
From UML to Performance Measures -
Simulative Performance Predictions of IT-Systems using the JBoss Application Server

with OMNET++
 Andreas Hennig, Dean Revill and Michael Pönitsch

Siemens AG, Corporate Technology, CT SE 1,
Otto-Hahn-Ring 6, 81739 München, Germany,

Andreas.Hennig@siemens.com, dean_ntu@hotmail.com, Michael.Poenitsch@siemens.com,

KEYWORDS
Software Performance Engineering, UML Modelling,
Software Development, Performance Annotation,
Simulation, JBoss, J2EE, LoadTest

ABSTRACT

In this paper, we argue the case for thorough performance
engineering already in the early development phases of
complex IT-systems, particularly web-based ones on the
example of the Open Source Application Server JBoss. We
show the need for a fast and efficient modelling of web-
architectures, shortly recall a proposed UML notation and
conversion framework [Hennig02], report progress of our
end-to-end integration of simulation into a commercial
UML-Tool and demonstrate its benefit on the example of a
JBoss-based application. The abstractions chosen for the
JBoss EJB Application Server model in the OMNET++
Simulator are described and the predicted performance is
compared to values observed in load tests on the finished
system.

INTRODUCTION

Most of today’s complex IT-systems consist at least in
parts of web-technologies – increasingly even in their core
functionalities, not merely the user front end. Apart from
the reduced number of core standards and mechanism (e.g.
http, SOAP, WebServices, J2EE) as well as the (hopefully)
improved interoperability, it is the wide availability of server
software (commercial and public domain), engineering tools
and development know-how that advances their use. Also
the fast pace of developing the initial (typically highly
presentable) increments is in favour of the web, but often
conceals the long way to complex distributed systems with
good performance.
For the single and local user that typically develops and
tests the system, everything works smoothly and
transparently, but the “going live” almost immediately
exposes them to a large, wide and highly critical audience:
the www-users and the competitor’s web-sites “one click
away”. Unfortunately, typical failures in distributed
systems do not arise during the test of individual
components by individual users but occur during
integration, system and deployment test with many

concurrent users and transactions. Unless located and
corrected in time they may result in cost overruns and
missed deadlines. The prediction of performance properties
of software systems (e.g. capacity, speed, stability,
reliability, scalability), particularly distributed ones like web-
applications, is therefore vital for substantiated design
decisions at an early stage. Since these systems are often
business critical and/or highly image critical, insufficient
performance can incur heavy costs e.g. compensation,
penalties, superfluous hardware, sub-optimal decisions
based out-dated information, loss of market shares...

Simulation as a method of Software Performance
Engineering (SPE, [Smith90]) has a long and successful
track record of early and reliable performance predictions,
which assess suitability of design choices and thus helps to
ascertain time, cost and function targets. However, even if
known, SPE methods often fail to keep up with the fast pace
of development, mostly through high modelling efforts, but
also through their high communication needs between the
developer (or designer) and the modelling expert.
Based on the work of our group within Siemens Corporate
Technology, which offers SPE consulting to the Siemens
business units we are convinced that simulation makes
valuable contributions, but needs simplified and more
intuitive mo delling in a “native language” of the developers
and powerful and flexible pre-modelled abstractions of
common infrastructure components and protocols to be
sufficiently fast, trustworthy and effective. The currently
most widespread “native” language of SW-developer would
be the UML. One such component would be an J2EE
application server, a central and common infrastructure
element of current web-architectures.

In the following sections, we will recall the main elements of
the UML-notation used; the one-click integration approach
of the simulation into the UML-Tool before describing the
application of the notation to an EJB application server and
the JBoss model developed for OMNET++. We then
compare the predications of a simple EJB system from the
simulation to values measured in load-tests on real
prototype systems before concluding the paper.

UML PERFORMANCE ANNOTATIONS

UML has established itself as the "native" modelling
language of SW-development – despite all its shortcomings
and ambiguities. It is therefore not surprising, that we
among many others advocates of SPE (e.g. [Mirandola00],
[Klein96], [Dimitrov00], [Xu03]) favour UML for SPE
modelling as the most suitable way to integrate SPE
methods and software engineering. However, we regard the
SPE annotations as the “guests” in the “production model”
and therefore formulated strict requirements to ensure
acceptance of SPE annotations [Hennig01]: one single
model, the same UML tool (commercial off-the-shelf, even if
incomplete in support of UML standard), same
interpretation of UML elements, same diagram types, no (or
very few) additional diagrams, no interference with
forward/reverse engineering, no SPE artefacts in generated
code, no manual conversion steps…
This means in particular the use of sequence diagrams
instead of state diagrams for representation of behaviour
and resource consumption, since sequence diagrams are by
experience not only available far earlier at less effort and
require less detail; they are also more intuitive to
developers, analysts and project owners. Using sequence
diagrams directly without manual transformation ensures
the consistency of team-model and SPE-model. The lack in
precision (of modelling all possible behaviours) is more than
compensated by the fact that it is modelled for SPE
evaluation - even if only “typical” behaviours are modelled
rather than “all possible”.
Use-case diagrams are used to aggregate behaviour and
allow for usage variation through parameterisation. Actors
in Sequence and Use-Case diagrams represent the load onto
the system. Deployment diagrams are used as the obvious
choice (like in [Williams98], [Dimitrov02], [Mirandola00],
[Petriu99], unlike e.g. [Arief00]) to model HW and SW
entities as well as their available resources and connections.
UML-multiplicities model repeated occurrences of identical
entities like servers in a server farm or a pool of clients.
Performance measures and requirements can be modelled in
sequence diagram, where the observed values can be
recorded or requirement violations can trigger alerts.
Of the many possible diagrams in a production model, the
experiment setup defines which deployment, use-case and
sequence diagrams should be evaluated, together with
setting parameteris values to allow for variants. This way,
one single production model can contain various
experiments (“what happens in infrastructure scenario a, b,
c; which user behaviour x, y, z”) or of abstraction levels
(“strata”) in a consistent and non-interfering manner.
Although creating special SPE-models for each experiment
would separate individual inquiries more clearly, it would
render consistency over various fast-paced iterations
virtually impossible.

SIMULATOR INTEGRATION INTO UML-TOOLS

In order to achieve a transparent end-to-end process for the
user, we devised and implemented the following integration
concept (Fig. 1). In the UML-CASE tool (currently
TogetherJ 4.2 [togethersoft]), the simulation cycle is
initiated (“one-click”), for which the required diagrams are
obtained and compiled into a XML document describing the
entire experiment. The experiment description is
complemented by optional default settings and information
on available library modules like JBoss. The “converter”
generates a simulation definition file from the experiment,
which is then compiled into the network and behaviour
parts of the simulator. The simulator is based on the freely
available discrete event simulator OMNeT++ [Varga01],
[Varga97] and contains the relevant core modules and
specific SPE extensions (scheduler, workflow execution
engine…) as well as pre-modelled modules like the
representation of JBoss (see next sections). The statistics
of performance observations collected during the execution
of the simulator are compiled and fed back textually into
dedicated tagged values in the UML-model (if requested).
The entire cycle is controlled by a set of platform-
independent scripts, which could also be used to run an
entire series of experiments.

Instead of producing merely NED for OMNetT++ as
simulation definition file, it is also possible for the converter
to be expanded to produce definition files for different
evaluation techniques, e.g. Queuing networks, Bottleneck
Analysis [Eckard01] or Performance Prototyping
[Hennig03].

UML-Tool
„production“ model

XML
Experiment
description

needed
diagrams

Converter

Simulator

OMNET++

core
SPE

extension

Pre-modelled (JBoss)

Network
topology

User&sys
behaviour

statistics & params

generate, compile & run

result
feedback

UML-Tool
„production“ model

XML
Experiment
description

needed
diagrams

Converter

Simulator

OMNET++

core
SPE

extension

Pre-modelled (JBoss)

Network
topology

User&sys
behaviour

statistics & params

generate, compile & run

result
feedback

UML-Tool
„production“ model

XML
Experiment
description

needed
diagrams

Converter

Simulator

OMNET++

core
SPE

extension

Pre-modelled (JBoss)

Network
topology

User&sys
behaviour

statistics & params

generate, compile & run

result
feedback

Fig. 1: End-to-end simulation cycle from UML-tool

In order to keep the simulation cycle short, we decided
against using XMI [XMI02] directly instead of the XML
experiment description, since the export and subsequent
parsing and traversal of an entire production model with
many unused diagrams would be too resource-intensive. In
the future, we intend to use a programmatic interface (based
on the Meta Object Facility MOF [MOF02]), which allows to
query and update specifically identified elements of the
model according to the MOF metamodel without having to
go through its XMI representation.

MODELLING THE SAMPLE JBOSS APPLICATION

The infrastructure and network of the example application is
modelled in the UML deployment diagram depicted in Fig. 3.
It contains (on the right) the machine hosting the JBoss
server with abstractions of a scheduler as provider of the
resource “CPU”, a TCP/IP communication protocol stack
and the JBoss server itself. The business logic modules, i.e.
the JSPs and beans, are placed inside the JBoss server. The
specific type of beans is specified by UML attributes
(tagged values) of the beans: beantype (session or entity),
statefulness (stateful and stateless) and persistence
(container- or bean-managed). To avoid cluttering of the
diagram by the internals of the JBoss (e.g. the servlet engine
and containers for the different types of beans with their
numerous interceptors), the UML diagram contains a
module “JBossInternal” representing the internals. The
diagram also shows the physical connections between the
hosts and network nodes, as well as multiplicities indicating
e.g. how many web browsers (3) are running per client host
($numClient).

The intended behaviour of the application is modelled with
the sequence diagram shown in Fig. 4, where the actor
“webUser” represents the load of one or more concurrent
users with prescribed load pattern (e.g. gradual ramp -up or
continuous, interarrival delay, think-times). Upon a single
“click” the browser submits three http requests to JSPs
query1 and query2, which serve as a front end to the beans.
On one occasion, bean1 consults the database before
sending the response back to the browser. We also

specified how much CPU-time each step consumes. CPU-

consumption is specified either as CPU-seconds or in
iterations of the core operation of standard or application-
specific benchmarks like whetstone or heapsort. This
allows simple scalability investigations, by adjusting the
amount of provided CPU-resources in the scheduler.
Requirements are specified in the sequence diagram as well,
e.g. the combined start-to-finish time the three browser
requests should be below a given threshold.
After modelling infrastructure, load, behaviour and
requirements in various UML diagrams, an experiment
definition diagram is used to specify the subset of
“investigated diagrams” and overall parameters like a
scalability factors for number of clients (e.g. $numClients in.
Fig. 2), the workload or overall think time.

JBOSS SIMULATION MODULES IN OMNET++

The option to use pre-modelled simulation modules allows
us to develop complex infrastructure components separate
from the UML-models of the target application. This helps
avoiding unnecessary detail and clutter in the UML-
diagrams, but also provides the means to build model
libraries in the native programming environment of the
simulation engine (C++ for OMNET++). It also enables us
to use models from the growing OMNET++ user community
to build larger scenarios more quickly. Typical examples for
pre-modelled modules are communication protocols like TCP
and infrastructure components like JBoss. Fig. 5 therefore
shows the sub-modules of JBossInternal in terms of
OMNET++. The “user” of the JBoss models would only use
the more familiar UML representations in Fig 3 and 4.
The module “JBossInternal“ is responsible for modelling the
thread-handling of the JBoss and for the overall
management of the bean containers. When a request to a
bean arrives at JBossInternal, the target container is located
based on the type of bean (session or entity, container- or
bean-managed persistence) or servlet. The call is then
redirected towards the appropriate container, in Fig. 5 this is
a “bmpContainer” for entity beans with bean-managed
persistence.
Inside the container, the call traverses a series of
configurable interceptors (e.g. for logging, security,

Fig. 3: EJB network model in UML deployment diagram

Fig. 4: EJB behavioural model in UML sequence diagram

JBossInternal
• threadhandling
• Container mgmt
• bean locating
• call redirecting

bmpContainer
• call interception
• bean pooling

& caching
• call executionJBossInternal

• threadhandling
• Container mgmt
• bean locating
• call redirecting

bmpContainer
• call interception
• bean pooling

& caching
• call execution

Fig. 5: JBoss internal modules in OMNET++

transaction processing) before arriving at the beanManager.
The beanManager obtains the requested bean instance
either from a pool or cache of beans, where the call will be
processed. At this time, the information of the sequence
diagrams is consulted to obtain the prescribed behaviour
like resource consumption, timestamp collection and
requirement evaluation. If nested calls are required (like the
database request from bean1 in Fig 4.) they are executed
according to condition and iteration specification given in
UML. One of the most challenging aspects of the JBoss
model was the fact that the entire sequence of containers,
interceptors and managers is executed within the same java
thread – which could clearly be seen in traces generated
from a simple manual prototype application. This meant that
all simulation modules had to reuse a specific existing thread
to prevent loss of simulation accuracy due to excessive
context switches.

EXPERIMENTS AND RESULTS

For experimental evaluation, we used the above simple
behaviour and varied the load on the system through the
number of simulated users. The load as increased every 2
minutes by one additional simulated user until
approximately 10 minutes after a clear saturation of the
system had been reached. In the sequence diagram, the call
to bean2 was specified to be resource intensive (the
equivalent of performing 3500 heapsorts on arrays of 1000
floating point values) e.g. for analysing user authorization),
the calls to bean1 are less demanding (1500 heapsorts). The
think time was 5 seconds on average, which represents the
time a user would need before the first click in the browser.

In order to compare the simulation results with real
installations of JBoss, we built a prototype of above
specifications and deployed it onto two different hosts.
Both hosts run under Linux, dax is a dual-processor server,
ibex a single-processor workstation. For reasons of
simplicity, scaling of the simulation model to the reference
hosts was done through adjustment of the CPU-capacity of
the server in UML diagram only.
For the time being, this ignores other influences like network

bandwidth, i/o speed and latencies, which could distort
findings significantly.

Unfortunately, we experience a software incompatibility,
which forces us to upgrade underlying parts of the system.
Rather than presenting misleading low-quality data, we
give a overview on the type of data and investigation we
will present. For the final paper / camera-ready copy to be
submitted for the ESM, we will obtain additional
measurements and run further experiments to calibrate the
model more precisely and then verify the accuracy of the
prediction on a larger sequence of interactions and further
examples. We apologize the inconvenience.

Taking the prototype measures on dax as an example, the
system went into saturation (ref. markers in Fig. 6) after 60%
of the experiment time with an approximate capacity of 1.9
TPS, which was caused by 23 concurrent simulated users.
Further users did not increase the transaction rate but only
resulted in increased response times due to shared use of
the CPU resources. The response time for the first user (on a
basically idle system) was 0.2s without the prescribed think
time, but rose to 1.1s at the saturation point of the system
(ref Fig. 7). Table 1 summarily lists the achieved or
predicted rate of fully completed transactions per second
(TPS, number of finished workflow instances per second).

 Capacity Response time
 TPS Users “idle” saturate

d
simulation ibex
 dax
prototype Ibex 0.6 10 1.0s 4.6s
 dax 1.9 23 0.2s 1.1s

Table 1: Comparison of simulation and prototype results

0.0

0.5

1.0

1.5

2.0

0% 20% 40% 60% 80% 100%

experiment timetr
an

sa
ct

io
n

 r
at

e
[T

P
S

]

prototype dax
prototype ibex

Fig. 6: Transaction rates of simulation and prototype

0

1

2

3

4

0% 20% 40% 60% 80% 100%

experiment time

re
sp

o
n

se
 t

im
e

[s
]

prototype dax
prototype ibex

Fig. 7: Response times of simulation and prototype

OUTLOOK AND CONCLUSION

The simulation model presented in this paper provides a
performance engineer with a simple and intuitive way of
noting infrastructure, load, behaviour and requirements of a
distributed system, which uses a JBoss application server.
By splitting the model into an application (UML) and
infrastructure level (native OMNET++), we achieve
sufficient expressive and simulative potential without
requiring excessive detail.
We currently work on integrating our method with models
from the OMNET++ community, most importantly the
TCP/IP models described in [Kaage2001]. Another aspect is
the calibration of the model by efficient determination of
model parameters on various infrastructures by means of
benchmarking, prototyping (manual and automatic) and load
testing. Particularly the possible interaction between
Simulation and Prototyping is very promising.
In [Hennig03], we present a way to use the notation,
conversion methodology and UML-models described here
to automatically generate and deploy performance
prototypes. The efficient combination of corresponding
prototypes and simulation models opens new opportunities
to predict system performance faster and more accurately
with affordable effort and time.

REFERENCES

[Arief00] Arief, L.B., Speirs, N.A. “A UML Tool for an
Automatic Generation of Simulations Programs”,
WOSP 2000, p 71-76, 2000

[Dimitrov02] Dimitrov E., Schmietendorf A., Dumke, R.:
“UML-based Performance Engineering Possibilities
and Techniques”, IEEE Software, Darmstadt, p. 74-83,
Vol 19/1, Jan/Feb 2002

[Dimitrov00] Dimitrov E., Schmietendorf A.: “UML-basiertes
Performance Engineering”, "in Performance
Engineering in der Softwareentwicklung (PE 2000), ",
Darmstadt, p. 41, 2000

[Hennig01] Hennig, A.; Eckardt, H., 2001, “Challenges for
Simulation of Systems in Software Performance
Engineering”, in Proc. ESM’01, Prague, p. 121-126, 2001

[Hennig02] Hennig, A. R. Wasgint; “Performance Modeling
of Software Systems in UML-Tools for the Software
Developer”, in Proceedings of European Simulation
Multiconference ESM’2002, Darmstadt, Germany, 2002

[Hennig03] Hennig, A., Hentschel, A. and Tyack, J.,
“Performance Prototyping - Generating and Simulating a
distributed IT-System from UML models” submitted to
European Simulation Multiconference ESM’2003,
Nottingham, UK, 2003

[Kaage01] Kaage, U., Kahmann, V., Jondral, F., „An
OMNet++ TCP/IP MODEL“, in Proc. ESM’01, Prague,
p. 409-413, 2001

[Klein96] Klein, M.H.,: “State of Practice report: Problems
in the Practice of Performance Engineering”. Technical
Report, Pittsburg, Pennsylvania: Software Engineering
Institute, 1996

[Mirandola00] Mirandola, R., Cortellessa, V.; 2000, “UML
Based Performance Modeling of Distributed Systems”,
UML 2000 - 3rd Int. Conf., York, UK, 178-193, 2000

[XMI02] OMG, XMI 1.2, 2002 , http://www.omg.org/
technology/documents/formal/xmi.htm

[MOF02] OMG, MOF 1.5 RTF, 2001/2002, in Revision,
http://www.omg.org/techprocess/meetings/schedule/M
OF_1.5_RTF.html

[Petriu99] Petriu, D., Wang, X. „From UML descriptions of
High-Level Software Architectures to LQN Performance
Models“, Proc AGVTIVE’99, Springer Verlag, LNCS
1779, p47-62, 1999

[Smith90] Smith, C.U., 1990. “Performance Engineering of
Software Systems”, ISBN 0-201-53769-9, Addison-
Wesley, Reading, US, 1990

[Togethersoft] Togethersoft Corporation,
http://www.togethersoft.com/

[Varga01] Varga A., “The OMNET++ Discrete Event
Simulation System”, in Proc. ESM’01, Prague, p. 319-324,
2001

[Varga97] Varga, A. OMNET++ Homepage,
http://www.hit.bme.hu/phd/vargaa/omnetpp.htm, 1997

[Williams98] Williams, L.G., Smith C.U., “Performance
Evaluation of Software Architectures”, WOSP 1998, p
164.177, 1998

[Xu03] Xu, Z, Lehmann, A., “Automated Generation of
Queuing Network Model from UML-based Software
Models with Performance Annotations”, Techgnical
Report #2002-06, Universität der Bundeswehr, München,
2002

	c0: Proceedings 17th European Simulation Multiconference
(c) SCS Europe BVBA, 2003 ISBN 3-936150-25-7

