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Abstract: In this paper, explicit expressions for the Scattering Amplitude elements of spherically symmetric inhomo-
geneous particles using the modified RDG approximation (mRDG) are derived. Computer simulation algorithms have
been developed for the calculation of Scattered Light Intensity (full and backscattering) from a multi-layered sphere
with an arbitrary number of layers. All quantities are estimated within the biological cell domain and in particular that
of prokaryote. We have extended a previously proposed size distribution to account for the evident size asymmetry in
nature. Simulation results show that the proposed model’s rapid calculations are comparable in performance with that
of Mie or RDG models. Finally, to the best of our knowledge, the included relative error study between these theories
and for n-layered spheres is the first to appear.
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1 INTRODUCTION

Light scattering measurements and in particular multi-
angle (laser) light scattering has been of great in-
terest in many fields of microscopic characterisa-
tion. In particular it has been indicated that laser
scattering techniques will play a significant role
in partial identification [Newman 1987], characteri-
sation [Van de Merwe et.al. 1997] and clinical exam-
ination [Mourant et.al. 1998] of bacteriological sam-
ples. Optical data obtained from a circular array
of photo detectors are usually interpreted by means
of the Rayleigh-Gans-Debye (RDG) approximation
[Wyatt 1993] or Mie theory homogeneous models,
even though other theories have been developed (e.g.
[Draine and Flatau 1994]).

However, most prokaryotic cells are of a complex
makeup. In general the cell presents a structure that
consists mainly of the cell wall, the plasma or cytoplas-
mic membrane, the cytoplasm and the nucleoid. Other
morphological characteristics may also appear such as
a slime layer (capsule) outside the cell wall or inclu-
sions within the cell’s cytoplasm (e.g. spores, granules).
Therefore, in order to generate a more accurate repre-
sentation of the cell, one would model it as having var-
ious compartments within its volume and within these
compartments the refractive index is different from that
of the surrounding objects. In cells where the overall
morphology is that of a sphere (cocci), or if we allow for
an approximate representative spherical model and for
non-symmetric particles, each of the structures internal
or external to the plasma membrane can be modelled as
a different layer in ann-layered spherically symmetric
inhomogeneous particle.

Biological particles, including bacteria, contain weakly
scattering material, mainly because most of their
bodies contain a high percentage (70% to 86%)
[Schlegel 1997] of water. This alone supports the use of
RDG. However conditions underlined in this approxi-
mation pose size restrictions and possible rise in the rel-
ative error. To accommodate for this, in [Shimizu 1983]
an extension of RDG has been provided, also known as
mRDG. In [Sloot and Fidgor 1986] this approximation
has been generalised to a two-layered spherical parti-
cle and successfully applied for predictions in nucleated
blood cells, but with no consideration of size variations
in cell populations.

In this paper we extend the theory of mRDG to a spheri-
cally symmetrical particle/cell with an arbitrary number
of layers and corresponding relative refractive indices.
Population variations in size have also been accounted
for and for asymmetry (positive or negative skewness
of a size distribution) in nature. Intensity expression
for the latter is provided within. Finally, from previ-
ous studies [Wyatt 1973, Volkov and Kovach 1990] we
advocate the use of mRDG for biological, prokaryotic
cells and provide a comparison of mRDG and Mie de-
rived models for then-layered sphere.

2 THE n-LAYERED SPHERE
MODEL

As previously mentioned we consider the case of a
spherical model for the prokaryotic cell as an inhomo-
geneous particle consisting of a multi-layered sphere
with an arbitrary refractive index within each layer.



Suppose that there aren layers, such that theith layer
has outer radiusri and relative refractive indexmi.
Thus for a radially changingm(r),

m(r) =


m1, r ∈ (0, r1]
m2, r ∈ (r1, r2]

...
mn, r ∈ (rn−1, rn]

(1)

It is known [Bohren and Huffman 1998] that in the
RDG regime the scattering amplitudeS of a cell of vol-
umeV at scattering angleθ and for perpendicular polar-
isation to the scattering plane (and hence the subscript
⊥ in S⊥ below) can be expressed as follows:

S⊥(θ) =
k3

2π

∫
V

(m(r) − 1) exp

(
2kr sin

θ

2

)
dV (2)

In Equation 2,S⊥(θ) is a complex number and de-
notes

√
−1, whilst k is the propagation constant in the

water medium(k = 2π/λ, whereλ is the wavelength
of the incident light). For a spherical cell, the integrand
in Equation 2, in polar coordinates, depends only on the
distancer from the origin, and consequently the triple
integral can be replaced by a single integral, with the
volume elementdV = 4πr2dr. We have:

S⊥(θ) = 2k3

∫ rn

0
r2(m(r) − 1) exp

(
2kr sin

θ

2

)
dr (3)

In the RDG approximation it is assumed that the ap-
plied field inside the particle equals that in the medium.
Hence, the propagation constant in and out of the par-
ticle’s region is unchanged. Shimizu [1983] has ex-
tended the RDG by altering the propagation constant to
accommodate for the contributions resulting from the
field inside the particle. As a result, within the phase
lag expression the particle’s refractive index is taken
into account so that nowk is replaced bykm(r). With
hindsight and using the method of slices [Wyatt 1973]
Equation 3 is replaced by

S⊥(θ) = 2k3

∫ rn

0
r2(m(r) − 1)

sin
(
2km(r)r sin θ

2

)
2km(r)r sin θ

2

dr (4)

Evaluating Equation 4 in the regionr ∈ [0, rn] and us-
ing Equation 1 we now get

S⊥(θ) = 2k3

(m1 − 1)

∫ r1

0
r
sin
(
2km1r sin θ

2

)
2km1 sin θ

2

dr + · · ·

+ (mn − 1)

∫ rn

rn−1

r
sin
(
2kmnr sin θ

2

)
2kmn sin θ

2

dr



resulting in

|S⊥(θ)| = k3
√

2π

(
K1,1J3/2(2km1r1 sin

θ

2
) + · · ·

+(Kn,nJ3/2(2kmnrn sin
θ

2
)−

−Kn,n−1J3/2(2kmnrn−1 sin
θ

2
))

)
(5)

whereJ3/2 is the Bessel function of order32 , we write
r0 = 0, and, fori, ` ∈ N,

Ki,` = (mi − 1)

√√√√( r`

2kmi sin θ
2

)3

(6)

For a more compact model we write

Gi,`(θ) = J3/2(2kmir` sin
θ

2
) (7)

so that Equation 5 now becomes

|S⊥(θ)| = k3
√

2π

n∑
i=1

(Ki,iGi,i(θ) − Ki,i−1Gi,i−1(θ)) (8)

bearing in mind thatKi,0 = Gi,0 = 0. The expression
in Equations 6, 7 and 8 predicts amplitude of light scat-
tered from a single cell and it is then-layered sphere
extension model. It can be applied to any population
of n-layered spheres and would lead to better approxi-
mations of light scattered phenomenon on real cells by
simulated models. In effect its physical meaning cor-
responds to the fact that a cell ofn layers will scatter
light proportional to the sum ofn homogeneous spheres
of correspondingrn andmn, by subtraction of contri-
butions arising from the(n− 1) homogeneous spheres
of correspondingrn−1 but having the same refractive
index, that ismn.

This generalised expression correctly predicts the ef-
fect of removing layers. Puttingmk−1 = mk will
result in a multi-layered sphere where the(k − 1)th
layer will disappear. This is true since the previous
(k− 1)th andkth layers will merge to a new layer with
mnew = mk = mk−1, of thickness1 tnew such that
tnew = tk + tk−1. Furthermore, ifmk = 1 then thekth

layer becomes redundant, which is true since this layer
becomes transparent to incoming light and as such does
not contribute to the scattering amplitude.

The light intensity from such a cell, and for perpendic-
ular incident polarisation, can be expressed in terms of
S⊥ using the following expression:

I(θ) =
I0

2(kr)2
|S⊥(θ)|2 (9)

wherer = rn is the overall radius of the spherical cell
andI0 is the intensity of the incident light.

1Note that, for example,tk = rk − rk−1



3 SINGLET POPULATION

For cells that appear alone, that is, where there is no
binding of cells together, and for low densities so that
multiple scattering is avoided, the average scattering
pattern can be calculated using a size distribution. The
term “size” in the current context should be interpreted
as the radius of the cell, but in general would be thought
of as the length of the minor or major axis of an ellip-
soid form (e.g. rod like cells). The cell size is denoted
by s. We use a probability density functionP (s) for the
size, and assume that we haveN size ranges with mid-
pointss1, s2, . . . , sN . The relative frequencies of the
cell samples in the ranges are approximated by the den-
sity function at the mid-points, so that the mean light
intensity at scattering angleθ is given by

〈I(θ)〉 =

N∑
i=1

I(θ)cr=siP (si)

N∑
i=1

P (si)

(10)

Multiple scattering is a problem that cannot be ad-
dressed using Equation 10. However, Equations 6–8 are
used for modelling an aggregate’s discrete scattering el-
ements of any bounded configuration with no multiple
scattering.
Often a Gaussian distribution of cell sizes is assumed.
However, the normal distribution has long tails, which
is rather unrealistic since, in the bacteria domain, sizes
do not exceed a specific range. Moreover, from a va-
riety of sources of variability, usually only a few are
dominant. This results in a positively or negatively
skewed distribution, which does not resemble the famil-
iar Gaussian symmetry. Consequently, we have adopted
a distribution first proposed in [Wyatt 1973], but here
we have allowed forκ in Equation 12 to be assigned
independently at the left and right of the mode. The
density function is proportional to

P (s) =

{
(1 − z2)4 for z ∈ [−1, 1]
0 for z /∈ [−1, 1]

(11)

where

z =

{
1.084(s − s0)/(κlefts0) for s ≤ s0

1.084(s − s0)/(κrights0) for s > s0
(12)

The spread of the distribution is dictated by the con-
stantκ which is assigned independently at the left and
right of the modes0, resulting in an asymmetric dis-
tribution that avoids long tails. It should be evident
that for κleft = κright the distribution is symmetric
and s0 becomes the mean; whilstκ is approximately
equal to3σ̂/s0 with σ̂ being the variability measure
(standard deviation) of the symmetric distribution. It
is known that in any non-synchronised culture and in
nature we expect a variation in size of at least 30%
(κleft + κright ≥ 0.30). The latter applies not only
to singlet spheres but also to any other configuration of
cocci bacteria.

4 SIMULATION RESULTS

Bacteria sizes vary considerably, from half micrometer
up to several micrometers. In particular, cocci (spheri-
cal morphology) would be said to have a radiusr within
the range0.5µm ≤ r ≤ 1.2µm with a few exceptions
such asSarcina ventriculiwith a4µm radius and spore
inclusions. In scattering experiments, cells are usually
suspended in water based media and so the relative re-
fractive indexm is close to unity and the cytoplasm’s
refractive index value is close to 1.35, resulting in a
selected range form in the studies reported here as
1 < m < 1.3.

Following the criteria set by [Hoekstra and Sloot 2000],
we present a relative error study for values of rela-
tive refractive index and radius as discussed. However,
since we are dealing with multiple layers, the examina-
tion of single particle scattering is introduced in more
detail. Hence, for each cell size defined by an overall
radius, the thickness of each layer is defined by the use
of uniform random numbers. The relative error is es-
timated over an average ofR runs, where for each run
a corresponding random relative refractive index value
has been provided within the range of interest. In the
analysis, only the average refractive indexm of the cell
is illustrated for each value of radiusr.

The error metricER is equivalent to [Hoekstra and
Sloot 2000] but here we examine the light scattering
intensity as opposed to the phase matrix relations. In
particular, the error is a measure of the difference be-
tween intensities estimated by Mie and mRDG models
and is normalised as:

ER =

N∑
i=0

|logIMie(i∆θ) − logImRDG(i∆θ)|

(N + 1)(logIMie(0) − logIMie(θo))
(13)

The values used in the simulations wereN = 91, R =
30 and∆θ = π/N . Moreover, at a scattering angleθo

the light intensity of the Mie scattering function (IMie)
is at minimum. Figure 1 depicts typical light intensity
patterns for the Mie and mRDG models which are the
basis for error evaluation through Equation 13.

Many authors including [Hoekstra and Sloot 2000]
have concluded that for a homogeneous sphere the
mRDG model covers a significant part of the domain;
particularly if one allows for error of12% as compared
to Mie scattering. However, we have found that in
the case of multi-layered spheres this relative differ-
ence doubles. In particular, Figure 2 depicts the error
map between Mie scattering model and mRDG for two
layer spheres. The gray scale represents the average
relative error from0% (white) to33% (black). Gener-
ally speaking, in Figure 2 the error does not exceed the
limit of approximately23%, even though small areas of
33% do appear. The latter can be verified by consulting



Figure 1: Layered mRDG and Mie light scattering pat-
terns for a two layer concentric sphere.

Figure 2:n = 2. Error map between mRDG and Mie
scattering for a two layer spherical model.

Figure 3: Error histogram for a two layered sphere.

the error histogram of Figure 3 which shows that most
difference between the two models lie between 15 and
23%. This error or difference is consistent throughout
the two models either for 2, 3, 4 or 5 layers. The mRDG
model is, in fact, just an alternative representation for
Mie scattering in this context. Moreover, if one con-
siders that Mie algorithms are at least100 times slower
(or more depending on programming skills), as opposed
to their RDG or mRDG counterparts, there are signif-
icant advantages in using the alternative representation
of mRDG model as proposed here.

In Figures 4 to 6 it must be emphasized that as the
number of layers increases the maximum relative er-
ror margin slightly shifts towards higherr values and
covering a largerm value margin. As a matter of fact
[Volkov and Kovach 1990] state that for near index par-
ticles (high water content) the key factor in the Mie
scattering behaviour is the thickness of the layers. As
such, it may seem rather surprising that the relative er-
ror increases not due to ther values but due to the av-
erage refractive index as it is evident in Figure 5. This
may mean that Mie theory is not particularly sensitive
to changes in refractive index for larger values of radius.
This indeed may have given rise to the relative error not
attributed to the mRDG approximation. Returning to
the earlier rare example ofSarcina ventriculi, in an ex-
periment ofr = 4µm and for variousm values, the
average relative error was found to be in the region of
3 to 27%; with the latter arising asm → 1.3. Finally,
within the domain of Prokaryotic cells such largem-
values are rarely found and, as such, the use of mRDG
model as proposed here is justified.

Testing the relative error of bacteria populations, as in-
troduced in Section 3, has been performed using the
same procedure. The population analysis yields very
similar results and so further illustrations are not in-
cluded. We must however highlight the fact that as the
spread of the size distribution increases the relative er-
ror remains within the same margins. Therefore, the
apparent smoothing of sharp maxima (or minima) in
the scattering intensity does not indicate degradation in
performance of then-layer mRDG model.

5 CONCLUSIONS

In this paper we have derived a new model for the multi-
layer sphere problem based on the mRDG approxima-
tion and used it to simulate light scattering phenomena
in bacteria cells. In order to assess the performance
of the model, computer algorithms were developed in
Matlab and compared with the equivalent Mie scatter-
ing model. An error parameter was defined based on
a measure of the difference between Mie and mRDG
scattering. All simulations have been conducted using
sizes and refractive indices in accordance with values
found in bacteria cells.



Figure 4:n = 3. Error map between mRDG and Mie
scattering for a three layer spherical model.

Figure 5:n = 4. Error map between mRDG and Mie
scattering for a four layer spherical model.

Figure 6: n = 5. Error map for a five layer spherical
model between mRDG and Mie scattering

It appears that the difference between the two models is
at its maximum at about25%. We have used the term
relative error, which does not necessarily portray the
expected error under true experimental conditions. In
particular, one has to bear in mind the much faster com-
putation of the mRDG models as opposed to the Mie
equivalents. This can be explained as follows. Calling
t the number of terms to be calculated in the Mie se-
ries andn the number of layers, andlmie the scattering
coefficients, there would be a minimum of(lmient) cal-
culations. The equivalent number for mRDG scattering
would be(lmrdg(2n − 1)). In our implementation of
both models on the same platform, Mie models were at
least100 times slower than the RDG or mRDG coun-
terparts. As a result, for real time or time critical ap-
plications the mRDG approximation is expected to be
favoured over other more complex theories.

The consistency of errors throughout the two models
indicate that the mRDG is a convenient alternative rep-
resentation for light scattering phenomena and its supe-
rior computational performance brings obvious advan-
tages to cell characterisation.

Further research include relative error studies with
other theories that can be applied in the domain of in-
terest such as Anomalous Diffraction scattering (AD)
and variants of this approach, higher order RDG, Dis-
crete Dipole Approximation (DDA) and Physical Op-
tics (PO) to name just a few. The most important fur-
ther development of this work would be the generation
of true scattering patterns from benchmark prokaryotic
cells, and consequently, compare the mRDG, AD and
PO calculations with rigorous numerical methods such
as the DDA. Research is underway and will be reported
in the near future.
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