
META-MODELLING OF DATA FLOW PROCESSES
WITH META-MODELLING TOOL ATOM3

ANDRIY LEVYTSKYY and EUGENE J.H. KERCKHOFFS

 Faculty of Information Technology and Systems, Mediamatica Department

Delft University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands
Email: a.levytskyy@cs.tudelft.nl

Abstract: this paper illustrates how meta-modelling is used to support designing and executing data flows in a
web-based simulation environment (in our case the home-made so-called NCSE environment [Levytskyy and
Kerckhoffs, 2000a]). Although simple, the data flow considered has a significant leverage in the real-world
scenarios typical for web-based environments. Based on the definition of Data Flow Diagrams (DFD), we
specify a DFD metamodel in the Entity-Relationships formalism with the meta-modelling tool AToM3 [de Lara
and Vangheluwe, 2002a] and use it to generate a visual modelling tool tailored according to the proposed DFD
metamodel. Finally, the paper illustrates how a DFD model created with this modelling tool is transformed into a
textual code, a job description for the NCSE execution controller.

keywords: Data Flow Diagrams, Metamodel, Transformation, Code Generation, Web Environment

1. INTRODUCTION

The emergence of the world-wide web (WWW)
and its popularity in the simulation community
gave birth to the concept of web-based simulation
[Fishwick, 1996], which now includes (among
others) activities that deal with the use of the
WWW as infrastructure to support distributed
simulation execution and encompass research in
tools, environments and frameworks that support
the distributed, collaborative design and
development of simulation models [Page, 1998].

Within this domain, several years ago we started a
Collaborative Simulations project in which a
generic web environment is developed to support
simulation and modelling components in
multidisciplinary collaborative projects [Levytskyy
and Kerckhoffs, 2000a]. The environment’s
functionality is similar to that of the DLR-IMF
Virtual Laboratory [DLR-IMF]. The practical
application of our prototyped environment lies in
the so-called NanoComp project, which
investigates computing systems based on quantum
devices; therefore the environment is named
NanoComp Simulation Environment (NCSE).

NCSE is based on two major types of remote
objects called resources [Levytskyy and
Kerckhoffs, 2001]: conventional tools and models,
which are maintained by the collaborative groups
that own them. The environment provides: (i) an
infrastructure that connects remote resources to
their respective web-façades (proxy objects
accessible from the web) via a distributed object
middleware; (ii) centralised access control (via a
controller) to remote resources; and (iii) on-line

services, such as registration, discovery and
processing of resources (i.e. simulation of a
registered model with an integrated simulation
tool). These web-façades are containers for
metadata that describe properties of the remote
counterpart tools and models, thus enabling the
above-mentioned services. Since 2002, NCSE
includes meta-modelling capabilities with the
assistance of AToM3 (A Tool for Multi-formalism
and Meta-Modelling).

AToM3 is a visual tool for meta-modelling and
model-transforming. Meta-modelling refers to
modelling formalism concepts at a meta-level, and
model-transforming refers to automatic converting,
translating or modifying a model of a given
formalism into another model of the same or
different formalism [Vangheluwe et al, 2002]. The
tool’s meta-layer allows a high-level description of
models, based on which AToM3 can automatically
generate a tool tailored to the family of those
models.

In NCSE, AToM3 is used as Meta-CASE Tool (and
the topic of this paper is an example of such a use)
to develop meta-models for various formalisms
supported by the environment. Given these
metamodels, AToM3 can be used as a conventional
modelling tool for the supported formalisms.
Finally, we employ the model-transforming
capabilities (a) to generate job descriptions for the
NCSE controller (which is discussed in this paper)
and (b) given a formalism’s metamodel, to
synthesize code for the formalism’s components of
the NCSE environment.

In this paper we illustrate how meta-modelling is
used to support designing and executing data flows
in the NCSE environment. Although simple, the
data flow considered has a significant leverage in
the real-world scenarios typical for web-based
environments. In section 2 we provide a definition
of Data Flow Diagrams that will serve as
specification for the DFD metamodel presented in
section 3. Based on this metamodel, AToM3 can
generate a completely new DFD modelling tool.
Section 4 describes how to construct a
transformation that, given a DFD model, generates
a respective textual code for an external solver: the
NCSE controller. An example of model-
transforming is given in section 5. We conclude the
paper with final remarks.

2. DFD DEFINITION

Data Flow Diagrams (DFD) present the flow of
data through a system [Gane and Sarson, 1979].
The focus is on how data is processed by a system
in terms of inputs and outputs. The building
constructs of Data Flow Diagrams are Data Flow,
Data Store, Process and External Entity. Figure 1
shows their respective graphical notations as
proposed in [Gane and Sarson, 1979].

Figure 1: DFD notation.

External entities (Figure 1a) are data objects
outside the context of the modeled system.
External entities are sources and sinks
(destinations) of the system’s inputs and outputs.
Each is given an alphabetic identifier.

Data flow (Figure 1b) is a pipeline through which

packets of data of known composition flow. The
arrowhead indicates the direction of the data flow.
Each data flow must have a label describing the
data.

Data stores (Figure 1c) are repositories of data

inside a system. It is a data queue as opposed to

data flow. Each is identified by “D” and an
arbitrary number.

Process (Figure 1d) transforms an incoming data

flow into an outgoing data flow. Each is given a
numerical identifier, physical reference (in the
lower part of the process box) and is described
with an imperative sentence containing an active
verb e.g. “CONVERT data”.

Additionally, there are general rules that a valid
DFD diagram should comply with. Some of them
are:

- Data flow connects other DFD constructs.
- No alteration of data can take place within

a data flow.
- An external entity cannot be connected to

another external entity.
- Data stores receive inputs and outputs only

from processes.

There is much more to say about DFD (levels and
types of Data Flow Diagrams, more rules and
recommendations), but the definition provided here
is sufficient for our purposes.

3. METAMODEL

A metamodel of a given formalism specifies the
syntax aspect of the formalism by defining the
language constructs and how they are built-up in
terms of other constructs.

To construct a DFD metamodel we used Entity
Relationships (ER) diagrams extended with
constraints, a default meta-formalism of AToM3.
Constraints provide a view on how a construct can
be connected to another construct to be meaningful,
and thus specify static semantics of the formalism.
In this paper constraints are expressed in Object
Constraint Language [OCL, 1997].

Important properties of each construct are
Cardinality, Attributes, Constraints, and
Appearance. Cardinality determines the possible
number of incoming and outgoing connections of a
construct. Additionally, we employ Constrains to
control what constructs can connect to what
constructs. We populate each construct’s Attributes
property (of collection type) with a minimum set of
regular attributes that supports the semantics of the
construct alone and in combination with other
constructs. Finally, we define the Appearance
property of each construct in accordance with the
notation presented in Figure 1.

Figure 2: DFD Metamodel.

The metamodel in Figure 2 was constructed in
AToM3 according to the DFD definition provided
above and shows how DFD constructs can be
combined together. In the following, we describe
each element of the metamodel in more details:

EXTERNALENTITY:

Cardinality:
self-to-dataflow: (1: 0..*)
dataflow-to-self: (1: 1)

Attributes:
id: string = ‘a’
description: string
data: sequence
isSource: boolean
isSink: boolean

DATASTORE:

Cardinality:
self-to-dataflow: (1:1..*)
dataflow-to-self: (1:1)

Attributes:
id: string = ‘D’
description: string
data: sequence

DATAFLOW:

Cardinality:
self-to-destination: (1:1)
source-to-self: (1:1)

Attributes:
description: string
data: sequence

Constraints:
DataFlow :: CONNECT(…)
post: self.Source.metaclass ->

forAll(s |
 self.Destination.metaclass ->

forAll(d |
not s = d =

‘ExternalEntity’))
post: self.Source.metaclass ->

forAll(s |
 self.Destination.metaclass ->

forAll(d |
Set{s,d} =

Set{“Process”,“DataStore”}))

PROCESS:
Cardinality:

self-to-dataflow: (1:1..*)
dataflow-to-self: (1:1)

Attributes:
id: string
description: string
processor: string

Along with the properties defined for each DFD
construct, we also extend the global properties for
the metamodel itself with attributes, such as title,
subject, description, author and version. They can
be used for basic documentation of models
specified in this DFD formalism.

All global properties and regular attributes are to be
filled-in by the end-user of the DFD modeling tool
to be generated at the lower meta-level.

Finally, the flexibility and elegance of the meta-
modeling concept allows us to easily adapt the
DFD formalism as defined in section 2 to our
needs. For example, to match the capabilities of the
controller, we introduce two new general rules for
our DFD:

- Do not allow branching.
- Do not allow loops on the same Process.

AToM3 allows preventing branching by tuning the
Cardinality property of elements. The loops are
avoided by the following constraint:

DataFlow :: CONNECT(…)
post: self.Source -> forAll(s |

self.Destination -> forAll(d |
s <> d implies s.id <> d.id))

Figure 3: Generated DFD modeling tool.

Given our metamodel, we can now generate in
AToM3 a meta-specification, which, when loaded
into the meta-level of AToM3, turns it into a new
modeling environment for the modeled DFD
formalism. A part of this meta-specification is a
specification of the User Interface. This
specification is a model in its own right and can be
edited in AToM3 at any time under a so-called
“Buttons” formalism. By default, this specification
creates a button for every construct of the
formalism. In addition, we created one extra button,
which on click applies the code generation
transformation to the model on the tool’s canvas.
An instance of the generated DFD modeling tool is
shown in Figure 3.

4. CODE GENERATION
TRANSFORMATION

Model transformation is related to dynamic
semantics of a formalism, which defines the
meaning of well-formed constructs. This meaning
can be described in a number of ways, e.g.:
formalism transformation, model optimization,
code generation and simulator specification.

This section describes a code generation
transformation that, given a DFD model, generates
a corresponding textual job description for the
NCSE controller. The controller is a custom built
Process-Interaction (PI) solver based on the
operational semantics of πDemos [Birtwistle and
Tofts, 1994].

In AToM3 model transformations are specified
through Graph Grammars, and consist of Initial
Action, Final Action and Transformation rules.
Each rule consists of Left Hand Side (LHS) and
Right Hand Side (RHS) graphs, and Condition,
Action and Priority properties.

The Initial Action of the transformation iterates
through all the elements of the current model
(objects on the tool’s canvas) to augment them with
temporary attributes to be used in the conditions
specified below. Attribute isVisited helps to
distinguish the elements that have been already
processed from those that have not yet. Attribute
isCurrent is used to mark a DataFlow that leads to
the element whose code has to be generated next. It
also creates the job data structure:

{‘source’: ‘’, ‘sink’: ‘’, ‘body’: []}

Relationship RelationshipEntity
connected
with

connected
with

label label label

Figure 4: Subgraph match pattern.

We designed the rules to match a pattern shown in
Figure 4, where the relationship element is a
DataFlow, and the entity can be an instance of any
other DFD component. Either the left or right
relationship can be omitted. Present elements are
labelled with consequent numbers. In the following
we briefly describe each rule:

RULEPROCESS (priority 1) locates a Process and
rewrites the model as shown in Figure 5. Its action
generates code using proper controller commands
(get, hold, put) to access, use and release the
physical entity implementing the process, and
marks element 1 as not current, element 2 as
visited, and element 3 as current.

Figure 5: LHS and RHS subgraphs for processes.

Action
pre: LHS.element1.isCurrent = 1
 and LHS.element2.isVisited = 0
post: RHS.element1.isCurrent = 0
 and RHS.element2.isVisited = 1
 and RHS.element3.isCurrent = 1

RULESOURCEEXTERNAL (priority 2) locates a
source ExtEntity and rewrites the model as shown
in Figure 6. Its action updates the ‘source’ field of
the job description with the URL value of the data
object of element 1 and marks element 1 as visited
and element 2 as current.

Figure 6: LHS and RHS subgraphs for source

externals.

Action
pre: LHS.element1.isSource = 1
 and LHS.element1.isVisited = 0
post: RHS.element1.isVisited = 1
 and RHS.element2.isCurrent = 1

RULEDATASTORE (priority 3) locates a DataStore
and rewrites the model as shown in Figure 7. As
semantics of this entity in the controller’s context is
currently not defined, the action only marks
element 1 as not current, element 2 as visited, and
element 3 as current.

Figure 7: LHS and RHS subgraphs for data sources.

Action
pre: LHS.element1.isCurrent = 1
 and LHS.element2.isVisited = 0
post: RHS.element1.isCurrent = 0
 and RHS.element2.isVisited = 1
 and RHS.element3.isCurrent = 1

RULESINKEXTERNAL (priority 4) locates a sink
ExtEntity and rewrites the model as shown in
Figure 8. Its action updates the ‘sink’ field of the
job description with the URL value of the data
object of element 2 and marks element 1 as not
current and element 2 as visited.

Figure 8: LHS and RHS subgraphs for sink

externals.
Action
pre: LHS.element1.isCurrent = 1
 and LHS.element2.isSink = 1
 and

LHS.element2.isVisited = 0
post: RHS.element1.isCurrent = 0
 and RHS.element2.isVisited = 1

The Final Action prints the job data structure into
an output file. As the last step, it iterates through all
the elements on the tool’s canvas removing
temporary attributes isVisited and isCurrent.

5. MODEL-TRANSFORMING

Figure 10 shows a DFD model created with the
generated modeling tool.

Figure 9: A model in the DFD formalism.

Source external entity a0 contains a reference to a
model registered in the NCSE model base. Process
0 refers to a simulation tool that can solve the
model concerned. Process 1 is a script that converts
the output of process 0 into the input for process 2.
Process 2 refers to a visualization application that
produces diagrams from the input data. Finally,
sink external entity a1 refers to the modeler’s
workspace at NCSE.

Model-transforming in AToM3 can be launched in a
variety of ways, e.g. by clicking the button, which
we created in the graphical user interface for the
code generation transformation.

During execution of a model transformation,
AToM3’s Graph Rewriting Processor (GRP)
iterates through the list of rules sorted by their
priority in an ascending order and tries to apply the
current rule to the model. If the rule makes a match
(LHS pattern is found and conditions are met), it is

executed and the GRP repeats trying each rule
again from the beginning of the list. This continues
until there are no rules anymore that can be applied,
then GRP considers the model transformation as
completed [de Lara and Vangheluwe, 2002].

The result of our model-transforming is a valid job
description for the controller (see Figure 10).

This code is automatically generated.

__version__ = 'Revision: 0.01 $'[11:-2]
__author__ = 'A. Levytskyy'

A job description for NCSE controller
job = {
 'body': ["getR ('Spectre')",
 'hold ()',
 "putR ('Spectre')",
 "getR ('script')",
 'hold ()',
 "putR ('script')",
 "getR ('Gnuplot')",
 'hold ()',
 "putR ('Gnuplot')",
 "close()"
],
 'source':'scheme://host:port/sourcepath',
 'sink' :'scheme://host:port/sinkpath'
}

Figure 10: Generated textual code for execution.

At this point the synthesized code can be passed to
the NCSE controller for execution. The controller
will create a new job (and add it to the pool of
already existing jobs) that will provide the data as
input for process 0, and so on until the output of
process 2 is placed in the environment’s cash and
the output’s URL is stored in the user’s workspace.
More details on the controller and job execution
can be found in [Levytskyy and Kerckhoffs,
2000b].

6. FINAL REMARKS

In this paper we demonstrate how the concept of
meta-modelling could be used to easily extend an
existing simulation environment with new
functionality, namely dataflow modelling and
execution. The meta-modelling tool AToM3 plays
an important role in this (even though currently
AToM3 can only be used locally and not from the
web) and is primarily used as Meta-CASE Tool to
develop meta-models for various concepts used in
the environment, and as code generator. The most
important is that meta-modelling and AToM3
indeed enable us to adjust NCSE to different
situations.

ACKNOWLEDGEMENT

The research reported in this paper is done in the
framework of the NanoComp project, sponsored by
TU-Delft.

We would like to thank the Modelling, Simulation
and Design Lab (MSDL) of the School of
Computer Science of McGill University (Montreal,
Canada), and especially Hans Vangheluwe and
Juan de Lara, for providing and helping us with
AToM3.

REFERENCES

Birtwistle G. and Tofts C. 1994, An operational

semantics of process-oriented simulation
languages: Part 1 pDemos. Trans. Soc. Comput.
Simul., 10(4), Dec. 1994, pp. 299-333.

de Lara J. and Vangheluwe H. 2002, “AToM3: A
Tool for Multi-Formalism Modelling and Meta-
Modelling”. In: European Conferences on
Theory And Practice of Software Engineering
ETAPS02, Fundamental Approaches to
Software Engineering (FASE). Lecture Notes in
Computer Science 2306, Springer-Verlag, pp.
174 - 188.

DLR-IMF. Virtual Laboratory, a repository of
online-executable scientific software:
http://vl.nz.dlr.de/VL/S__qb4Mm21B/portal/

Fishwick P.A. 1996, “Web-Based Simulation”. In:
Proceedings of the 1996 Winter Simulation
Conference, pp. 772 – 779.

Gane C. and Sarson T. 1979, Structured Systems
Analysis: Tools and Techniques. Prentice-Hall,
Englewood Cliffs, USA

Levytskyy A. and Kerckhoffs E.J.H. 2000a,
“Towards a Prototype Web-Based Collaborative
Simulation Environment”, SCS: paper of the 5th
Euromedia Conference, May 2000, pp. 60 – 66.

Levytskyy A. and Kerckhoffs E.J.H. 2000b, “A
simulation-based controller for a distributed
collaborative environment”. In: D.F. Moeller
(ed.): Simulation in Industry, Proceedings of
ESS2000 (12th European Simulation
Symposium, Hamburg, Germany, September 28-
30, 2000), pp. 88-95.

Levytskyy A. and Kerckhoffs E.J.H. 2001,
“Integration of Simulation Tools and Models in
a Collaborative Environment”. In: Proceedings
of 2001 European Simulation Interoperability
Workshop (London, UK, June), Simulation
Interoperability Standards Organisation, pp.
407-415.

OCL (1997) Object Constraint Language
Specification, version 1.1, September 1.

Page E. H. 1998, “The rise of Web-based
simulation: implications for the high level
architecture”. In: Proceedings of 1998

conference on Winter simulation (Washington,
D.C., United States), pp. 1663 – 1668.

Vangheluwe H., de Lara J. and Mosterman P.J.
2002, “An introduction to multi-paradigm
modelling and simulation”. In: Proceedings of
the AIS'2002 Conference (AI, Simulation and
Planning in High Autonomy Systems), Lisboa,
Portugal, April 2002, pp. 9 - 20

AUTHORS’ BIOGRAPHIES

Andriy Levytskyy graduated
from Chernivtsi State
University, Ukraine and holds an
MSc-degree in Computer
Science. Currently, he is a PhD
student at Delft University of
Technology, Faculty
“Information Technology and

Systems”, Department “Mediamatica”, Group
“Knowledge-based Systems”.

Eugene J.H. Kerckhoffs holds
an MSc-degree from Delft
University of Technology (1970,
Physical Engineering, thesis on
analogue and hybrid computer
simulation) and a PhD-degree
from the University of Ghent
(1986, Computer Science, thesis

on parallel continuous simulation). Currently, he is
an associate professor at Delft University of
Technology (Faculty “Information Technology and
Systems”, Department “Mediamatica”, Group
“Knowledge-based Systems”). He was also
chairholder of the SCS Chair in Simulation
Sciences at the University of Ghent, Belgium.

	c0: Proceedings 17th European Simulation Multiconference
(c) SCS Europe BVBA, 2003 ISBN 3-936150-25-7

