
PERFORMANCE PROTOTYPING - GENERATING AND
SIMULATING A DISTRIBUTED IT-SYSTEM FROM UML

MODELS

 ANDREAS HENNIG, ANJA HENTSCHEL and JAMES TYACK

Siemens AG, Corporate Technology, CT SE 1,
Otto-Hahn-Ring 6, 81739 München, Germany,

Andreas.Hennig@siemens.com, Anja.Hentschel@siemens.com, jamesahtyack@hotmail.com

ABSTRACT: In this paper, we present the concept
of “performance prototyping” – the automatic
generation and deployment of small components
emulating the intended behaviour of real
components under design into real IT-infrastructure
and environments. Allowing far more effective and
consistent production of prototypes than manual
prototyping, performance prototyping enables the
designer of systems and their infrastructure to
assess the impact of various load scenarios, design
choices and configuration alternatives very early in
the project, and thus allows to synchronize
infrastructure planning and system development
closely. Rather than the “build first – tune, change
& upgrade later” approach, performance prototyping
enables to design, plan and build hard-, soft and
middleware in closer coordination and to meet
performance targets in fewer cycles.

The basic concepts of the UML-based notation of
performance aspects is presented which was
designed to be compatible with current UML-tools
and fit into their normal usage in development
practises. We then discuss the interaction and
differences of performance prototyping (“in-vivo
performance simulation”), performance prediction in
dedicated methods and tools (“in vitro” performance
simulation) and load-testing as well as the
differences to manual prototyping and
benchmarking. A method of integrating performance
prototyping into commercial UML-tools is presented,
particularly with view on the challenges of
generating multi-target and multi-protocol
prototypes that interact across targets, platforms and
protocols in the way prescribed by the model. We
then describe the model, prototype, experiments and
findings based on a JSP example before the
conclusion of the paper.

KEYWORDS: Software Performance Engineering,
UML Modelling, Performance Annotation,
Performance Prototype Generation, Deployment,
Simulation, Load Testing, Benchmark

INTRODUCTION

Larger IT-Systems or products, particularly if
distributed and networked often have complex
interactions between the various hardware (HW)
entities (hosts, network nodes and links,
peripherals), the different layers of operating system,
execution environments and server processes (like
web, servlet, application or database-server) which in
this paper we will summarily call middleware (MW),
and finally the main behavioural software
components implementing the business logic of the
system (SW). With the trend to standardized off-
the-shelf products with standard interfaces and
protocols, the division between the teams
responsible for “SW-development” and “HW
planning, installing configuration and operation”
tends to be somewhere within the middleware layers,
where the “SW-team” focuses on functionality and
interfaces, the “HW-team” on configuration issues.

For most large systems (e.g. ERP systems,
intra/internet-portals, online shops, information and
control systems…), performance is a central criteria
and critical success factor. With increasing
expectations of the users to perceived performance,
an unsatisfactory performance might - and frequently
does - endanger the system’s/product’s/project’s
success irrespective of functionality and design.
Since these systems are often business critical
and/or highly image critical, insufficient performance
can incur heavy costs (e.g compensation, penalties,
superfluous hardware, loss of market shares and
value), delay the going-live, and reduce the system’s
benefit (e.g. through lack of user acceptance and
retention, sub-optimal decisions based on out-of-
date information). Performance problems can derive
from a variety of sources, including sub-optimal
configuration, insufficient computational power,
inefficient imp lementations of individual modules
and design flaws. The earlier lie within the
responsibility of the HW-team and can be rectified
by tuning or – although more expensive – by
additional HW. The later are not only more difficult

to detect, they are also caused much earlier in the
project and are therefore far more difficult to correct
in time if detected towards the release date – apart
from the much higher cost.

A reason behind the numerous performance failures
of IT-Projects (and the ensuing mutual accusations)
is the far-too-late assessment of performance, which
derives partly from lack of performance-awareness,
partly from the restrictions found in the predictive
methods that could be used to measure and control
progress in terms of performance goals . Ideally, for
large and performance-critical systems, there should
be the role of an overall “performance engineer”,
who gathers performance assumptions and
requirements, predicts overall final performance
based on the current implementation progress,
coordinates and mediates between the conflicting
interests of HW and SW teams and executes in-
development and pre-release load-test to
substantiate development and release decisions.

We group the methods predicting the live
performance coarsely into “benchmarking”,
“simulation”, “prototyping” and “load-testing” (ref.
Fig. 1):

“Benchmarking” employs small standardized
activities (e.g. integer of floating point operations,
memory or disk access…) and measures how many a
given system can execute per second. While these
“synthetic” benchmarks accurately describe one
performance aspect of a given HW (and thus help to
compare between a larger number of HW/MW
alternatives), they - inherently – do not measure the
performance in terms of the transaction types of the
intended system (for the purpose of this paper, we

include specialized application-specific benchmarks
under prototypes, below). Benchmarks thus provide
a basis for HW-choices, but can only rarely be used
for good estimates of the new system’s performance.

“Simulation” builds an abstracted model of the
infrastructure (HW and MW), the behaviour of the
business logic as well as the expected load from
internal sources and users. The resulting
performance aspects are obtained using various
methods (e.g. queuing networks, stochastic
methods, discrete event simulation...) of the software
performance engineering domain (SPE, [Smith90]).
Since the models are built and evaluated in an
environment completely separate from the physical
system (somehow “in vitro”), Simulation can be
applied even before the first HW is purchased.
However, a common problem of simulation lies in the
need to build complex models (where particularly the
MW-models depend on product release-cycles in a
fast paced industry), to ascertain numerous model
parameters and to – often manually – transfer the
design of the intended system into a suitable
representation. The resulting uncertainties and
potential inconsistencies as well as the effort and
time required restrict the use of simulation to (parts
of) systems with clear boundaries that can be
abstracted easily and reliably and have focused
performance inquiries.

Manual “Prototyping” is normally performed in the
early phases to establish suitability of a platform/
middleware/ technology under consideration for the
intended purpose, i.e. often functionality and
interoperability orientated. The prototypes can then
be load-tested, but since the effort required to
manually develop prototypes restricts their

Servlet Engine

Applicationserver

Web
server

Firewall
Users

DB

„In-vivo“
Performance
Prototyping

Load Testing„In-vitro“
Simulation

UML model
•infrastructure
•load
•behaviour
•requirements

simulated component
real component

Servlet Engine

Applicationserver

Web
server

Firewall
Users

DB
Servlet Engine

Applicationserver

Web
server

Firewall
Users

DB

„In-vivo“
Performance
Prototyping

Load Testing„In-vitro“
Simulation

UML model
•infrastructure
•load
•behaviour
•requirements

simulated component
real component

Fig. 1: One model throughout performance development lifecycle –

integrating prediction, prototyping and acceptance testing by varying real and simulated components

comprehensiveness and variability, the results are at
best a basis for extrapolation. Manual Prototypes
differ from benchmarks since they measure small
application-specific activities, but suffer from the
same necessary restriction to few aspects.
Furthermore, manual prototypes also bear the danger
of errors, inconsistencies and incompatibilities.

“Load-testing” transforms the expected user
behaviour into small simulated “virtual users” which
are deployed onto real infrastructure (sometimes
called “load-generators” or “load-injectors”), which
exercise a real system or prototype with real and
realistic load. Load-tests are either used as gruelling
acceptance tests or during development to test
performance aspects of individual modules or
prototypes. Load-testing a finished system is the
least predictive method discussed – it is however,
predictive in terms of the anticipated user behaviour,
which might vary greatly from the behaviour of real
users.

We therefore propose automated “Performance
Prototyping” as a means to overcome the above
limitation of flexibility, coverage, efficiency and
application-specificness. For this, models of the
system’s intended business logic and planned
infrastructure are maintained in UML. Since these
documents normally need to be produced during
development in some way, they only need to be
annotated with some additional information like
resource consumption, performance requirements
and deployment and access locations.
This furthers
a) understanding and consistency between the

development teams and the performance
engineer,

b) reduces the effort required to build the main
model (ideally now through the teams
themselves),

c) provides a simple and concise notation of
performance aspects and

d) permits to automatically generate and deploy
comprehensive prototypes ready for load-test.

Unfortunately, the UML is currently not always used
to document the entire system, particularly the
infrastructure and HW/MW aspects thereof. But
even if the few relevant HW parts need to be
transformed into UML based on the input of the
HW-team, above benefits still apply. From the
model, a performance prototype is generated
automatically and can be deployed on real target
systems, where it can be tested “in-vivo”. Due to
the fast cycle times with automatic performance
prototypes, various alternatives in HW, MW or SW
can be investigated with affordable effort.

In the remainder of the paper, we shortly present the
information required for performance prototypes and
how and where they can be modelled in UML based
on a JSP example. We then describe the architecture
of the prototype generator and how the required
flexibility can be achieved. After the presentation of
some experimental results, we give an outlook on
synergies and interactions between performance
prototyping, simulation and load-testing before the
conclusion of the paper.

MODELLING
 PERFORMANCE PROTOTYPES

A Performance prototype requires the description of
the characteristics that are (or could be)
performance-relevant. Programming language and
execution environment certainly affects the
performance (e.g. C++ being faster than VBA, or
tomcat generally being faster than JServ) as does the
interaction of components (a calls b calls c). The
precise values within the requests (e.g. a lookup-key)
or the responses (e.g. the retrieved data) do hardly
affect performance, while the size, encoding and
protocol of requests and responses are likely to have
an impact. Performance-relevant information
consists of infrastructure, load, behaviour and
requirements information.

We model infrastructure information in deployment
diagrams as the obvious representation in UML (see
also [Williams98], [Dimitrov02], [Mirandola00],
[Petriu99]). The diagram describes computational
resources, their connection and – optional – the
number of instances of a component, which we call
its multiplicity according to the corresponding UML
attribute. In Fig. 2, we show a sample deployment of
two webserver hosts, both hosting a JSP-engine;
webserver1 hosts additionally a database. A LAN
component (used to represent a bus-topology in
UML) connects the servers to two types of clients,
which differ in the numbers of browsers running on
it. The multiplicity of Client1 indicates, that there are
$numClients instances (e.g. 20 in different network
locations) in the system.
In addition to the core SPE notation as proposed in
[Hennig02], performance prototyping requires
additional information about the real hosts and
servers used (e.g. IP numbers and ports of the
webservers). Mainly, this is the “access”
information, which denotes how a component is
addressed for requests. In the deployment diagram,
the access-path can be annotated as the tagged
value “spe.ppr.access” of the nodes or objects. For
webservers, this would simply be the URL of the
JSPs themselves, which could include parameters,

port, username and password as well [RFC 1738,
1808]. For a database, the access-path would for
example contain the JDBC connection information.
Since performance prototyping aims to automatically
deploy the components, further information is
needed to specify where and how to deploy the
component. The tagged value “spe.ppr.upload”
therefore contains a URL that indicates the
deployment destination. In the case of a JSP
component spe.ppr.upload points to a file:// location
or the URL to a cgi-script into which the JSP-source
code can be uploaded.

The behaviour of a prototype system as well as the
load placed onto it is described as the generation and
exchange of messages, requests and responses,
which we model in the sequence diagram. For the
discussion concerning the use of UML in general
and the use of state vs. sequence diagram in
particular, see [Hennig01] and [Hennig02]. In Fig. 3 a
simple interaction pattern (“workflow”) is depicted,
several instances (“jobs”) of the same or different
workflows can occur concurrently.

The load is generated by the actor, representing
multiple users that execute the same workflow with
given arrival and think times. In the example in Fig. 3,
the webbrowser is modelled to submit various http-
request per “click” of the actor (e.g. for nested or
consecutive http like redirecting, frames, included
image). Since the “browser” corresponds to different
client machines in the deployment diagram, we
indirectly model the network region, where the load

should originate.
Parameters passed along the http-requests will
inform JSPs which step of which workflow they are
expected to execute. The generated JSP code
contains the information how to execute a specified
step (i.e. how much computation is needed, how
large the response will be, which other components
need to be called). Resource usage can be modelled
flexibly (in a spe.use.{resourcetype} tagged value)
and currently includes but is not limited to time
delay, cpu consumption, memory usage, I/O-volume
and various types of semaphores. Since cpu-
consumption depends on the speed of the hosting
hardware, we specify it in number of iterations of
classical benchmark operations like dhrystone,
whetstone or of less formal but expansible
operations like string-operations or heap-sorting.

Performance requirements like the maximum
permissible response time for certain requests or the
time to complete an entire workflow can be denoted
as numerical expressions based on timestamps
collected during the execution of the jobs. The
timestamps as well as additional job-specific
variables (e.g. a randomly chosen think-time of the
simulated user) can also be used to gather workflow-
related statistics. Infrastructure-related statistics like
cpu-usage can be gathered and evaluated using
network and performance management tools (e.g.
based on SNMP, rstat or the windows performance
monitor)

GENERATING
 PERFORMANCE PROTOTYPES

After modelling infrastructure, load, behaviour and
requirements in various UML diagrams, an
experiment definition diagram is used to specify the
subset of “investigated diagrams” and overall
parameters like a scalability factors for number of
clients (e.g. $numClients in. Fig. 2), the workload or
an overall think time.

A series of scripts can then be started directly from
the UML-Tool (currently TogetherJ from
Togethersoft) which controls the prototyping cycle
depicted in Fig.4. The prototyping is integrated
transparently in order to ensure user acceptance and
achieve high impact by frequent use of the method
through seamless integration of the end-to-end
process. The selected diagrams and required
information is extracted from the UML-tool and
stored in an intermediate XML representation. From
this experiment description, a converter produces the
prototype parts for the various target platforms and
deploys them into their respective environment. The
User behaviour (the load characteristics from the

Fig. 2: UML deployment model of the prototype

Fig. 3: UML behavioural model of the prototype

actor and in our example also the html-nesting logic

of the browser) results in a script for a commercial
load-testing tool (LoadRunner from Mercury
Interactive). From the behavioural description of the
JSPs, the source code is generated in JSP syntax and
uploaded into the JSP directories of the respective
servlet-engines. Since in our example, the database
request is a simple SQL statement and not a stored
procedure, there is no need to generate code for the
database as we can include the statement into the
generated JSP code. The used tables, however, need
to exist in the database.

The results obtained from internal statistics (e.g.
response times) and network monitoring could be fed
back into the UML model. Since commercial
monitoring tools often provide specific analysis
modules (e.g. drill-down or regression), this step
might be performed in a specialized separate tool.
After analysing and interpreting the data, the UML-
Model can be updated and modified accordingly and
the cycle started again.

The challenge of generating the prototypes lies in
the potentially heterogeneous target platforms
(programming languages, execution environment)
and the communication protocol they use.
Ultimately, each implementation platform should be
able to issue requests to any other (sensible) type of
platform using a number of possible protocols. Over
these protocols, the control information of the
prototype (e.g. workflow name, instance and current
step) needs to be transmitted without altering the
protocols. While flexible protocols like http, where
additional parameters can easily added to the URL

without interferences, easily accommodate for this,
more rigid protocols like SOAP or RMI will be more
challenging.

EXAMPLE PROTOTYPE & EXPERIMENT

For experimental evaluation, we used the above
simple behaviour and varied the deployment
configuration by altering the host on which the JSP
and database components were deployed to (ref
table 1). Both hosts run under Linux, dax is a dual-
processor server, ibex a single-processor
workstation.

 JSP1 JSP2 DB
Test A Dax Dax Dax
Test B Dax Ibex Dax
Test C Dax Ibex (tuned) Dax
Test D Dax Dax (tuned) Dax

Table 1: testing deployment variations

In the sequence diagram, we specified the first call
from the browser to jsp1 to be resource intensive
(e.g. for analysing user authorization) as well as the
processing of the database results in jsp2. We
defined a think time of 3 seconds on average, which
represent the time a user would need between clicks
in the browser. For tests C and D, we assumed a
scenario where a proposed tuning measure is
expected to improve database processing by 60%,
but since it would entail large modification efforts, an
impact analysis should be carried out before any
decision is taken. Resource consumptions are
therefore adjusted in the sequence diagram, the
prototype newly generated, deployed and tested to
provide the answer in short time.

Each load test ran for 30 minutes and increased the
load every 2 minutes by one additional simulated
user. Fig 5. shows the achieved rate of fully
completed transactions per second (TPS, number of
finished workflow instances/s) of Test A. The
system went into saturation after 18 minutes with an
approximate capacity of 1.05 TPS caused by 10
concurrent simulated users (Fig. 5). Further users
did not increase the transaction rate but only
resulted in increased response times due to shared
use of the CPU resources.
The response times for the first user (on a basically
idle system) where in sum 1.8s without the
prescribed think times, but rose to 5.5s at the
saturation point of the system. Fig. 6 shows the

UML-Tool
„production“ model

XML
Experiment
description

needed
diagrams

Converter

prototype system

application server

system
behaviour

generate,
deploy & test

result
feedback

database

firewallwebserver

servlet engine
sys. behaviour

loadtestsystem
user behaviour

UML-Tool
„production“ model

XML
Experiment
description

needed
diagrams

Converter

prototype system

application server

system
behaviour

generate,
deploy & test

result
feedback

database

firewallwebserver

servlet engine
sys. behaviour

loadtestsystem
user behaviour

Fig. 4: End-to-end performance prototyping cycle
from UML-tool

Fig. 5: Test A: Transactions per second over time

Fig. 6: Test A: Response times over time

response times of the four constituent requests from
the browser. The result for the further tests is shown
in table 2.

 Capacity Response time
 TPS Users “idle” saturated
Test A 1.05 10 1.8s 5.5s
Test B 0.35 5 2.8s 5.9s
Test C 0.58 7 1.9s 6.6s
Test D 1.33 13 1.3s 4.7s

Table 2:Performance Measurement of the
prototype

We can see, that – not surprisingly – deploying
parts of the application on ibex did not improve the
overall capacity of the system. The proposed
improved database processing step, however, would
significantly improve the overall performance in
terms of capacity (by 26%) and response times (28%-
36%) and should therefore be attempted.

Once the initial model was built, each complete
performance prototyping cycle, i.e. evaluation of a
further design variation, was completed in less than
an hour. The generation and deployment of the
prototype itself took about two minutes, the
remainder being spent on running and analysing the
load-test. This allows assessing even small design
choices for their impact on performance. Tests C and
D also demonstrated a possible further application of
performance prototyping – setting performance
targets for each step of the intended workflows
based on the expected impact on the entire system.
This “budgeting” of resources and planning of
performance could help to coordinate the viewpoints
of owner, designer, developer and operator of a
distributed system.

OUTLOOK AND CONCLUSION

In this paper we presented the ideas and principles
behind performance prototyping as well as the
integration and deployment concepts. In our
example, we showed a basic web-application and
demonstrated, how a simple and fast evaluation of a
performance prototype could be used to assess the
suitability of different design variants.

We are currently working to expand the method to
include further platforms (e.g. EJB, ASP, .NET) and
protocols (e.g. SOAP, RMI) to support prototypes of
more heterogeneous systems.

In our view, the major obstacles in the way of
widespread application of software performance
engineering are
a) insufficient familiarity of SW-developers with

SPE methods,
b) separate, potentially inconsistent and

contradicting notation and interpretation of SPE
and SW-models and

c) the large time and effort needed to obtain results.

We expect that by overcoming these obstacles, the
concepts and methods of SPE would bring a large
benefit into SW-engineering. SPE could then
contribute more than currently towards SW-products
and systems that have better performance at lower
development costs and shorter development time.
With our UML-based notation we aim to contribute
towards a more intuitive modelling of performance
aspects in standard UML in mainstream tools. Our
works around simulation [Hennig02] and
performance prototyping as SPE methods show the
flexibility and wide range of the notation. The
possibility to evaluate different scenarios fast,
consistently and efficiently allows for close
interaction of predictive methods like simulation,
benchmarking, load testing and performance
prototyping. Simulation will be invaluable for
extrapolation in the dimensions of scalability,
reliability and optimisation. Benchmarking can
provide basic measures; performance prototyping
can assess specific infrastructures for specific load
scenarios. Projecting the findings onto larger
planned server farms or networks could again be the
contribution of simulation based on the parameters
and findings obtained through multi-varied
performance prototyping.

At the ESM 2003 we will give a presentation of the
integrated end-to-end process of performance
prototyping.

REFERENCES

[Dimitrov02] Dimitrov E., Schmietendorf A., Dumke,
R.: “UML-based Performance Engineering
Possibilities and Techniques”, IEEE Software,
Darmstadt, p. 74-83, Vol 19/1, Jan/Feb 2002

 [Hennig02] Hennig, A. R. Wasgint; “Performance
Modeling of Software Systems in UML-Tools for
the Software Developer”, in Proceedings of
European Simulation Multiconference
ESM’2002, Darmstadt, Germany, 2002

[Hennig01] Hennig, A.; Eckardt, H., 2001,
“Challenges for Simulation of Systems in
Software Performance Engineering”, in Proc.
ESM’01, Prague, p. 121-126, 2001

[Mirandola00] Mirandola, R., Cortellessa, V.; 2000,
“UML Based Performance Modeling of
Distributed Systems”, UML 2000 - 3rd Int. Conf.,
York, UK, 178-193, 2000

[Petriu99] Petriu, D., Wang, X. „From UML
descriptions of High-Level Software

Architectures to LQN Performance Models“,
Proc AGVTIVE’99, Springer Verlag, LNCS 1779,
p47-62, 1999

[RFC1738]: Berners-Lee, T., Masinter, L., and M.
McCahill, Editors, "Uniform Resource Locators
(URL)", December 1994.

[RFC1808]: Fielding, R., "Relative Uniform Resource
Locators", June 1995.

[Smith90] Smith, C.U., 1990. “Performance
Engineering of Software Systems”, ISBN 0-201-
53769-9, Addison-Wesley, Reading, US, 1990

Togethersoft Corporation,
http://www.togethersoft.com/

Mercury Interactive Corporation,
http://www.mercuryinteractive.com/

[Williams98] Williams, L.G., Smith C.U.,
“Performance Evaluation of Software
Architectures”, WOSP 1998, p 164.177, 1998

	c0: Proceedings 17th European Simulation Multiconference
(c) SCS Europe BVBA, 2003 ISBN 3-936150-25-7

