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Abstract: We describe a technique to generate structurally aligned triangular grids. The main advantage of this method is
the adjustable propagating speed of the front in different parts of the simulation domain in order to achieve different densities
of triangles in each part of the simulation domain. This feature is usually needed in semiconductor device simulation. Other
advantages of this technique are twofold: firstly, the grid can be very well adapted to the structures, and secondly, the grid
elements fulfill desirable requirements like Delaunay triangulation and the minimum angle criterion. The technique is based
on viewing the boundary of the simulation domain as a front which is propagated structurally at different speeds. A smooth
propagation is achieved by the level set method by viewing the front as the zero level set of a higher dimensional function whose
equation of motion is described by a partial differential equation.
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INTRODUCTION

We describe a method to generate structurally aligned trian-
gular grids and illustrate it in two examples. We use the level
set method to propagate the boundary of the simulation do-
main as a front by viewing it as the zero level set of a higher
dimensional function with an adjustable speed depending on
how fine the triangular grid should be. The equation of mo-
tion of this higher dimensional function is given by a partial
differential equation, which is approximated by techniques
borrowed from the numerical solution of hyperbolic conser-
vation laws which guarantee that the correct entropy satis-
fying solution will be produced. The evolving front is thus a
hypersurface, e.g., a curve in two space dimensions and a sur-
face in three space dimensions. The resulting algorithm can
be used to generate two and three dimensional grids around
complex bodies containing sharp corners and significant vari-
ations in curvatures. We use this technique to generate dif-
ferent grids around a variety of shapes for different device
structures.

The most important advantage of this method is the ad-
justable propagating speed of the front which provides an
automatic way for generating grids with different densities
of grid cells in particular parts of its domain. The his-

tory of two-dimensional process and device simulation leads
to the observation that a stable triangulation engine is one
of the most important prerequisites for simulation purposes.
In the second part of our algorithm the final grid elements
are produced using the TRIANGLE program [Fang and Piegl
1993, Shewchuk 1996]. Furthermore, thereby grids are very
well adapted to the structures and are of high quality because
we can enforce minimum angle criterion which guarantees
that the triangles have angles which are equal or greater than
a certain minimum angle and therefor we can well control
the shape of the triangles.

Although the level set method has been used for generating
structurally aligned grids [Sethian 1994], the method pre-
sented there cannot generate anisotropic grids and no condi-
tion concerning the quality of the grid, e.g., minimum angles,
can be enforced.

The outline of this paper is as follows. Firstly, the basic ideas
of the level set method are shortly explained. Secondly, the
grid generation algorithm as a combination of the level set
method and triangulation is presented. Thirdly, an algorithm
for equalizing the length of segments is presented. Finally,
examples for two simple initial structures and a real device
structure are given.



Figure 1: The extracted boundaries at 10 time steps.

THE LEVEL SET METHOD

The level set method [Sethian 1999] provides means for de-
scribing boundaries, i.e., curves, surfaces or hypersurfaces
in arbitrary dimension, and their evolution in time, which is
caused by forces or fluxes normal to the surface. The basic
idea is to view the curve or surface in question at a certain
time t as the zero level set (with respect to the space vari-
ables) of a certain function u(t,x), the so called level set
function. Thus the initial surface is the set {x | u(0,x) = 0}.

Each point on the surface is moved with a certain speed nor-
mal to the surface which determines the time evolution of
the surface. The speed function F (t,x) generally depends
on the time and space variables and we assume for now that
it is defined on the whole simulation domain and for the time
interval considered.

The surface at a later time t1 shall also be considered as the
zero level set of the function u(t,x), namely {x | u(t1,x) =
0}. This leads to the level set equation

ut + F (t,x)‖∇xu‖ = 0,

u(0,x) given

in the unknown variable u, where u(0,x) determines the ini-
tial surface.

Having solved this equation the zero level set of the solution
is the seeked curve or surface at all later times.

Although in the numerical application the level set function
is eventually calculated on a grid, the resolution achieved is
in fact much higher than the resolution of the grid, and hence
higher than the resolution achieved using a cellular format on
a grid of same size.

In summary, first the initial level set grid is calculated as the
signed distance function from a given initial surface. Then
the speed function values on the whole grid are used to up-
date the level set grid in a finite difference or finite element
scheme. Usually the values of the speed function are not de-
termined on the whole domain by the physical models and
therefore have to extrapolated suitably from the values pro-
vided on the boundary, i.e., the zero level set. A fast and
efficient level set algorithm combining extending the speed
function and narrow banding was presented in [Heitzinger
et al. 2002, Heitzinger and Selberherr 2002]. There a surface
coarsening algorithm similar to the one used in this work was
described as well.

GENERATING THE LEVEL SET STRUCTURED
TRIANGULATED GRID

Our basic philosophy is to advance the front through the sim-
ulation domain using different speed functions. Throughout
this section we restrict ourselves to two-dimensional grids.
At discrete chosen time intervals, zero level set functions are
constructed using a boundary extraction algorithm. In our
example we have assumed a constant speed for the first 6
time steps and 8/3 times this speed for the next 4 time steps.
This is shown in Fig. 1. We can see that the whole simulation
domain is now divided into three different parts according to
three different grid resolutions depending on the application.
An arbitrary number of segments and speed functions can be
used if desired.

Based on the edges constructed in the first step the grid gener-
ator TRIANGLE is used to obtain a Delaunay triangulation. In
this example we demanded that the produced triangles have
no angles smaller than 20 degrees. Requiring minimum an-
gles is important since it enables a priori error estimates and
estimates of the order of convergence [Knabner and Anger-
mann 2000].

Fig. 2 shows the triangulated simulation domain. Because of
different lengths of the segments which are obtained by each
boundary extraction, we can clearly see that this triangulation
contains triangles which are too small. An enlargement of
this undesirable situation is shown in Fig. 3. We introduce an
algorithm for overcoming this problem in the next section.



Figure 2: The triangulated grid without using the segment length
equalizer.

Figure 3: A part of the above grid on a larger scale.

Figure 4: The last five steps of advancing the front is shown partly
on a larger scale. The varying lengths of the segments are shown
clearly.

Figure 5: The triangulated grid is caused using the segment length
equalizer.

Figure 6: A part of the above grid on a larger scale.

Figure 7: The last five steps of advancing the front is shown partly
on a larger scale after equalizing the lengths of the segments. The
length of the segments are not more different.



THE SEGMENT LENGTH EQUALIZER

To find the origin of this problem we briefly describe the
boundary extraction algorithm which uses an interpolation
method to find the points of the boundary and represents
these as a list of segments with different lengths. Fig. 4 shows
a part of the last five steps of advancing the front on a larger
scale to show more clearly the varying lengths of the seg-
ments. The segments may become arbitrarily small and are
the cause of the areas of dense triangles. To overcome this
problem we need to ensure that all segments of the boundary
have about equal lengths.

We start the algorithm by choosing a certain common length
d for all segments. In our example we chose the minimum
value of the vertical or horizontal distance between the points
of our original rectangular grid which is used in the level set
step. The first point of the extracted boundary stays with-
out any changes but to find the second point we have to dis-
cern two cases. The first one is that the distance between
the second and first point of the originally extracted bound-
ary is equal or greater than our d and in the second one this
distance is smaller than d. In the first case we compute the
second point of the new boundary in this manner that we
get a point which fulfills two restrictions: first, the caused
segment must be along the first segment of the originally ex-
tracted boundary and second, the length of the new segment
must be equal to d. In this case the new segment is a part of
the old segment but the length of the new segment is equal or
smaller than the old one. In the second case we compute the
second point of the new boundary along the next segment of
the origin boundary and like the first case fulfilling the length
requirement. In this case the new segment is parallel to the
second segment of the origin boundary and the length of the
new segment is greater than the old one. These steps are it-
erated until we reach the boundary of the domain. Fig. 7
and Fig. 5 show the resulting segments with the enlargement
and triangulated grid after equalizing the lengths of the seg-
ments. Furthermore in Fig. 6 a part of Fig. 5 is shown on a
larger scale. In Fig. 8, Fig. 9 and Fig. 10 we show a simu-
lation domain with a rectangular advancing front as another
example and the resulting grid also with the enlargement.

GRID GENERATION FOR A REAL DEVICE
STRUCTURE

Fig. 11 shows the device structure of a trench gate UMOS

transistor. This device is useful for power switching at
high voltages [Bulucea and Rossen 1991,Shenai 1992,Dhar-
mawardana and Amaratunga 1998]. Trench gate UMOS tran-
sistors also provide advantages because of their geometric
layout, i.e., because their inversion and accumulation chan-
nel regions are perpendicular to the wafer surface. Hence
they enable to maximize the ratio of cell perimeter to area

and thus increase packing density. An analytical model for a
typical trench gate UMOS transistor is given in [Dharmawar-
dana and Amaratunga 2000].

The model is derived using the charge control analysis of the
channel and drain drift regions and gradual channel approxi-
mation is assumed to be valid in modeling the channel region.
The shape of the different junctions is obtained by the dop-
ing concentration profile which is modeled with a Gaussian
distribution.

For the grid generation we used four boundaries which fol-
low the three junctions. At the n+−p junction we used three
boundaries in each direction of the initial boundary which
follow the junction with a distance of 0.02µm between any
two adjacent boundaries.

At the p−n junction we used one boundary above and below
the initial boundary and a distance of 0.02µm. At the n−n+

junction in the lower part of the device we took into account
two boundaries with a distance of 0.5µm going downwards
from the initial boundary following the junction. For the last
prescribed edges we started at the tight hand side of the p

region and moved to the left using three boundaries at a dis-
tance of 0.005 µm.

Finally, we applied the TRIANGLE program requiring a min-
imum angle of 25o with the prescribed edges as input. The
grid produced is shown in Fig. 12, and it resolves very finely
the junction areas as demanded.

CONCLUSION

A technique for generating structurally aligned triangulated
grids using the level set method was described and imple-
mented in two dimensions. In contrast to previously gener-
ated structurally aligned grids based on the level set method
[Sethian 1994] the anisotropy of the grids and their quality
can be controlled. The simulation domain can be divided into
parts with different resolutions using adjustable speeds for
advancing the front through the simulation domain with level
set method. This adjustable grid resolution is essential in
semiconductor device simulation where high resolutions are
required in certain parts of the simulation domain. Further-
more the grid can very well adapted to different structures.
Finally enforcing the minimum angle criterion is important
for the numerical behavior of the subsequent finite element
calculations and ensures high quality grids. At the same time,
the diameter of the triangles may vary over several orders of
magnitude within one simulation domain (cf. Fig. 5, Fig. 9,
and Fig. 12). Our technique enables to produce triangulated
grids for each form of semiconductor device structure with
demanded resolution at different junctions (cf. Fig. 12).



Figure 8: The advancing rectangular front after 10 time steps. As
same as Fig. 5 the ratio of the speed in the first 6 steps to the last 4
steps is 3/8.
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Figure 11: Structure of TMOSFET. The half cell pitch of the device
is 2.5µm and its n drift length is about 9.5µm.
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