- —qN N
). erm/i (4)
whereg; (i # k) is the instantaneous transition rate =1
from phase to phasek, and Definer; ; as the probability that a given batch arrival is
N during phasé and is of sizd, thenm; ; = r;7; ;.
% = z;qm ¢ =0 (=1....N) 25 The GE Multi-server
=
Each data channel will be modelled as a server. There-
Letr = (r1,79,...,7n) be the vector of equilib- fore there arec homogeneous servers in parallel,
rium probabilities of the modulating phases. Then, each with GE-distributed service times with parameters
is uniquely determined by the equations: (i, ¢;) in phasei. The service discipline is FCFS and
each server serves at most one customer at any given
rQ=0 ; rey=1. time. The operation of the GE server is similar to that

. described for the CPP arrival processes abolede-
whereey stands for the column vector with” ele- stes the queueing capacity in all phases, including the
ments, each of which is unity. packets in service, if any.L can be finite or infinite.
When the number of packetsjsand the arriving batch

position of K independent CPP arrival streams of cug-'.feLOf customers |sthgr;aater th@n— jt(assumlngtakfl-
tomerg, in a Markov modulated environment. The cuél' end),tﬁveranur;ner _a torgjly — J cuslomers are taken
tomers of different arrival streams are not distinguisH] a € restare rejected.

able. The parimeters of the GE inter-arrival time distiijo\ever, the batch size associated with a service com-

bution of thek™ (1 < k < K) customer arrival stream|etion is bounded by one more than the number of cus-

in phase are(; x, 0;,x)- Thus, all theK arrival point 15 mers waiting to commence service at the departure in-

processes are Poisson, with batches arriving at eaghi For queues of length< j < L + 1 (including
lincluding the packets (or bursts) in service. any packets in service), the maximum batch size at a
2A customer denotes either a packet or a burst departure instant ig — ¢ + 1, only one server being

The arrival process (MI\/E,CK:1 CPP,) is the super-




able to complete a service period at any one instant &4 Condition for Stability
der the assumption of exponentially distributed batch-

service times. Thus, the probability that a departi®yhenL is finite, the system is ergodic since the repre-
batch has sizeis (1 — ¢;)¢5 ' for1 < s < j — cand senting Markov process is irreducible. Otherwise, i.e.

¢!~ “fors = j — ¢+ 1. In particular, wherj = ¢, the when L = oo, the overall average departure rate in-

) ' ! ' . . .

departing batch has size 1 with probability one, and tfgeases with the queue length, and its maximum (the
is also the case for all < j < ¢ since each packet is al-overall average departure_ rate when the queue length
ready engaged by a server and there are then no pacl@§s toeo) can be determined as,

waiting to commence service. N

f=c Z lriuéﬁi . ©)
i=1

It is assumed that the first packet in a batch arriving at
an instant when the queue length is less théo that at
least one server is fre@pverskips service, i.e. alwaysHence, we conjecture that the necessary and sufficient
has an exponentially distributed service time. Hoveondition for the existence of steady state probabilities
ever, even without this assumption the methodology de-

scribed in this paper is still applicable. oc<p+p. @)

2.3 Negative Customers 2.5 The Steady State Balance Equations

The parameters of the GE inter-arrival time distributiof,a state of the system at any timecan be speci-
of negative customers af@;,d;) in phasei. Thatis, fieq completely by two integer-valued random variables,
the inter-arrival time probability distribution function 'SI(t) and J(t). I(t) varies from1 to N, represent-
1 — (1 = g;)e”#" for the negative customers in phasg,y’ the phase of the modulating Markov chain, and

i. Thus, the negative customer arriyadintprocess is ) " J(t) < L + 1 represents the number of posi-
Poisson, with batches arriving at each point having 96Q7e customers in the system at timgincluding any

metric size distribution. in service. The system is now modelled by a contin-

A negative customer removes a positive customer in # .us.ttlme dlscret? Stat? M?rgpv prto_cezfslg i Ltrl]s
gueue, according to a specifikitling discipline When |nh|n| €), on a r?ﬁ ar;]gu.ar ?II? S ?p. dm, the
a batch of negative customers of sizdd < [ < j — phase, vary in the horizontal direction adt), the

c) arrives,! positive customers are removed from th ueue length olevel in the vertica | direction. ~We
end of the queue leaving the remainifng- | positive enote.the steady state prpbab|llt|e§ ty.;}, where
customers in the system. If> j — ¢ > 1, thenj — ¢ Pid = Mmoo Prob(1(t) =1,J(t) = j), and letv; =
positive customers are removed, leaving none waiting(l%l’j’ S PNG)-

commence service (queue length equalg)idf j < ¢,

’ i The process” evolves due to the following instanta-
the negative arrivals have no effect.

neous transition rates:

pi, the average arrival rate of negative customers in
phasei andp, the overall average arrival rate of nega- (a) ¢;» — purely lateral transition rate — from state

tive customers are given by, (i,7) to state(k, 5), forall j > 0andl < i,k <
N (i # k), caused by a phase transition in
_ Pi X the Markov chain governing the arrival phase pro-
Pi = 1—9, ;P = z;ﬁpi (5) cess:

(b) B; j j+s — s-step upward transition rate — from
Negative customers remove (positive) customers in  State(i,j) to state(i,j + s), for all phases,
the queue and have been used to model random caused.byanew batch arrival of sizeustomers.
neural networks, task termination in speculative par- FOr a givenj, s can be seen as bounded when
allelism, faulty components in manufacturing sys- IS finite and unbounded whehis infinite;
tems and server breakdowns [Fourneau etal., 1996,0)
Fourneau and Hernandez, 1993]. The name G—queug
has been adopted for queues with negative customers
in acknowledgement of Gelenbe who first introduced
them. This queueing model can account for burstiness
and correlation, but in addition the negative customers,
with an appropriate killing discipline, can represent ad-(d) C; .+ . — s-step downward transition rate — from
ditional behaviours such as breakdowns, killing signals,  state(i,¢ + s) to state(i,c), for all phasesi,
cell losses and load balancing. We show in Section 3  caused by a batch arrival of negative customers
how negative customers can be used to model packet of size> s or a batch service completion of size
losses. s(l<s<L-c)

C;.5,j—s — s-Step downward transition rate — from
state(i, j) to state(i,j — s), (j —s > c+ 1) for

all phaseg, caused by a batch service completion
of sizes, or a batch arrival of negative customers
of sizes;



() Cic—14sc-1 — s-step downward transition rate,The steady state balance equations are,
from state(i,c — 1 + s) to state(i,c — 1), for
all phaseg, caused by a batch departure of S|ze(1) For theL!" row or level:
s(1<s<L-—c+1);

L
)] Ciﬁljj - 1-step dowrwyard transition r.ate, from Z Vi_sBr_s1+vL[Q—C—R]=0; (8)
state(i, j+ 1) to state(s, j), (¢ > 2; 0 < j < c— =
2), for all phases, caused by a single departure.
(2) For thejt" row or level:

Define, .
J
Bj_s; = Diag[Bi,j—sj, B2j-s,- -, BN j—s,] 2 Vi-sBs +v;[Q =X = Cj = Rlj>c] +
(j—s<j<L); "
By = B]'*SJ' (] < L) Z Vj+st+s,j =0 (O <j< L— 1) ; (9)
= Dlag g; k — Uik 0: 1, -
Z " % g (3) Normalization
Y = Diag[dlyk,dgyk,...,O'va-]
(k=1,2,...,K); > viey=1. (10)
O, = Diag[&l’k,ez,k,...,eMk] =
(k=1,2,...,K); o )
X where,Ij>,_: =1 |_f j > celse0, andey is a column
$ o Z S vector of sizeV with all ones.
i Each equation ((8, 9, 10)) hadl the unknown vectors
R D|ag [o1, P2, PN] 5 vyi's. If L is unbounded, then each of these are infinite
A = Diagldy,da,...,0N] ; number of equations in infinite number of unknowns,
M = Diag[us, pas---,pn] ; v;'s, and each equation is infinitely long containing all
; the infinite number of unknowns. Also, the coefficient
® = Dia ; . . '
, 9lor, @2, "(bN] ' matrices ofv; are j-dependent. It may be noted that
¢ = M 0<j<c); there has been neither a solution nor a solution method-
= cM=C (1=¢); ology to solve these equations. In [Chakka et al., 2003],
Cirsj = Diag[Cy jysj,Cojrsjs--Cnijrsyl 3 @ novel methodology is developed to solve these equa-

tions exactly and efficiently First these complicated

E = Diagley). equations ardransformedto a computable form by

Then, we get, using certain mathematically oriented transformations.
The resulting transformed equations are of the QBD-M
K type (QBD with simultaneous-multiple-bounded births
By, = Z@Z_l(E —O5)Xk ; and simultaneous-multiple-bounded deaths) and hence
k=1 can be solved by one of the several available meth-
K ods, viz. the spectral expansion method, Bini-Meini's
By = B= Z (B —Op)2 ; method or the matrix-geometric method with folding or
k=1 block size enlargement [Haverkort and A.Ost, 1997].
K
Br_s1 = Z@Z‘lxk ; 2.6 Performance Measures
k=1
Cire; = C(E- @)@5_1 +R(E — A)As—l Some performance measures can be derived as follows:

(c+1<j<L-1;s=12...,L—7j);
e Packet loss probability

L 0o .
= (L—J)
= C(E-®)®* '+ RA*! Z Z V(e TN) —
. §=01=L—j+1
(j=c;s=1,2,....,.L—c); (11)
= Cps! N
e Average departure rate of positive customers
(j=c—1;5=1,2,...,L—c+1);
= 0(c>2;0<j<c—2;s8>2); B L—c+1

U= SV 12
= Cjy1 (22;0<j<c—-2;5=1). ; (12)



where . . ,
Table 1: Numerical comparison of Turner’s model and

. the MMY_,_, C'PP;/GE/c/L model fore = 32

n— =

Z Z pii(1— @) cpit

e 1] tn load  number of identical digits exponent of numerical value
b 0 8 16 24 32 0 8 16 24 32

ZP%CM 167 e (=2 L—c+1) 53 50 16 8 a4 0 43 18 24 30 35

03 20 20 16 13 9 -9 -13 -17 -21 -25
(13) 04 20 20 20 18 15 6 9 -12 -16 -19
05 20 20 20 20 20 -4 -7 -9 -12 -14

and N ¢ . _
ZZPUMHFZ Zp” — ba)eps 12 20 20 20 20 20 -1 -1 -1 1 -1
1=1 j=1 1=1 j=c+1
(14)
3 NUMERICAL RESULTS 3.2 Impact of Bursty Traffic

Three numerical results are presented. First, we shwthis section we show the impact of the burstiness of
that Turner's model is the special case of our mod#he offered traffic on the performance of the multiplexer.
Next, we present the impact of bursty traffic on the per-
formance of the system. Note that in the first two cases,
no negative customers are allowed in the system. Then, 7 :
we show how the throughput of connections can be d - obuffer;.ze

termined through the presence of negative customers. ‘8”/1{6” s
000t F. 2 4

o

o

=
\
L

3.1 Turner's Model is the Special Case of our
Model

o001t L 3

packet discard probablll

le-05F | . 32 / K El
b [ 64 / . 4 channels

, K 128 buffer size 32 channels
L L o ) ) | 256 channels -----

In this section we demonstrate that Turner’s model for
burst switching is the special case of our model by let- ;..

oL

t|ng K _ 1’ N — 17 I:qZJ] — I:O} , 91’1 — 0, ¢1 — .2 0.3 0.4 0.5 0.6 |g;j 0.8 0.9 1 11 1.2
0, 41 = 1. It easy to prove that the traffic load is deter-
mined byo ;. Figure 2: Packet loss probability vs load and

1em

T T

4 channels
32 channels
256 channels

Figure 2 plots the packet discard probability for this nu-
merical example where batch arrivals are allowed. It
is clearly observed that batch arrivals have a signifi-
cant impact on the performance of the system and batch
1 arrivals can be better handled by increasing the buffer
| space (at the expense of some queueing delay) than by
! increasing the number of channels. The performance
toos | AN A 6;’ 128 ] of 256 channels with no buffer is worse than that of 32

' T obumbores | | 1 channels with a buffer for 8 packets in our example for
0 o3 04 05 08 07 08 08 1 11 12 relative load values above 0.4.

load

0.1
0 burst stores

001

0001 F 2

0.0001

packet discard probability

’ B S S 1
Oburststores 8 6 /32 /) /) B
. K SIS j

3.3 Impact of the Connection Loss on the Connec-
Figure 1: Packet loss probability vs load and tion Throughput

Figure 1 is exactly the same as Figure 2 im this section we present an approximation to calculate
[Turner, 1999], except that the data was produced the performance parameter (throughput) of a connection
our model with the parameter settings mentioned edased in the presented queueing model. We also illus-
lier. In order to demonstrate the equivalence, the resultste, then, the impact of a packet loss on the perfor-
were calculated and compared to 20 significant digiisance of a connection. The considered problem here
using both models for a subset of the parameter set disthe approximation of the throughput of two commu-
played on Figure 1. The calculations were executed fitating peers in optical networks. A preliminary ap-
a Sun Ultra 60 Workstation, which had a machine eproximation can be proposed as follows. The through-
silor® € = 1.9« 1073, Table 1 summarizes the output of two communicating peers can be approximated
come. Itis clear that the differences between the resuliigh the queueing model of a single node incorporat-
produced by the two models af¥e). ing the packet loss phenomena along the path. It is
3The machine epsilon is the smallest floating point number th%powed based on measurements in [Yajnik et al., 1999]
bounds the roundoff in individual floating point operations. that packet loss can be modelled as a 2-state Markov
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