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Abstract: this paper illustrates how meta-modelling is used to support designing and executing data flows in a 
web-based simulation environment (in our case the home-made so-called NCSE environment [Levytskyy and 
Kerckhoffs, 2000a]). Although simple, the data flow considered has a significant leverage in the real-world 
scenarios typical for web-based environments. Based on the definition of Data Flow Diagrams (DFD), we 
specify a DFD metamodel in the Entity-Relationships formalism with the meta-modelling tool AToM3 [de Lara 
and Vangheluwe, 2002a] and use it to generate a visual modelling tool tailored according to the proposed DFD 
metamodel. Finally, the paper illustrates how a DFD model created with this modelling tool is transformed into a 
textual code, a job description for the NCSE execution controller. 
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1. INTRODUCTION 
 
The emergence of the world-wide web (WWW) 
and its popularity in the simulation community 
gave birth to the concept of web-based simulation 
[Fishwick, 1996], which now includes (among 
others) activities that deal with the use of the 
WWW as infrastructure to support distributed 
simulation execution and encompass research in 
tools, environments and frameworks that support 
the distributed, collaborative design and 
development of simulation models [Page, 1998]. 
 
Within this domain, several years ago we started a 
Collaborative Simulations project in which a 
generic web environment is developed to support 
simulation and modelling components in 
multidisciplinary collaborative projects [Levytskyy 
and Kerckhoffs, 2000a]. The environment’s 
functionality is similar to that of the DLR-IMF 
Virtual Laboratory [DLR-IMF]. The practical 
application of our prototyped environment lies in 
the so-called NanoComp project, which 
investigates computing systems based on quantum 
devices; therefore the environment is named 
NanoComp Simulation Environment (NCSE). 
 
NCSE is based on two major types of remote 
objects called resources [Levytskyy and 
Kerckhoffs, 2001]: conventional tools and models, 
which are maintained by the collaborative groups 
that own them. The environment provides: (i) an 
infrastructure that connects remote resources to 
their respective web-façades (proxy objects 
accessible from the web) via a distributed object 
middleware; (ii) centralised access control (via a 
controller) to remote resources; and (iii) on-line 

services, such as registration, discovery and 
processing of resources (i.e. simulation of a 
registered model with an integrated simulation 
tool). These web-façades are containers for 
metadata that describe properties of the remote 
counterpart tools and models, thus enabling the 
above-mentioned services. Since 2002, NCSE 
includes meta-modelling capabilities with the 
assistance of AToM3 (A Tool for Multi-formalism 
and Meta-Modelling).  
 
AToM3 is a visual tool for meta-modelling and 
model-transforming. Meta-modelling refers to 
modelling formalism concepts at a meta-level, and 
model-transforming refers to automatic converting, 
translating or modifying a model of a given 
formalism into another model of the same or 
different formalism [Vangheluwe et al, 2002]. The 
tool’s meta-layer allows a high-level description of 
models, based on which AToM3 can automatically 
generate a tool tailored to the family of those 
models. 
 
In NCSE, AToM3 is used as Meta-CASE Tool (and 
the topic of this paper is an example of such a use) 
to develop meta-models for various formalisms 
supported by the environment. Given these 
metamodels, AToM3 can be used as a conventional 
modelling tool for the supported formalisms. 
Finally, we employ the model-transforming 
capabilities (a) to generate job descriptions for the 
NCSE controller (which is discussed in this paper) 
and (b) given a formalism’s metamodel, to 
synthesize code for the formalism’s components of 
the NCSE environment. 
 



 

 

In this paper we illustrate how meta-modelling is 
used to support designing and executing data flows 
in the NCSE environment. Although simple, the 
data flow considered has a significant leverage in 
the real-world scenarios typical for web-based 
environments. In section 2 we provide a definition 
of Data Flow Diagrams that will serve as 
specification for the DFD metamodel presented in 
section 3. Based on this metamodel, AToM3 can 
generate a completely new DFD modelling tool. 
Section 4 describes how to construct a 
transformation that, given a DFD model, generates 
a respective textual code for an external solver: the 
NCSE controller. An example of model-
transforming is given in section 5. We conclude the 
paper with final remarks. 
 
2. DFD DEFINITION 
 
Data Flow Diagrams (DFD) present the flow of 
data through a system [Gane and Sarson, 1979]. 
The focus is on how data is processed by a system 
in terms of inputs and outputs. The building 
constructs of Data Flow Diagrams are Data Flow, 
Data Store, Process and External Entity. Figure 1 
shows their respective graphical notations as 
proposed in [Gane and Sarson, 1979]. 
 

 
Figure 1: DFD notation. 

External entities (Figure 1a) are data objects 
outside the context of the modeled system. 
External entities are sources and sinks 
(destinations) of the system’s inputs and outputs. 
Each is given an alphabetic identifier. 

 
Data flow (Figure 1b) is a pipeline through which 

packets of data of known composition flow. The 
arrowhead indicates the direction of the data flow. 
Each data flow must have a label describing the 
data.  

 
Data stores (Figure 1c) are repositories of data 

inside a system. It is a data queue as opposed to 

data flow. Each is identified by “D” and an 
arbitrary number. 

 
Process (Figure 1d) transforms an incoming data 

flow into an outgoing data flow. Each is given a 
numerical identifier, physical reference (in the 
lower part of the process box) and is described 
with an imperative sentence containing an active 
verb e.g. “CONVERT data”.  

 
Additionally, there are general rules that a valid 
DFD diagram should comply with. Some of them 
are: 

- Data flow connects other DFD constructs. 
- No alteration of data can take place within 

a data flow. 
- An external entity cannot be connected to 

another external entity. 
- Data stores receive inputs and outputs only 

from processes. 
 
There is much more to say about DFD (levels and 
types of Data Flow Diagrams, more rules and 
recommendations), but the definition provided here 
is sufficient for our purposes. 
 
3. METAMODEL 
 
A metamodel of a given formalism specifies the 
syntax aspect of the formalism by defining the 
language constructs and how they are built-up in 
terms of other constructs. 
 
To construct a DFD metamodel we used Entity 
Relationships (ER) diagrams extended with 
constraints, a default meta-formalism of AToM3. 
Constraints provide a view on how a construct can 
be connected to another construct to be meaningful, 
and thus specify static semantics of the formalism. 
In this paper constraints are expressed in Object 
Constraint Language [OCL, 1997]. 
 
Important properties of each construct are 
Cardinality, Attributes, Constraints, and 
Appearance. Cardinality determines the possible 
number of incoming and outgoing connections of a 
construct. Additionally, we employ Constrains to 
control what constructs can connect to what 
constructs. We populate each construct’s Attributes 
property (of collection type) with a minimum set of 
regular attributes that supports the semantics of the 
construct alone and in combination with other 
constructs. Finally, we define the Appearance 
property of each construct in accordance with the 
notation presented in Figure 1. 
 



 

 

 
Figure 2: DFD Metamodel. 

The metamodel in Figure 2 was constructed in 
AToM3 according to the DFD definition provided 
above and shows how DFD constructs can be 
combined together. In the following, we describe 
each element of the metamodel in more details: 
 
EXTERNALENTITY: 

Cardinality:  
self-to-dataflow: (1: 0..*)  
dataflow-to-self: (1: 1) 

Attributes:  
id: string = ‘a’ 
description: string 
data: sequence 
isSource: boolean  
isSink: boolean 

 
DATASTORE: 

Cardinality:  
self-to-dataflow: (1:1..*)  
dataflow-to-self: (1:1) 

Attributes:  
id: string = ‘D’ 
description: string  
data: sequence  

 
DATAFLOW: 

Cardinality: 
self-to-destination: (1:1)  
source-to-self: (1:1) 

Attributes:  
description: string 
data: sequence 

Constraints:  
DataFlow :: CONNECT(…) 
post: self.Source.metaclass -> 

forAll(s |  
    self.Destination.metaclass -> 

forAll(d |  
not s = d = 

‘ExternalEntity’)) 
post: self.Source.metaclass -> 

forAll(s |  
    self.Destination.metaclass -> 

forAll(d |  
Set{s,d} = 

Set{“Process”,“DataStore”})) 
 

PROCESS: 
Cardinality: 

self-to-dataflow: (1:1..*)  
dataflow-to-self: (1:1) 

Attributes:  
id: string 
description: string 
processor: string 

Along with the properties defined for each DFD 
construct, we also extend the global properties for 
the metamodel itself with attributes, such as title, 
subject, description, author and version. They can 
be used for basic documentation of models 
specified in this DFD formalism.  
 
All global properties and regular attributes are to be 
filled-in by the end-user of the DFD modeling tool 
to be generated at the lower meta-level. 
 
Finally, the flexibility and elegance of the meta-
modeling concept allows us to easily adapt the 
DFD formalism as defined in section 2 to our 
needs. For example, to match the capabilities of the 
controller, we introduce two new general rules for 
our DFD: 

- Do not allow branching. 
- Do not allow loops on the same Process. 

 
AToM3 allows preventing branching by tuning the 
Cardinality property of elements. The loops are 
avoided by the following constraint: 
 

DataFlow :: CONNECT(…) 
post: self.Source -> forAll(s |  

self.Destination -> forAll(d | 
s <> d implies s.id <> d.id)) 

 

 
Figure 3: Generated DFD modeling tool. 

Given our metamodel, we can now generate in 
AToM3 a meta-specification, which, when loaded 
into the meta-level of AToM3, turns it into a new 
modeling environment for the modeled DFD 
formalism. A part of this meta-specification is a 
specification of the User Interface. This 
specification is a model in its own right and can be 
edited in AToM3 at any time under a so-called 
“Buttons” formalism. By default, this specification 
creates a button for every construct of the 
formalism. In addition, we created one extra button, 
which on click applies the code generation 
transformation to the model on the tool’s canvas. 
An instance of the generated DFD modeling tool is 
shown in Figure 3. 
 
 



 

 

4. CODE GENERATION 
TRANSFORMATION 
 
Model transformation is related to dynamic 
semantics of a formalism, which defines the 
meaning of well-formed constructs. This meaning 
can be described in a number of ways, e.g.: 
formalism transformation, model optimization, 
code generation and simulator specification. 
 
This section describes a code generation 
transformation that, given a DFD model, generates 
a corresponding textual job description for the 
NCSE controller. The controller is a custom built 
Process-Interaction (PI) solver based on the 
operational semantics of πDemos [Birtwistle and 
Tofts, 1994]. 
 
In AToM3 model transformations are specified 
through Graph Grammars, and consist of Initial 
Action, Final Action and Transformation rules. 
Each rule consists of Left Hand Side (LHS) and 
Right Hand Side (RHS) graphs, and Condition, 
Action and Priority properties.  
 
The Initial Action of the transformation iterates 
through all the elements of the current model 
(objects on the tool’s canvas) to augment them with 
temporary attributes to be used in the conditions 
specified below. Attribute isVisited helps to 
distinguish the elements that have been already 
processed from those that have not yet. Attribute 
isCurrent is used to mark a DataFlow that leads to 
the element whose code has to be generated next. It 
also creates the job data structure: 
 

{‘source’: ‘’, ‘sink’: ‘’, ‘body’: [ ]} 
 

Relationship RelationshipEntity
connected
with

connected
with

label label label

 
Figure 4: Subgraph match pattern. 

We designed the rules to match a pattern shown in 
Figure 4, where the relationship element is a 
DataFlow, and the entity can be an instance of any 
other DFD component. Either the left or right 
relationship can be omitted. Present elements are 
labelled with consequent numbers. In the following 
we briefly describe each rule: 
 
RULEPROCESS (priority 1) locates a Process and 
rewrites the model as shown in Figure 5. Its action 
generates code using proper controller commands 
(get, hold, put) to access, use and release the 
physical entity implementing the process, and 
marks element 1 as not current, element 2 as 
visited, and element 3 as current. 

 
Figure 5: LHS and RHS subgraphs for processes. 

 
Action 
pre: LHS.element1.isCurrent = 1  
  and LHS.element2.isVisited = 0 
post: RHS.element1.isCurrent = 0  
  and RHS.element2.isVisited = 1  
   and RHS.element3.isCurrent = 1 

 
RULESOURCEEXTERNAL (priority 2) locates a 
source ExtEntity and rewrites the model as shown 
in Figure 6. Its action updates the ‘source’ field of 
the job description with the URL value of the data 
object of element 1 and marks element 1 as visited 
and element 2 as current. 
 

 
Figure 6: LHS and RHS subgraphs for source 

externals. 
 
Action 
pre: LHS.element1.isSource = 1  
  and LHS.element1.isVisited = 0 
post: RHS.element1.isVisited = 1  
  and RHS.element2.isCurrent = 1 

 
RULEDATASTORE (priority 3) locates a DataStore 
and rewrites the model as shown in Figure 7. As 
semantics of this entity in the controller’s context is 
currently not defined, the action only marks 
element 1 as not current, element 2 as visited, and 
element 3 as current. 
 

 
Figure 7: LHS and RHS subgraphs for data sources. 
 
 
Action 
pre: LHS.element1.isCurrent = 1  
  and LHS.element2.isVisited = 0 
post: RHS.element1.isCurrent = 0  
  and RHS.element2.isVisited = 1  
   and RHS.element3.isCurrent = 1 

 
RULESINKEXTERNAL (priority 4) locates a sink 
ExtEntity and rewrites the model as shown in 
Figure 8. Its action updates the ‘sink’ field of the 
job description with the URL value of the data 
object of element 2 and marks element 1 as not 
current and element 2 as visited. 
 
 
 



 

 

 
Figure 8: LHS and RHS subgraphs for sink 

externals. 
Action 
pre: LHS.element1.isCurrent = 1  
  and LHS.element2.isSink = 1 
   and 

LHS.element2.isVisited = 0 
post: RHS.element1.isCurrent = 0  
  and RHS.element2.isVisited = 1 

 
The Final Action prints the job data structure into 
an output file. As the last step, it iterates through all 
the elements on the tool’s canvas removing 
temporary attributes isVisited and isCurrent. 
 
5. MODEL-TRANSFORMING 
 
Figure 10 shows a DFD model created with the 
generated modeling tool.  
 

 
Figure 9: A model in the DFD formalism. 

Source external entity a0 contains a reference to a 
model registered in the NCSE model base. Process 
0 refers to a simulation tool that can solve the 
model concerned. Process 1 is a script that converts 
the output of process 0 into the input for process 2. 
Process 2 refers to a visualization application that 
produces diagrams from the input data. Finally, 
sink external entity a1 refers to the modeler’s 
workspace at NCSE. 
 
Model-transforming in AToM3 can be launched in a 
variety of ways, e.g. by clicking the button, which 
we created in the graphical user interface for the 
code generation transformation.  
 
During execution of a model transformation, 
AToM3’s Graph Rewriting Processor (GRP) 
iterates through the list of rules sorted by their 
priority in an ascending order and tries to apply the 
current rule to the model. If the rule makes a match 
(LHS pattern is found and conditions are met), it is 

executed and the GRP repeats trying each rule 
again from the beginning of the list. This continues 
until there are no rules anymore that can be applied, 
then GRP considers the model transformation as 
completed [de Lara and Vangheluwe, 2002].  
 
The result of our model-transforming is a valid job 
description for the controller (see Figure 10). 
 
#  
# This code is automatically generated. 
#  
 
__version__ = 'Revision: 0.01 $'[11:-2] 
__author__ = 'A. Levytskyy' 
 
# A job description for NCSE controller 
job = { 
  'body': ["getR ('Spectre')", 
           'hold ()', 
           "putR ('Spectre')", 
           "getR ('script')", 
           'hold ()', 
           "putR ('script')", 
           "getR ('Gnuplot')", 
           'hold ()', 
           "putR ('Gnuplot')", 
           "close()" 
           ], 
  'source':'scheme://host:port/sourcepath', 
  'sink'  :'scheme://host:port/sinkpath' 
} 

Figure 10: Generated textual code for execution. 

At this point the synthesized code can be passed to 
the NCSE controller for execution. The controller 
will create a new job (and add it to the pool of 
already existing jobs) that will provide the data as 
input for process 0, and so on until the output of 
process 2 is placed in the environment’s cash and 
the output’s URL is stored in the user’s workspace. 
More details on the controller and job execution 
can be found in [Levytskyy and Kerckhoffs, 
2000b]. 
 
6. FINAL REMARKS 
 
In this paper we demonstrate how the concept of 
meta-modelling could be used to easily extend an 
existing simulation environment with new 
functionality, namely dataflow modelling and 
execution. The meta-modelling tool AToM3 plays 
an important role in this (even though currently 
AToM3 can only be used locally and not from the 
web) and is primarily used as Meta-CASE Tool to 
develop meta-models for various concepts used in 
the environment, and as code generator. The most 
important is that meta-modelling and AToM3 
indeed enable us to adjust NCSE to different 
situations.  
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