
COMPARATIVE PERFORMANCE EVALUATION OF

E-COMMERCE TECHNOLOGIES: A TPC-W-BASED

BENCHMARKING TOOL

YUSSUF N. ABU SHAABAN∗ and JANE HILLSTON

ICSA, School of Informatics, University of Edinburgh.

Abstract E-commerce systems are an important new application area in which maintaining good performance
under scaling workloads is crucial to business success. The TPC-W benchmark is a benchmark designed to ex-
ercise a web server and associated transaction processing system in representative e-commerce scenarios. Whilst
the benchmark specifies the architecture of the system, and the form of the interactions between users, web
server and underlying database, it does not stipulate the supporting technology used to communicate between
the web server and the database. In this paper we describe a tool which has been developed to allow compara-
tive benchmarking of different technologies with minimal re-implementation. The tool implements the TPC-W
specification in a modular fashion which allows different application servers to be inserted and experimented
upon. The use of the tool in the comparative benchmarking of Java Servlets and PHP is demonstrated

Keywords Software Tools, Software Performance, Performance Modelling, Measurements Techniques, Work-
load Modelling and Characterization.

1 INTRODUCTION

In recent years e-commerce systems have become one
of the most noticeable manifestations of the Internet
phenomenon. Although there are no widely accepted
definitions, such systems are generally deemed to pro-
vide facilities for commercial transactions to take place
between remote participants. In particular, three cat-
egories of e-commerce systems are identified [3]: Elec-
tronic Markets, Electronic Data Interchange (EDI) and
Internet Commerce. For the remainder of this paper
we will treat “e-commerce” as synonymous with Inter-
net commerce.

In many e-commerce systems, timely behaviour is cru-
cial in order to maintain the site owner’s competitive
edge: poor performance can quite literally translate
into lost revenue [1]. However, little systematic work
has been done on analysing the performance of such
systems and their supporting technologies. In this pa-
per we describe a tool which aims to provide a frame-
work in which different e-commerce programming tech-
nologies can be easily benchmarked against the stan-
dard TPC-W benchmark [11].

The TPC-W benchmark has been developed by the
Transaction Processing Performance Council (TPC) as
a response to the rise of e-commerce systems. It spec-
ifies the behaviour of an on-line bookstore, including
many of the elements commonly found in e-commerce
applications: a web-site supported by a web serving
component which can present both static and dynamic
web pages; a relational database which is accessed from
the web server to provide transaction processing and
decision support. Moreover the benchmark also spec-

ifies emulated remote browsers for different classes of
customers, providing the workload on the system.

Our tool implements the TPC-W benchmark, in Java,
as a framework for the investigation of application
server technologies. The application server sits be-
tween the web server and the database and provides
the business logic as well as the interface between the
manipulation and the presentation of the data. Whilst
the benchmark places constraints on the application
server it does not stipulate how it should be imple-
mented. Available technologies for this module of the
system include CGI, ASP, Java Servlets, JSP and PHP.
Furthermore, the tool incorporates support for experi-
ment design, allowing the user to replicate runs of the
benchmark and compare the results obtained with dif-
ferent workload mixes. A detailed description of the
tool design can be found in [8].

The remainder of the paper is structured as follows. In
Section 2 we review the role of the application server
within an e-commerce system and the different tech-
nologies currently available. In Section 3 we describe
the TPC-W benchmark and in the following section we
show how this is captured within the design of our tool.
Section 5 describes the implementation of the tool. Re-
sults of using the tool in evaluating the scalability of
Java Servlets and PHP are given in Section 6. Finally
in Section 7 we give some conclusions.

2 APPLICATION SERVERS

The application server is a vital component of an e-
commerce system: it is the software component that

∗Corresponding author, DIRC, supported by EPSRC studentship 00317428

contains the business logic of the system. It is respon-
sible for receiving HTTP requests via the web server
from clients and executing the business functions asso-
ciated with each of them. This can involve interacting
with database servers and/or transaction servers. The
application server also has the responsibility of dynam-
ically building web pages, formatting database query
results in HTML, to be sent back to clients.

Today, many programming environments exist for im-
plementing application servers, fulfilling the need for
dynamic web-site generation and allowing the connec-
tion between web front-ends and databases. These in-
clude the Common Gateway Interface (CGI) [4], Mi-
crosoft’s Active Server Pages (ASP) [5], Personal Home
Pages (PHP) [10], Java Servlets [7] and Java Server
Pages (JSP) [6]. Currently in the tool we offer imple-
mentations of Java Servlets and PHP, and we give a
brief description of these below:

Java Servlets Java Servlets [7] are server side Java
code that runs on a server to answer client HTTP
requests. Servlets make use of the Java standard
extension classes in the packages java.servlet and
javax.servlet.http. Since servlets are written in
the highly portable Java language and follow a stan-
dard framework, they provide a means to create so-
phisticated server extensions in a server and OS inde-
pendent way. When a servlet program is called for the
first time, it is loaded into memory. After the request is
processed, the servlet remains in memory and will not
be unloaded from memory until the server is shutted
down. Servlets offer excellent connectivity with many
databases through the use of Java’s JDBC package.
The output of HTML in a servlet environment is an
issue, as the servlet is required to output all HTML in-
ternally. This requires complicated output statements
to handle the output of the entire HTML content, as
well as the code for the rest of the application.

Personal Home Pages Personal Home Pages
(PHP) [10] is a server-side, cross-platform, HTML em-
bedded scripting language. It was developed late in
1994 by Rasmus Lerdorf to keep track of visitors to his
on-line resume. Since then, it has undergone several
changes with two versions released, PHP3 and PHP4.
Currently, PHP is shipped with a number of commer-
cial products such as Stronghold web server and Red-
Hat Linux. PHP provides a programming approach
similar to VBScript of ASP [5], but its broad support
for databases gives it an edge over VBScript. Its code
can be embedded directly into a HTML page and exe-
cutes on the server. PHP modules are lightweight and
speedy and have no process creation overhead.

3 TPC-W BENCHMARK

The TPC-W benchmark [11] has been developed by the
Transaction Processing Performance Council (TPC), a
consortium of system and database vendors. Histori-
cally, TPC has specified standard benchmarks for eval-
uating the performance of both transaction process-
ing and decision support database systems. One of its

latest benchmarks is TPC-W, an e-commerce-specific
benchmark. It specifies the behaviour of an on-line
bookstore, including the three main components of an
e-commerce application: remote browsing, web server
and database server. TPC-W’s remote browsing spec-
ifications are described next. This is followed by an
overview of the web and database server components.
Finally, TPC-W’s performance metrics and measure-
ment intervals specifications are discussed.

Remote Browser Emulator A main component of
the TPC-W benchmark is the Remote Browser Emu-
lator (RBE), which is a specification for a set of Em-
ulated Browsers (EBs). EBs simulate the activities
of concurrent web browsing e-commerce users, each
autonomously traversing the bookstore web pages by
making requests to a web server. Each EB can repre-
sent one of three classes of users: a customer, a new
user or a site administrator. As described in the next
paragraph, TPC-W defines 14 web interactions which
can be requested by an EB. During its lifetime, an EB
requests a sequence of these web interactions moving
from one interaction to the next, in the same way that
a web browsing user navigates a site clicking one hy-
pertext link after another. TPC-W specifies the next
possible navigation options that can be requested by
an EB on completion of each of the web interactions
defined in the benchmark. Threshold integer values
between 1 and 9999 are specified for each navigation
option. To select its next request, the EB generates a
random number, from a uniform distribution between
1 and 9999. It then selects the navigation option for
which the threshold is equal to, or most immediately
greater than the random number. The EB spends a
random period of time (Think Time) sleeping between
subsequent web interactions. This emulates the user’s
think time and is generated from an exponential distri-
bution specified in TPC-W. User-specific information
must be maintained in an EB, possibly including ses-
sion tracking details and customer identification.

Web and Database Servers The TPC-W bench-
mark defines 14 web interactions to be supported by
a web server component which are: Home, Shopping
Cart, Customer Registration, Buy Request, Buy Con-
firm, Order Inquiry, Order Display, Search Request,
Search Result, New Product, Best Seller, Product De-
tail, Admin Request and Admin Confirm. These in-
teractions vary in the amount of server-side processing
they need. Some require dynamically generated HTML
pages and one or more connections to a database. Oth-
ers are lightweight, requiring only web serving of static
HTML pages and images. For each web interaction,
TPC-W specifies its input requirements, processing
definition, response page definition and EB navigation
options which are the set of web interactions that can
be selected by the EB on completion of the interaction.

Session tracking is vital to any e-commerce application.
Some method is needed to retain information such as
shopping carts from one HTTP request to another.
TPC-W suggests two techniques for session tracking
which are URL-rewriting and cookies [2].

The TPC-W benchmark defines the exact schema used
for an online bookstore database consisting of eight ta-
bles: item, customer, address, order, order line, credit
card transaction, author and country. A scale factor
is also defined, that is the size of the item table. The
size of the database depends on the number of EBs
that will be used as a workload and the scale factor.
TPC-W specifies database table sizes as follows:

• Item: Scale Factor.
• Customer: 2880 * Number of EBs rows.
• Country: 92 rows.
• Address: 2 * Number of customers rows.
• Orders: 0.9 * Number of customers rows.
• Order line: 3 * Number of orders rows.
• Author: 0.25 * Number of items rows.
• cc xacts: 1 * Number of orders rows.

Performance Metrics and Measurement Inter-

vals TPC-W defines one primary performance met-
ric which is throughput, measured as the number of
completed web interactions per second (WIPS). Three
distinct measurement intervals are specified by TPC-
W: shopping, browsing and ordering. They are distin-
guished by the ratio of browsing-related web pages vis-
ited to ordering-related web pages visited during the
measurement interval. The shopping interval is in-
tended to reflect a shopping scenario, in which 80%
of the pages visited are related to browsing and 20%
are related to ordering. In a browsing interval, order-
ing pages visited go down to 5% whereas in an ordering
interval the ratio of browsing and ordering is even.

4 DESIGN OF THE TOOL

Our tool allows comparative benchmarking of e-
commerce programming technologies. In designing the
tool, a number of high-level design objectives were em-
phasised. These are discussed below. In the following
we present an overview of the design. A detailed design
description can be found in [8]

• It was felt important that the tool should pro-
vide experiment design features allowing the user
to specify a number of experiments. For each ex-
periment, factor level combinations such as size of
workload, size of store and measurement interval
type can be specified. The number of replications
for each experiment can also be specified.

• Another key objective was to provide perfor-
mance metrics to assist e-commerce technology
performance evaluators. Metrics such as response
time frequency distributions of web interactions,
overall response time and overall throughput are
analysed and presented graphically.

• Ensuring that the analysis of experimental re-
sults have minimal overhead was an objective
from early stages in the design, thus preserving
the realistic nature of the simulation. This re-
sulted in a local data collection strategy in the
design. Experimental data results are maintained
locally by different parts of the system. Results
are gathered at the end of each experiment run
from different parts of the system for analysis.

• Realistic e-commerce modelling was an impor-
tant design criterion. This was ensured by adopt-
ing TPC-W as an e-commerce model. Not only
different e-commerce site components are repre-
sented faithfully; the design also includes realistic
workload generation capabilities based on TPC-
W’s e-commerce access patterns.

• Developing a flexible, extendable tool was a ma-
jor concern. This led to a modular design where
incorporating a new programming technology for
benchmarking just involves adding a new module
to the tool. In addition, modular design allows
for the easy extension of the tool to benchmark
other e-commerce components such as security
protocols, session tracking techniques, etc.

Figure 1 illustrates the main modules of the tool. The
RBE module is responsible for generating and main-
taining the workload on the Web and Database Servers.
Its design is based on the TPC-W benchmark as de-
scribed in Section 3. The Web Server contains the ap-
plication server which represents the application code
for implementing the 14 web interactions specified in
the TPC-W benchmark (see Section 3). The Database
Server represents the persistent storage component of
the TPC-W e-commerce model. The final main mod-
ule in the design is the Control Unit which provides
experimental design features, data gathering and anal-
ysis. It is also responsible for controlling the setup
and maintenance of experiments on various parts of
the tool. The Control Unit module is described next,
this is followed by a description of RBE and finally the
Web and Database Servers are described.

Control Unit The Control Unit is the central com-
ponent of the benchmark. In addition to providing a
GUI to the user, it is responsible for setting up and
maintaining the running of experiments. It is also re-
sponsible for gathering experiment data results from
different parts of the system for analysis and presenta-
tion. Figure 2 illustrates the main sub-modules of the
Control Unit. The ControllerGUI provides a GUI al-
lowing the user to input experimental design details.
The Experimental Design component is responsible
for holding the experimental plan of the user. It in-
forms the Control Unit of the experiment design details
needed at each stage of the simulation. As the user is
allowed to specify a number of experiments which are
run sequentially, the Experimental Design component
consists of a set of Experiment objects, each holding
the design details for one experiment including: Num-
ber of replications, workload size (number of EBs to
instantiated), measurement interval type and a scale
factor contributing to the determination of the book-
store database size (see Section 3). Experimental data
gathering and analysis is the responsibility of the Re-
sult Analysis Unit. It consists of a set of Experiment
Results objects holding the results for each experiment
executed in the simulation. Each Experiment Results
object is linked with an Experiment object and con-
tains a set of Run objects holding the results of each
experiment run. During an experiment run, experi-
mental data is recorded locally by different parts of the

RBE

 Control Unit

 Server
 Database

 Server
 Application

 Web Server

 System Under Test (SUT)

HTTP
TCP/IP

 Time
Control Controller

RBE Server
Web

Controller Controller
Server

Database

Unit

Result
AnalysisGUI

Controller

Experiment Experiment
 Results

Experimental
 Design

Run

Control Unit

1

1...*

11 1 1..*

1

1..*

1 1

1

1

 1

1 1 1 11

RBE

Session
User Request

 Unit

EB

 Unit
Navigation

Browsing
 Control

1

1..*

11

1

1

1

1
1

Figure 1: Tool Overall Design Figure 2: Control Unit Figure 3: RBE

system minimising data recording overhead. On com-
pletion of the run, the Result Analysis Unit receives
a request from the Control Unit to gather the exper-
imental data which are then stored in a Run object.
Data analysis is done after the completion of each ex-
periment. Performance metrics provided include over-
all average throughput, overall average response time
and individual interactions average response time (see
Section 6). Time Control is the central timing com-
ponent of the tool. It distributes timing information
to all parts of the system. The Control Unit also in-
cludes three controller components, RBE Controller,
Web Server Controller and Database Server Controller
for controlling the RBE, Web Server and Database
Server respectively. Instructed by the Control Unit,
these components configure and control the running of
experiments on the parts of the tool they are respon-
sible for. Controlling an extension to the tool requires
only adding a new controller to the Control Unit.

RBE RBE is the component responsible for driving
the tool workload. As shown in Figure 3, it includes
a set of EBs which emulate web browsing e-commerce
users requesting web interactions from a web server
as specified in the TPC-W benchmark (see Section 3).
Its Navigation Unit emulates the user’s navigational
behaviour. The decision on which navigation option to
select next is based on the current web interaction just
completed and its EB navigation option thresholds,
specified by TPC-W (see Section 3). The Navigation
Unit generates a random Think Time period which is
spent sleeping between web interaction requests. The
EB User Session sub-module is designed to emulate
the maintenance of e-commerce user-specific informa-
tion in a web browser including session tracking details
and customer identification. Cookies was the method
adopted for session tracking. The sending and receiv-
ing of HTML content via HTTP and TCP/IP is emu-
lated by the Request Unit sub-module. It is responsible
for forming HTTP requests for the different web inter-
actions specified in TPC-W. It is also responsible for
maintaining HTTP/TCP/IP connections with the web
server and associating these connections with User Ses-

sions. In addition, the Request Unit log data statistics
about web interactions requested and completed suc-
cessfully including the starting and finishing time of a
web interaction, its type and how many times it has
been requested in an experiment run.

EBs are created and maintained by the Browsing Con-
trol component. It receives instructions from the Con-
trol Unit (via its RBE Controller) on the measurement
interval type and the number of EBs required for each
experiment. When creating an EB, Browsing Control
provides it with the type of user it presents (customer,
new user, or site administrator) which is selected ran-
domly. The measurement interval type is also provided
to the EB. Browsing Control also informs EBs of the
start/end of a measurement interval and/or an exper-
iment run (as ordered by the Control Unit). Data
recorded by the Request Unit is collected by Brows-
ing Control to be passed to the Control Unit.

Web and Database Servers The Web and
Database Servers represent the system tested by the
workload. The Web Server is responsible for serving
HTTP requests for the 14 dynamic and static web in-
teractions specified in TPC-W (see Section 3). It con-
tains the application code for the dynamic web inter-
actions, implemented by the programming technologies
currently benchmarked by the tool. The HTML code
for the static web interaction and images for different
interactions also reside in the web server.

The Database Server contains the bookstore database
with a schema following exactly the one specified in
TPC-W (see Section 3). The Database Server Con-
troller of the Control Unit populates/de-populates the
database according to TPC-W specifications.

5 IMPLEMENTATION

In this section we discuss the tool implementation is-
sues. First, the decision to implement the tool in the
Java language is discussed. The use of Apache as the
web server of the tool is then described and the choice
of MySQL to manage the bookstore database is dis-
cussed. This is followed by a description of the support

provided for e-commerce programming technologies.

Java (SDK 1.4.1) is used to implement the tool. Be-
ing a pure object-oriented programming language, Java
ensured the realisation of the tool’s modular design.
The implementation in a portable programming lan-
guage as Java resulted in a platform-independent tool
which can be deployed on machines of different archi-
tectures across a network. Java’s java.net package,
with its URL and socket classes, provided a neat imple-
mentation of the interactions between the EBs and the
Web Server components (see Section 4). The reliable
System.currentTimeMillis() method, which is part
of Java’s java.lang package is used to get timestamps
from various parts of the system needed to produce
performance metrics. System.currentTimeMillis()

is quick with almost no overhead, thus enforcing the
realistic nature of the simulation.

A web server is needed to serve HTTP requests and
host the application server (see Section 4). The Apache
web server (Version 1.3) is used. It is a freeware web
server and is the choice of the majority of active site
developers. A survey by Netcraft [9] on October 2001
concluded that 61% of the active sites they monitor use
Apache. The way Apache is designed was another rea-
son for choosing it. It is built around an API which al-
lows third-party programmers to add new server func-
tionality. Everything in Apache is implemented as one
or several modules, using the same extension API avail-
able to third parties. Thus, extending the tool to pro-
vide support for a new e-commerce programming tech-
nology requires implementing a new Apache module
and incorporating it using Apache’s API.

A Database Management System (DBMS) is needed
to host the bookstore database (see Section 4). It was
decided to use MySQL (Version 3.23). MySQL is a
popular DBMS and works well with Apache for differ-
ent e-commerce programming technologies.

Currently, the tool provides application server im-
plementations in two e-commerce programming tech-
nologies; Java Servlets [7] (using mod jserv apache
module) and PHP [10] (using PHP apache mod-
ule). Providing benchmarking support for another e-
commerce programming technology requires only find-
ing/implementing a supporting Apache module and
implementing the application code for that technology.

6 RESULTS

To demonstrate the capabilities of the tool, experi-
ments were designed and implemented to compare the
scalability of the Java Servlets and PHP application
server implementations. The effect of varying the size
of the workload on overall average throughput, overall
average response time and individual web interaction
average response time was examined.

Experiment Design The technologies involved in
the experiments performed were Java Servlets and
PHP. The size of the workload was varied by doubling
the number of EBs at each stage with a minimum value

of 1 EB and a maximum value of 128 EBs. The scale
of the database used was 1000. The total time interval
of each experiment run was 400 sec. The tool allows
for a Rump up period of 1/4 * total time interval (100
sec in this case) for EBs initialisation. The measure-
ment interval (during which measurement is recorded)
takes the remaining 3/4 of the total time period (300
sec in this case). The measurement interval type used
was Shopping reflecting a shopping scenario (see Sec-
tion 3). Finally, each run was replicated 3 times. In all
experiment runs, the workload generator RBE, the web
server, the application server and the database server
were running on a GenuineIntel Pentium III, 1 GHz,
265MB Linux Dell Machine.

Workload Effect on Throughput Figure 4 sum-
marise the results obtained from examining the average
throughput when the number of EBs is varied between
1 and 128. The average throughput is considered as
the average number of web interactions completed suc-
cessfully per second during the measurement interval.
Figure 4 illustrates two points. Firstly, it can been
seen that both Java Servlets and PHP scale well up
to a workload size of 64 EBs before which the average
throughput starts to degrade. Secondly, one can argue
that Java Servlets scales slightly better as it degrades
at a slower rate than PHP.

Workload Effect on Response Time Results ob-
tained from varying the size of the workload and
recording average response time are shown in Figure
5. The response time of a web interaction is consid-
ered as the time elapsed from the last byte received
by the EB to compute a web interaction until the first
byte sent by the EB to request the next interaction.
Average response time is the total response time of all
web interactions completed successfully divided by the
number of these interactions. It can be seen from Fig-
ure 5 that the average response time starts to increase
almost exponentially when the size of the workload in-
creases above 64 EBs. Again, Java Servlets scale better
with a slower rate of average response time increase.
From Figure 4 and 5, one could argue that optimal
performance is achieved at the 64 EBs workload, with
maximum throughput and good response time

Workload Effect on Individual Web Interac-

tions Response Time Figure 6 shows the average
response time for the Shopping Cart interaction as an
example of a dynamic web interaction. The average re-
sponse time of the static interaction Search Request is
illustrated in Figure 7. The average response time of an
individual interaction is computed by totaling the re-
sponse time of all occurrences of that interaction and
dividing that by the number of times the interaction
was requested and completed successfully. Again, it
can be seen that the performance degrade point is when
the workload size exceeds 64 EBs with Java Servlets de-
grading at a slower rate in both the static and dynamic
interaction examples. It can also be noticed that the
Shopping Cart Interaction (a dynamically built HTML
page) average response time degrade faster than the
Search Request Interaction (a static HTML page).

Figure 4: Overall Average Throughput Figure 5: Overall Average Response Time

Figure 6: Shopping Cart Avg. Response Time Figure 7: Search Request Avg. Response Time

7 CONCLUSIONS

A tool to allow the comparative benchmarking of e-
commerce programming technologies has been devel-
oped. It is based on the TPC-W benchmark, ensur-
ing the realistic modelling of e-commerce components.
It provides a set of experiment support features al-
lowing the user to design a set of experiments to be
run sequentially by the tool. For each experiment, a
number of replications can also be specified. A set
of e-commerce relevant performance metrics are anal-
ysed and presented with minimal overhead on the sim-
ulation. This was achieved by adopting a local ex-
perimental data recording strategy during experiment
runs. Data is gathered and analysed on completion.

The modular design of the tool widens the scope of fur-
ther work. New modules can be incorporated to bench-
mark other programming languages/technologies. The
RBE module can be enhanced to provide robots work-
load [12] in addition to remote browsers. The tool
can also be extended with small modifications to al-
low for the benchmarking of other e-commerce com-
ponents such as session tracking mechanisms, security
and payment protocols.

References

[1] Menasce D. A. and Almeida V. A. Scaling for E-

Business: Technologies, Models, Performance, and

Capacity Planning. Prentice Hall PTR, 2000.
[2] Ince D. Developing Distributed and E-commerce Ap-

plications. Addison Wesley, 2002.
[3] Whiteley D. e-Commerce: Strategy, Technologies and

Applications. McGraw Hill, 2000.

[4] Kruse M. http://mkruse.netexpress.net/info/cgi.
Technical report.

[5] Microsoft. http://msdn.microsoft.com/library/

psdk/iisref/aspguide.htm. Technical report, Mi-
crosoft.

[6] Sun Microsystems. http://java.sun.com/products/
jsp/whitepaper.html. Technical report, Sun Mi-
crosystems.

[7] Sun Microsystems. http://java.sun.com/products/
servlet/whitepaper.html. Technical report, Sun
Microsystems.

[8] Abu Shaaban Y. N. and Hillston J. A TPC-W-based
tool for benchmarking e-commerce programming tech-
nologies. In Proc. 18th UK Performance Engineering

Workshop, Glasgow, July 10-11, 2002.

[9] Netcraft. http://www.netcraft.com/survey. Technical
report, Netcraft.

[10] Bakken S. S., Aulbach A., Schmid E., Winstead J.,
Wilson L. T., Lerdorf R., Zmievski A., and Ahto
J. http://www.php.net/manual.en. Technical report,
The PHP Group.

[11] TPC. http://www.tpc.org/tpcw. Technical report,
Transaction Processing Performance Council.

[12] Almeida V., Menasce D., Riedi R., Peligrinelli, Fon-

seca R., and Meira W. Analyzing robot behavior in

e-business sites. In Proc. 2001 ACM Sigmetrics Con-

ference, June 16-20, 2001.

Yussuf N. Abu Shaaban is a Ph.D.
student in ICSA, School of Informat-
ics, University of Edinburgh. He is
part of the EPSRC-funded Dependabil-
ity IRC. His research interest is per-
formance evaluation of e-commerce sys-
tems.

	c0: Proceedings 17th European Simulation Multiconference(c) SCS Europe BVBA, 2003 ISBN 3-936150-25-7

