

MODELLING AND DISCRETE-EVENT SIMULATION OF COMPLEX
SYSTEMS USING RAINBOW

Angelo Furfaro, Libero Nigro, Francesco Pupo

Laboratorio di Ingegneria del Software

Dipartimento di Elettronica Informatica e Sistemistica
Università della Calabria, I-87036 Rende (CS) - Italy

Email: a.furfaro@deis.unical.it {l.nigro,f.pupo}@unical.it

Abstract: This paper describes a modelling language –Rainbow- based on Coloured Petri Nets, which was designed for modelling and
simulation of complex systems. The formalism uses Java as the net annotating language. The timing model permits different policies to be
associated with places which affect the token binding process. A graphical tool was achieved in Java which supports editing, debugging
and simulation of CPN models. Large models can be simulated on top of a Time Warp based distributed executor. The practical use of
Rainbow is demonstrated through a scalable simulation model.

Keywords: Modelling, simulation, complex systems, coloured Petri nets, Java

1. INTRODUCTION
Coloured Petri (CP) nets (Jensen 1992-98) are a well-known class
of high-level nets that extend ordinary Petri nets (Murata, 1988)
by allowing tokens to carry arbitrarily complex data, and arcs to
be annotated with input predicates (influencing the enabling of a
transition) or output functions (stating the production rule of
tokens when a transition fires). Declarations and net inscriptions
can be expressed by means of mathematical notations or by using
an ordinary high-level programming language.

The work described in this paper focuses on the development
of a CP-net dialect -Rainbow– which was especially designed for
supporting modelling and simulation of large systems, in a
centralized or distributed setting. Key features of Rainbow are:
• the use of Java as the net annotating language. Colour sets of

places, arc inscriptions and guards (of arcs and transitions)
can directly be programmed in Java

• a timing model which accommodates both unordered and
ordered places. Unordered places support classical non
deterministic token selection. Ordered places can work with
different token selection policies, e.g., FIFO-strict and FIFO-
random, which restrict the choice of tokens during the
binding process, on the basis of colours and time.

A totally portable Java-based graphical tool was achieved
which enables editing, debugging and simulation of Rainbow
models on a single workstation. A distributed executor based on a
Time Warp mechanism (Beraldi and Nigro, 2001)(Beraldi et al.
2002) was implemented which supports distributed simulation
over a networked system. Details of the distributed executor are
described in a recent paper (Furfaro et al., 2002b).

This paper summarises the Rainbow modelling language and
associated general timing model. The implementation status of the
project is then clarified. After that, a scalable simulation model,
together with some experimental results, are presented to
demonstrate the practical use of Rainbow. Finally, directions of
on-going work are outlined in the conclusions.

2. THE RAINBOW MODELLING LANGUAGE
The following provides a brief and informal description of
Rainbow. The formalism relies on Java as the net programming
language. With respect to similar modelling languages and tools
(e.g. Renew (Kummer et al., 2002)), types (classes), functions ad
so forth are expressed in Java and not using a syntax which

requires mapping and translation in Java. Rainbow hosts only
basic net constructs and focuses on time management.

2.1 Places
To each place is associated a class (colour set) whose instances
are the admitted tokens (or colours). Place classes are extensions
of the ColourSet base class. A few colour set classes,
corresponding to primitive data types, are predefined so as for
them to be immediately reused: ColourInt, ColourFloat, etc.
Tokens in a place form a multi-set. A parameterless initialization
function can be assigned to a place to provide its initial marking.

2.2 Arcs
Can be input or output. Input arcs connect places to transitions.
The input places of a transition constitute the transition preset.
Output arcs connect transitions to output places (transition
postset). Both input and output arcs can be annotated by arc
inscriptions, e.g. a variable or a function. More in particular,
input arcs are normally decorated by a variable, which will be
bound to a colour from the emanating place. In alternative, a
function can be attached to an input arc, checking for the
existence of suitable tokens in the relevant place of the preset.
Input arc functions can be replaced by arc guards. A guard is a
function which returns true if the token bound to the arc variable
satisfies a certain selection criterion. By default, guards evaluate
to true if missing. Output arc inscriptions regulate the generation
of tokens at transition firing. An output arc inscription can be the
same variable of an input arc, or a function which generates
specific output tokens.

2.3 Transitions
A binding element is a pair (t,b) consisting of a transition t and a
binding b. A binding is an assignment of values to all the
variables involved with the transition, i.e., the variables used in
the arc inscriptions relevant to the transition. Transition t is
enabled in a marking M if there exists at least a binding for t. A
guard can be associated with a transition for controlling the
binding/enabling process. For the transition to be enabled, all the
input arc and transition guards must evaluate to true. An enabled
transition can fire. Firing a binding element (t,b) withdraws
tokens from the preset of t according to the binding b, and
generates tokens in the postset according to the t output arc
inscriptions.

2.4 Timing aspects
A Rainbow model has a time notion (Jensen 1992-98) expressed
by the value of a global clock (model time). In addition, tokens
(i.e., colours) are time stamped. The time stamp of a colour
reflects its generation time. Time stamped colours are components
of timed multi-sets. The following is an example of a timed multi-
set:

{ } { }1@50 49@1][2' 1@52 2@50 49@1]['4 ba +

The multi-set has four tokens of colour a, one with time stamp

49, two with time stamp 50 and the last one with time stamp 52,
and two tokens of colour b respectively with time stamps 49 and
50.

To be acceptable, a binding element must be time enabled. A
binding element is time enabled if it is composed of ready tokens.
A token is ready if the global clock is greater than or equal to the
token time stamp. Normally, the choice among ready tokens in a
place is non deterministic (unordered place). Would there been
multiple ready tokens for a given binding element, any one such a
tokens can be selected to participate in the binding element. A
time enabled binding element is characterized by its enabling
time, i.e., the maximum value of the time stamps of the tokens
involved in the binding element.

The global clock is automatically advanced when no binding
element is time enabled at current time. In these cases, a binding
element with minimum enabling time is chosen and the global
clock adjusted to this value to ensure progress in model
behaviour.

As in Generalized Stochastic Petri Nets (Marsan et al. 1984),
Rainbow permits both timed and untimed (or immediate)
transitions to be used in a model. Binding elements involving
immediate transitions are always selected before binding elements
of timed transitions. Immediate transitions can be assigned
priority and probability values useful for conflict resolution
(Marsan et al. 1987)(Ferscha 1994). The set of binding elements
of immediate transitions having the highest priority is determined
in the first place. Then, the actual binding element is selected in
the set by a random choice according to transition probabilities.
Timed transitions are associated with a delay which affects the
generation of tokens at transition firing. Firing a transition t at
time τ is an instantaneous event whose effect is the creation of
tokens in the postset of t, all time stamped with the value
τ+delay. The delay of a timed transition can be deterministic or
stochastic. A delay function can be attached to a timed transition
in order to constrain the delay value on the basis of the selected
binding.

2.5 Token selection policies
The set P of places of a Rainbow model is partitioned in two
subsets: P=rP∪ oP, where rP denotes a set of classical unordered
(or random) places, oP is a set of ordered (or queue) places
(Bause 1993)(Poses). In an ordered place colours are ranked by
ascending time stamps.

One of different token selection policies can be associated to
an ordered place: FIFO-strict, FIFO-random, LIFO-strict, LIFO-
random. According to FIFO-strict, a binding element with a queue
place can only occur with tokens at the queue’s head (oldest
tokens). FIFO-random flexibly allows a binding to occur with the
first matching colour starting from the head of the ordered token
list. In a similar way are defined the LIFO-strict and LIFO-random
policies which visit the token ordered list starting from the
youngest tokens.

FIFO policies are the most natural in many simulation models.
Figure 1 shows a typical scenario. Place W contains tokens

representing units of work, which are assigned for processing to a
given machine. Each machine can process one unit of work at
time. For simplicity, the colour of a unit of work coincides with
the corresponding machine number. Place M holds the machines
available at current time. Transition tprocess models the task of a
machine which processes a unit of work. Near to each place is
indicated its current marking. The global clock is assumed to be
10. Finding a binding for tprocess means binding a machine colour
to variable m so that the function f(m) returns a colour which is
contained in W. For the purposes of the example f(m) can be the
identity function: it just returns a colour from W equal to its
argument. Function f(m) could be replaced by annotating the arc
W-tprocess with a variable, e.g. n, and introducing a transition guard
which checks that n and m are corresponding colours. Table 1
depicts the available binding elements at current time under FIFO
and/or Random policies.

Figure 1. A typical scenario for token selection policies

W-Rand, M-Rand

b1: {m1@3}W {m1@10}M, enabling time: 10

b2: {m1@5}W {m1@10}M, enabling time: 10
b3: {m1@6}W {m1@10}M, enabling time: 10
b4: {m2@10}W {m2@7}M, enabling time: 10

W-FIFO-Strict,
M-Rand (or FIFO-Rand)

b1

W-FIFO-Rand,
M-Rand (or FIFO-Rand)

b1, b4

Table 1. Binding effects when applying different token
selection policies

If the Random policy is adopted for both W and M places, four
binding elements as possible for tprocess. In particular, two bindings
can be fired, one at a time and in any order: one chosen among b1,
b2 or b3, and the other being b4. Generated tokens are controlled
by the arc function g(m). All such tokens are time stamped by
10+δ(tprocess), where δ(tprocess) is the (estimated) delay of tprocess.
The two firings occur at the same time horizon (global clock=10)
to express the parallelism (infinite server semantics (Ferscha,
1994) of tprocess) with which physical machines (e.g., m1 and m2)
process distinct units of work.

The random policy does not force tokens in W or M to be
processed according to their arrival time. Constraining work units
to be processed in the arrival order is the responsibility of FIFO
policies. However, FIFO-Strict for W would forbid, at current
time, to fire other bindings except but b1. In addition, if the m1
colour in M is ready at a time greater than the global clock, no
binding would then be available at current time for tprocess,
although machine m2 is ready from time 7 and b4 is potentially
ready for firing. FIFO-Random for W and Random or FIFO-
Random for M, would constrain machines m1 and m2 to process
the available units of work having minimum time stamp (see b1
and b4 bindings).

The design of the timing model of Rainbow purposely
separates time management from functional aspects of a net model
captured by arc inscriptions. From this point of view, an input arc

1’[m1]{1@10}+
1’[m2]{1@7}+
1’[m3]{1@15}

W M

m f(m)

g(m)
tprocess

4’[m1]{1@3 1@5 1@6 1@16}
+1’[m2]{1@10}+1’[m3]{1@8}

global clock=10

inscription can only express requirements for colour selection.
The use of token time stamps and the system time advancement
rule are under implicit control of the underlying executor which
has responsibility in applying place selection policies.

3. IMPLEMENTATION STATUS
An implementation of Rainbow was achieved in Java through a
graphical tool. The following are some points of the developed
tool:

• it allows editing, debugging, simulation and analysis of CPN

models. Both step-by-step execution and checkpoints (e.g.,
desired markings in selected places) are supported

• it hosts both coloured and non coloured nets. Non coloured
nets rest on tokens which consist of the time stamp only

• it allows graphically to distinguish between unordered
(default) and ordered places (split circles). A property of an
ordered place concerns its selection policy

• it hosts an executor which is devoted to sequential simulation
of a model. The executor uses Java reflection for accessing
and invoking user-defined model functions.

Distributed simulation of a Rainbow model can be required by

the computationally very expensive (in time and space) task
involved with binding element processing. The critical factor is
binding calculation. Building the bindings corresponding to a
transition t requires in general exhaustively enumerating all the
possible assignments of values (according to colours and time
stamps available in the preset of t) to variables involved with t. A
variable can be used alone on an arc or as a function parameter of
an input or output arc of t. The same value of the variable must
consistently be used in all its occurrences in a binding. Binding
calculation is responsible for identifying all the candidate
bindings existing at current time for any transition. Among
alternative bindings, a random choice eventually selects the
binding to fire. Ordered places and associated token selection
policies obviously can speedup the relevant binding calculation
process, since they restrict the possible proposed bindings.
Distributed simulation is currently dealt with externally to the
Rainbow graphical tool and depends on a specialized version of
the executor built on top of an agent-based Time Warp mechanism
(Furfaro et al., 2002b). Key points of the distributed executor are
the following:

• it allows a large model to be partitioned into a collection of

subnets/LPs allocated for execution one per physical
processor of a networked system. The Rainbow tool makes it
possible to visually decompose a net model into cuts and to
save them on disk as part of the model data representation.
Actually, model data representation can be archived
according either to standard Java serialization or XML and
associated DTD. The model data representation is parsed by
a director agent which configures and controls the distributed
simulator

• it benefits from the features of Temporal Uncertainty Time
Warp –TUTW- (Beraldi and Nigro, 2001)(Beraldi et al.,
2002) which permits temporal uncertainty to be exploited in
general distributed simulations. TUTW adopts an event
delivery strategy where the occurrence time of an event is
specified by a time interval and not a punctual timestamp.
All of this augments the model event parallelism (events
having overlapping time intervals are concurrent) and has the
potential of improving the simulation performance since the
control engine is given some flexibility in the event
resolution, i.e., choosing the actual time stamp of events at
dispatch time. Temporal uncertainty allows to relax in part

the synchronization constraints. TUTW, though, is able to
keep causality among concurrent events using Lamport
“happens-before” relationship. For many simulation
applications, experiments have shown that TUTW is capable
of improving performance of the distributed simulator with
respect to the case temporal uncertainty isn’t used, without
necessarily compromising the accuracy of the results.

4. A SIMULATION MODEL
The following describes a complex and scalable simulation model
with the goal of illustrating the practical use of Rainbow and its
graphical tool. The model is based on a non coloured TPN model
proposed by Zuberek (Zuberek, 1999)(Zuberek, 2002) for
studying the influence of long-latency memory accesses in
distributed-memory multithreaded multiprocessors (DM-MM).
The simulation model was actually experimented for exploring the
effects on the cpu utilization of component heterogeneity vs
locality of memory references. All of this can be accomplished
without changes in the model topology.

4.1 A multiprocessor multithreaded model
A DM-MM system with nxn processors (or nodes) interconnected
by a bi-dimensional torus-like switching network is assumed (see
Figure 2). Each processor can communicate directly with its four
neighbours. An outline of the node architecture is portrayed in
Figure 3).

Each node has a local memory and two network interfaces
allowing concurrent send/receive operations. Any processor can
issue a memory request which can be directed to local memory or
to the memory module of some remote node, which can be
reached through the interconnecting network according to a
suitable path, e.g., one with shortest distance. Through the
outbound interface is routed all the outgoing traffic concerning
remote memory requests originated in this node, or the results of
memory operations asked by remote processors to the memory
module in this node. Through the inbound interface occurs all the
incoming traffic consisting of remote originated requests to the
memory of this node, as well as the results of remote request
operations which come back to the originating nodes.

Each processor has a queue of ready threads. Whenever a
long-latency memory operation is started at this processor, a
context switch is accomplished as follows: first the current thread
is suspended, then the memory operation is forwarded to the
relevant memory module (local or remote); finally, processor
execution is resumed by selecting another thread, if there are any,
from the ready queue, and transferring the control to its next
instruction. When the result of this memory request is received,
the corresponding thread changes its status from “suspended” to
“ready” and it is added to the ready queue waiting for dispatch.

4.1.1 Model parameters
The runlength of a thread, lt, represents the number of
instructions executed, on the average, between context switches.
This parameter is directly related to the probability that an
instruction raises a long-latency memory access. Two other
important parameters are p

l
 and pr=1-p

l
, that is respectively the

probability that a memory access is to local memory or is directed
to a remote memory node.

The values of p
l
 and pr control the amount of switching

network traffic and congestion vs local node memory accesses.
Finally, the (average) number of available threads, nt, influences
the utilization of system components and the overall system
performance. In the Rainbow model of Figure 4, the value of this
parameter is assumed to not change with time.

Figure 2. Switching network

Figure 3. Node architecture

Figure 4. A DM-MM Rainbow model

4.1.2 A DM-MM Rainbow model
The model shown in Figure 4 is logically organized into four
sections: a processing subnet (places p0 to p4 and p16, transitions
t0 to t4), a memory subnet (places p6 to p9 and p15, transitions
t5, t6 and t13), a switch subnet (places p9 to p14, p7 to 19,
transitions t7 to t12, t14), a statistics subnet (place p15 and
transition t15). Component replications in the physical system
(Figure 2) are achieved by colour replications in the fixed model
topology. For instance, all the available processors are initially
represented by colours fed to place p0 (also named Proc).
Similarly, all the threads in the ready queues of the various
processors are mapped on to colours in the FIFO-Random place p4
(or Ready), all the switch board colours are kept in p13 and p14

places and all the memory modules are represented by colours in
the p8 (Memory) place. Scalability of the model is automatically
ensured by adjusting the initial number of colours in places p0,
p4, p8, p13 and p14.

When a processor is available in p0 for processing a thread
from p1, a thread token is generated in p2. Transition t3 (Trun)
simulates the execution of one instruction. Its delay is 1. All other
delays in the model are expressed in terms of number of
instructions. Thread execution is simulated by the loop p2-p16-p4
and transitions Trun, t15 and Tnxt. Transition t15 serves only for
statistical purposes. At each firing of t15 (or equivalently of Trun)
the counter in p5 gets incremented. Place p4 is a free-choice.
Immediate transitions Tnxt and Tend represent respectively the

Inbound
Interface

Outbound
Interface

Interconnecting
Network

Ready
Queue Processor

Memory
Queue Memory

execution of a non memory accessing instruction or a memory
request which implies a context switch. In the latter case, a
processor token is deposited in Pcsw (or p3) with the timed
transition Tcsw modelling the actual thread context switch. At the
end of the context switch the processor becomes again available
for processing the next thread from its ready queue. Probability of
Tnxt (and then of Tend) mirrors the (average) runlength of a
thread.

Place Mem (p6) is a free-choice. Immediate transitions Tloc
and Trem represent respectively an access to local memory or an
access to the memory module of a remote processor. The
probability of Tloc (and then of Trem) captures the locality of
memory accesses vs remote memory accesses. Local requests are
held in the FIFO-Random place Lmem waiting for the memory
(place Memory or p8) to be available. An actual memory operation
is modelled by Tlmem timed transition. Remote thread requests
are maintained in the Rmem place and served by Trmem timed
transition. Firing frequencies of Tlmem and Trmem are function of
token multiplicity respectively in places Lmem and Rmem. After
being served, a remote thread request is routed into Rem for it to
engage the coming back to home path through the interconnection
network.
 The outbound/inbound interfaces of processor nodes are
respectively modelled by Tsout and Sout and Tsinp and Sinp. The
switching network is represented by places Out and In and
transition Switch. A remote memory request which has been
transmitted through the switch is received in the Dec place from
which it can proceed (next hop) in the network (transition Tgo), or
it just arrived at the destination node (Tmem transition) or at its
home node (transition Tret). In the physical system such decision
depends on the current position within the transmission path
toward the target node which is the remote node during forward
movement or the home node during backward movement.
The design of the DM-MM model was driven by the desire to
reproduce “as close as possible” the behaviour of the actual
system. This in turn motivated the adoption of FIFO-Random
policy for ordered places Ready, Rem, In, Lmem and Rmem, and
the introduction of suitable colour sets and arc inscription
functions. For brevity, the following only provides an informal
description of colour sets and arc functions. The colour set is
indicated at the left of a place in Figure 3.

A processor is encoded by its id (an int colour). A thread
keeps the processor number to which it is assigned (ThreadP
colour set) and the time at which it enters the ready queue. A
Memory colour is identified by its processor number too. A long-
latency memory request is modelled by a RemoteThread colour. A
remote thread moves along the network and carries such
information as: the originating processor, the destination
processor, shortest_path to destination, and current processor
position in the switching network. The path to destination is
concretely expressed by the number of hops to be taken
respectively at North, East, South and Ovest from current
position. The localToRemote function of arc Trem-Rem transforms
a local thread into a remote thread by choosing a destination node
and a path to follow for reaching it. The remoteToLocal function
on the arc Tret-Ready converts a remote thread to its local
representation. The selPort function selects the in/out switch port
of the current processor a remote thread is passing through. It is
ensured that Tsout and Tsinp have a single server semantics.

The choice among Tmem, Tgo and Tret transitions from Dec,
is made by checking current position of the remote thread. In the
case of an intermediate position, the hop function on the arc p19-
Tgo enables Tgo and the thread proceeds for a next hop in the
interconnection network. Similarly, destination function on p18-
Tmem and home function on p17-Tret respectively enable Tmem or
Tret in the case the current position of the remote thread coincides

with the target node (destination or home node). Only one
transition among Tret, Tgo and Tmem can be enabled at a same
time. Places p17, p18 and p19 hold a boolean colour which always
is true. Only in the case the corresponding checking function
(home, hop or destination) returns the true colour is the transition
enabled. After a firing of Tret, Tgo or Tmem, the true colour is
reconstructed in its corresponding place.

The switch function on the arc Switch-In is responsible of
updating the current position of a remote thread after a hop.
The localToLocal function on the arc Tlmem-Ready, saves in the
thread token the time when it was generated (its time stamp) by
Tlmem. Such information allow estimating thread waiting time in
the ready queue.

Functions selMem on arc Memory-Tlmem and selMemRemote
on arc Trmem-Memory select the memory colour of the processor
respectively specified by local or remote thread. It is ensured that
a memory module is always handled according to the single server
semantics.

The NetworkDelay function attached to Tsout and Tsinp
transitions is an example of a function which can set the delay of a
timed transition according to model parameters. The function
receives as an argument the number of switching boards which are
assumed to be of low speed. NetworkDelay provides the context
for a customization of the built-in getDelay function which in the
case of Tsout and Tsinp was redefined in order to receive the
remote thread selected from Rem. getDelay can thus regulate the
actual delay of Tsout or Tsinp according to the managed remote
thread, and its current position.

4.1.3 Simulation experiments
The DM-MM model was experimented in a case for evaluating
the influence of component heterogeneity on the cpu utilization vs
the probability of local/remote memory accesses. Heterogeneity
can occur in the computing power, switching board and memory
module of processors. In the following, for demonstration
purposes, some executions carried out by considering only switch
heterogeneity are reported. Different runs refer to varying the
amount of node switches which introduce additional
communication delays. A low speed switching board is assumed
to double the transmission delay.

Figures 5 to 7 depict the estimated model cpu utilization for a
DM-MM with 16 processors, and a probability p

l
 that a memory

access is local (see transition Tloc in Figure 3) respectively of 0.4,
0.6 and 0.8. In the experiments, the simulation time was 104, the
thread number nt was varied from 2 to 10, and the number of low
speed switching boards was varied from 0 (homogeneous case of
high speed boards) to 16 (homogeneous case of low speed
boards). Moreover, the runlength of threads was set to 10
(probability of Tnxt 0.9 and of Tend 0.1).

Figures 5 to 7 confirm that the critical factor on the cpu
utilization is the p

l
 value. When p

l
 is 0.8 a good cpu utilization is

achieved even when processors are loaded with a small number of
threads.

5. CONCLUSIONS

Rainbow is a formalism based on Coloured Petri Nets (Jensen,
1992-98). It was designed for supporting modelling and
simulation of complex systems. Prototyping tools were achieved
which allow to experiment with simulation models both in a
centralised and a distributed framework on top of a Time Warp
mechanism (Beraldi and Nigro, 2001)(Beraldi et al., 2002). A key
factor of the Rainbow project is the adoption of Java both as the
net annotating language and as the tools implementation language.
All of this simplifies the use of the modelling language and makes
the achieved tools totally portable almost on every platform.

Figure 5. Cpu utilization, 16 processors, p
l
 =0.4

Figure 6. Cpu utilization, 16 processors, p
l
 =0.6

Figure 7. Cpu utilization, 16 processors, p
l
 =0.8

On going and future work is geared at
• optimising the Rainbow executor by improving the binding

calculation process which critically affects the simulation

performance. From this point of view the aim is to replace
the actual linked-list representation of colour multi-sets in
places by more efficient data-structures and algorithms
(Mortensen, 2001)

• extending the graphical tool with aspect-oriented features
(CACM, 2001)(Furfaro et al., 2002a), i.e., the possibility of
adding to a model a crosscutting specification (monitor)
useful for monitoring and analysing the simulation (Wells,
2002). A monitor would catch selected event occurrences in
the model and make necessary book-keepings for statistics
computation. Aspect-oriented monitors would be
transparently attached to a model by avoiding explicit
subnets for statistical computations to be introduced

6. REFERENCES
(Bause, 1993) F. Bause. Queuing Petri Nets: A formalism for the combined

qualitative and quantitative analysis of systems. Proc. of the Int.
Workshop on Petri Nets and Performance Models, pp. 14-23,
Tolouse, October, 1993.

(Beraldi and Nigro, 2001) R. Beraldi, L. Nigro. A time warp mechanism
based on temporal uncertainty. Transactions of the Society for
Modelling and Simulation International, 18(2), June, pp. 60-72,
2001.

(Beraldi et al., 2002) R. Beraldi, L. Nigro, A. Orlando, F. Pupo. Temporal
Uncertainty Time Warp: An agent-based implementation. Proc. of 35th
Annual Simulation Symposium, 14-18 April, San Diego, CA, pp. 72-
79, 2002.

(CACM, 2001) Communications of the ACM. Aspect-oriented programming.
44(10), pp. 29-99, October, 2001.

(Ferscha 1994) A. Ferscha. Concurrent execution of timed Petri nets. Proc. of
1994 Winter Simulation Conference (WSC94), Lake Buena Vista,
Florida, USA, pp. 229-236, 1994.

(Furfaro et al., 2002a) A. Furfaro, L. Nigro, F. Pupo. Aspect oriented
programming using actors. Proc. of 22nd IEEE Int. Conference on
Distributed Computing Systems Workshops, Aspect Oriented
Programming for Distributed Computing Systems (AOPDCS 2002),
Vienna, Austria, 2-5 July, pp. 493-498, 2002.

(Furfaro et al., 2002b) A. Furfaro, L. Nigro, F. Pupo. Distributed simulation
of Timed Coloured Petri Nets. Proc. of Sixth IEEE Int. Workshop on
Distributed Simulation and Real-Time Applications (DS-RT 2002),
11-13 October, Fort Worth (Texas), IEEE Comp. Society, pp. 159-
166, 2002.

(Jensen et al., 1996) K. Jensen, S. Christensen, P. Huber and M. Holla.
(1996). Design/CPN. A reference manual. Computer Science
Department, University of Aarhus. Online:
http://www.daimi.aau.dk/designCPN/, 1996.

(Jensen, 1992-98) K. Jensen. Coloured Petri Nets - Basic concepts, analysis
methods and practical use. Vol. 1, 2, 3. EATCS Monographs on
Theoretical Computer Science. Springer-Verlag, 1992-98.

(Jensen et al., 1996) K. Jensen, S. Christensen, P. Huber and M. Holla.
Design/CPN. A reference manual. Computer Science Department,
University of Aarhus. Online: http://www.daimi.aau.dk/designCPN/.

(Kummer et al., 2002) O. Kummer, F. Wienberg, M. Duvigneau (2002).
Renew-User Guide. http://www.informatik.uni-hamburg.de/TGI/
renew/renew.html.

(Marsan et al., 1984) M.A. Marsan, G. Balbo, G. Conte. A class of
generalized stochastic Petri nets for the performance evaluation of
systems. ACM Transactions on Computer Systems, 2(2), pp. 93-122,
1984.

(Marsan et al., 1987) M.A. Marsan, G. Balbo, G. Chiola and G. Conte.
Generalised Stochastic Petri Nets revisited: random switches and
priorities. In Proc. of the 2nd Int. Workshop on Petri Nets and
Performance Models, pp. 44-53, IEEE-CS Press, 1987.

(Mortensen, 2001) K. H. Mortensen. Efficient data structures and algorithms
for a coloured Petri nets simulator. In: Kurt Jensen (Ed.): 3rd
Workshop and Tutorial on Practical Use of Coloured Petri Nets and
the CPN Tools (CPN'01), pp. 57-74. DAIMI PB-554, University of
Aarhus, August 2001.

(Murata, 1989) T. Murata. Petri nets: properties, analysis and applications.
Proceedings of the IEEE, 77(4), pp. 541-580, 1989.

(Poses) Poses on-line: http://www.gpc.de
(Wells, 2002) L. Wells. Performance analysis using Coloured Petri Nets.

Proc. of MASCOTS 2002, 11-16 October, Fort Worth (Texas), pp.
217-221, 2002.

(Zuberek, 1999) W.M. Zuberek. Performance modeling of multithreaded
distributed memory architectures. Proc. of 2nd Workshop on Hardware
Design and Petri Nets, Williamsburg, VA, pp. 63-82, 1999.

(Zuberek, 2002) W.M. Zuberek. Approximate simulation of distributed-
memory multithreaded multiprocessors. Proc. of 35th Annual
Simulation Symposium, 14-18 April, San Diego, CA, pp. 107-114,
2002.

0 2 4 6 8 10 12 14 16
2

6

100

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

cp
u

ut
ili

za
tio

n

nr of low speed io boards

nr of threads

0 2 4 6 8 10 12 14 16
2

6

100

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

cp
u

ut
ili

za
tio

n

nr of low speed io boards

nr of threads

0 2 4 6 8 10 12 14 16
2

6

100

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

cp
u

ut
ili

za
tio

n

nr of low speed io boards

nr of threads

	c0: Proceedings 17th European Simulation Multiconference(c) SCS Europe BVBA, 2003 ISBN 3-936150-25-7

