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Abstract: The neuro mechanical network consists of a large number of one-dimensional elements connected into
a topological graph of intelligent actuators in 2 or 3 dimensions. This forms a self actuating mechanical network
that can be trained to perform certain tasks. In the analysis and training of such networks the time domain
simulation of the network performance becomes important. Even though the basic components hardly exist in
hardware at present, the study of such networks gives us interesting models to design and analysis the mechanisms
of the near future using current technologies and engineering tools. The neuro mechanical network has a meaning
also at a micro or even macro level in order to realize highly robust flexible actuator systems. Another potential
use is for design of more conventional system, requiring a minimum of components. Furthermore it can be used
as an explanatory model for some of the mechanics found in very complex biological systems, e.g. heart muscles.
The key to success in design such networks will be the training of the neurons handling the information propa-
gation through the structure. To be able to evaluate its dynamic behaviour, time domain simulation techniques
are used. Some preliminary results of such simulations and their general implementation are presented in this
paper.
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1. Introduction

By studying the body tissues of humans and an-
imals one get a clear view of its cellular structure.
Also muscle fibres reveals a ordered pattern of fi-
bres, beneficial for its primary function or load di-
rection. The structures in nature are built up by
small basic elements that form a larger functional
component. This might become the concept of fu-
ture manufacturing technologies as well. Layered
manufacturing and 3D-printing machinery is exam-
ples of that.

Several different types of basic elements might
be used to form a working structure and by the
mixture of different kinds of elements one get multi
functional components that reflect the basic char-
acteristics of the foundation elements. This is in-
deed an interesting approach to future mechani-
cal design. However, it is still difficult to analy-
sis the properties of a system or network of such
elements, even if the overall structure has a gen-
eral behaviour that is easy to model. The inter-
nal interaction among all elements may be hard to
solve in detail. Computer tools for such analysis are
needed. In fact the computer selection, simulation
and optimization tools are essential to the develop-
ment of selforganizing structures. In the same way
that nature has evolved the designs of all spices,
future computer tools will be able to select and
evolve the interior of self actuating structures of

advanced complex robots and machinery. This sce-
nario is sometimes analogues to VLSI design within
the field of electronics, where most of the present
highly integrated designs would not exist without
computational tools for both analysis and synthe-
sis.

1.1. Project Presentation. This project, called
Neuro Mechanical Networks (NMN), tries to evalu-
ate the properties of such networks for use in engi-
neering systems design, [3][8]. In figure 1 is a simple
layout of a neuro mechanical network presented. In
general, the used approach introduce an actuating
element containing several energy conversion pro-
cesses and sensing capabilities, see section 2.3. By
establishing software for simulation, selection and
training of the neuro mechanical network one get
an engineering tool that support the future study
of the application of the network, its topology, and
the characteristics of the building elements.

It is worth to emphasize that this work relates
to the computational synthesis of systems of large
numbers of small elements. Similar structures have
been studied in statistical mechanical since the late
eighties [4][6]. However, in this work entropy stud-
ies of the general behaviour of the network of ele-
ments is not studied, even though that is most likely
interesting for the understanding of neuro mechan-
ical networks.



Figure 1: This is a typical layout of a neuro mechanical network.
The spheres represent the nodes and the rods represent actuators.
The topology is never changed during simulation.

Figure 2: An idiomatic figure of a general actuator. It contain sig-
nal processing, sensing capabilities and energy conversation processes.
Even though this is an element of the future it is most interesting to
study for the understanding of more conventional designs.

The computational tools for this development
process may use formal algebraic methods or op-
timizing functionality to fulfil the goal of the de-
sign. This is similar to electronics design tools
making use of both analytical tools for circuit lay-
out and different kinds of optimizing strategies for
handling non-linearity phenomena and dynamics.
The creation of mechanical actuation systems may
in the future be dependent on small engineering
elements in large numbers and computational syn-
thesis tools. Such tools need to be able to config-
ure the neuro mechanical network both in terms of
topology and dynamical behaviour.

2. The Geometry of Neuro Mechanical

Networks

The neuro mechanical network consists of a sim-
ple actuating element that performs either posi-
tional actuation, like a position servo, or a force
actuation similar to a spring. In [3] a position servo
approach has been adopted. This paper describes
the force actuating approach.

Each actuator can be looked upon as a spring
with and actuating element. Also a damping el-
ement is included. By tuning the basic proper-
ties of each actuators such as stiffness, actuation
and damping one get a tool for creating more ac-
tuated bone-like structures with internal damping
domains that dissipative energy from the system.
The general layout of such actuator is shown in fig-
ure 2. The tuning process becomes very complex
and computer power demanding. A tuning process
that is similar to the selections of the fittest in na-
ture is currently under study. There are several
possible ways of tuning the individual actuator be-
haviours. In this work we use neural networks in ev-
ery node controlling the actuation of every attached
actuator. The actuator itself also has a neural net-
work to balance the signals from each of its ends.
The inputs to the neural network in the nodes are
the actual actuation displacement of each actuator.
The signal propagation velocity then becomes the
same as the actuation velocity. The signal propa-
gates with the same speed through the network as
a mechanical wave of displacements in the actua-
tors. This approach gives us one important benefit:
It improves the numerical stability in the time do-
main simulation of the system. Another interest-
ing approach uses the forces in the actuators as in-
puts to the nodes. This provides us with the ability
to tune the actual rim or border of the neuro me-
chanical network. An actuator that has been tuned
to no longer provide any force, having a low stiff-
ness coefficient, does not transfer signals anymore.
Therefore, the signal routes become consistent with
the active mechanical structure and cavities in the
structure may emerge in a natural way. The flow of
signals is schematically shown in figure 3. By com-
bining both displacement and force of the actuators
into the neural networks of the nodes further gener-
alization may be achieved. It is important that the
time-domain simulation technique used supports all
the proposed synapses of the neural network. That
includes actuation length, sensors, position of el-
ements and general signal fields. The trapezoidal
integration rule for numerical integration seems to
provide a good foundation for such requirement.
In its most general form it may be formulated as in
equation 1.

(1)

F [(n + 1)T ] = F [nT ] +
T

2
(f [(n + 1)T ] + f [nT ])

Notice that the actuating and damping element
most likely produces energy conversion products
like heat or gases. These rest products need to be



Figure 3: The general signal flow for controlling the neuro mechanical
network. A signal is provided at the 0 node. The number in the node
represents the time delay of the signal. Some of the actuators have
just collapsed into a small line, unable to support any forces. Notice
that no signals are routed through them.

transported away from the area. At the same time
energy is required to be supplied into the system.
These requirements for transport may either be in-
side the structure or parallel to it. This finding
indicates a clear geometric dependency of the de-
sign problem. The actuator may not be modelled
as a scalar symbolic element. Instead it needs to
have length, thickness and position in space. The
most general approach to an element finite in space
will be the one-dimensional actuator connected at
its ends towards other actuators. The connection
may be free of friction and not supporting torque.
The connecting joints will also host some of the
controlling electronics for the neural signal propa-
gation. By forming these simple actuators into a
network we get a mechanical structure with large
number degrees of freedom. The tuning of the actu-
ators then becomes an engineering task making use
of many traditional engineering disciplines in a new
integrated way: the task is to make all these actua-
tors respond to the environment and input signals
in order to achieve some predefined objective. The
time domain simulation technique becomes a natu-
ral choice for predicting the behaviours of a certain
neuro mechanical network. One may compare this
to our arms, which contain thousands of muscle fi-
bres and still only have a few degrees of freedom.

2.1. Time domain simulations and optimiza-

tions. The application of time domain simulations
for training the neurons is studied in this work.
We also assume that the network perform some dy-
namic task like actuation or movement. Any static
or quasi-static performance of the network will not
be analyzed here. However, such analysis may very
well be efficient and beneficial to the engineering
process of tuning the neuro mechanical network.

Figure 4: Example of a goal function and its direct relation to the
structure. The network is trained to move along the x-axis. The
wimple objective then becomes to maximise the x-coordinate of the
centre of gravity for the structure.

Such tuning will most likely rely upon algebraic
methods and not relying on numerical algorithms.

A goal function is needed for designating a figure
of merit on the actual configuration of a network.
Since there are so many degrees of freedom, the goal
function is formulated closely to the desired task of
the network and not as an objective for each ac-
tuator. An example of that is shown in 4 where a
desired movement along a certain direction is repre-
sented by the x-coordinate for the centre of gravity
for the whole structure. The goal function then be-
comes very easy to formulate, it is simply to max-
imise the x-coordinate of the system. However, for
large numbers of degrees of freedom this results in
a huge set of possible solutions. There are several
possible ways of dealing with this problem. One
previously studied is the dimensional reduction of
geometric models, especially triangular meshes [7].
Hierarchical geometric models created by applying
simple rule sets may also be used. This is similar
to cellular automata. In this work genetic algo-
rithms have been selected in the first test designs
of neuro mechanical networks. Its general charac-
teristics seem to be beneficial to the design process
at the current stage of the project. However this
leads to a need for very large computational power.
Other techniques may very well be used for network
training. Still, in all possible approaches for train-
ing the network, a short simulation time becomes
essential since each selection step may require thou-
sands of simulations.

2.2. Neurons. The neurons of the network, both
in the actuator and in the connecting nodes, are
defined by the well known sigmoid function [2][1],
see equations 2 and 3. s0 in eq. 3 represent the
input offset.

(2) f(SN ) =
2

1 + e−λ(SN−Θ)
− 1



(3) SN =
N

∑

n=0

snwn

Since the mapping of the neural network is di-
rectly related to the topology of the mechanical ac-
tuator network we often get a neural network that
is recurrent, signal may very well propagate in a
cyclic way through the network. This could lead to
standing waves in the structure, a kind of muscular
limit cycle. The limitation of signal propagation
speed then becomes important for the stability of
the network.

2.3. Actuator. Here, the actuator is described by
a rod having a certain stiffness K, parallel to an
activation element FA that can introduce a force in
either direction. The relative motion between the
ends of the rod is damped by a damping element
B. The stiffness is separated into two springs, one
attached at each nodes of the actuator. However, in
this work the stiffness and damping properties are
moved into the nodes for numerical reasons. This
simplifies the simulation algorithm used.

The actual displacement of the actuators is used
as neuron inputs to the neural networks in the nodes.
There is no limitation in actuation length of the
actuators. However, to support the neural network
with a well defined input signal from the actua-
tors, displacements, are normalized against a pre-
defined individual nominal actuation length. Typi-
cally, values of 80% to 100% of the initial length of
the actuator have been used. This means that an
actuator is supposed, but not limited, to work only
in the range of 50% to 150% of the initial length.

2.4. Nodes. The nodes contain the major part of
the simulation task and it represents the mass of the
system. All forces from the actuators are summed
up to form a total force vector for each node. This
vector is then integrated twice to get the new up-
dated position of the node. The trapezoidal rule
is used for integration, see equation 1. The trape-
zoidal rule for integration has a special interpre-
tation in transmission line modelling [5] in that it
represent the time delay for a wave travelling from
one end to the other of a inertial element. In this
case it can be simplified even more if all summa-
tion is done using the same T of equation 1. We
assume that all signal propagations between nodes
takes the same time, independent of distance. The
assumption is motivated by the fact that the sim-
ulations are not primarily used for obtaining the
most accurate physical behaviour, but used merely

for selection and comparison between different sim-
ulations in an optimization scheme.

As in [5] the boundary conditions for the wave
propagation elements is represented by character-
istics of the form shown in equation 4 and 5. Nor-
mally the c and Z parameters are provided into the
simulation component and the effort e and flow f

are then solved for. In this work, however, the ac-
tuators are just calculating their length. The force
acting upon the node is calculated by the node it-
self by using its current velocity and position. This
approach gives us a numerical integration scheme
that is computer memory linear. All calculations
are done from two sequential lists of primitives, the
actuators and nodes. This will improve the com-
putational speed of the application. The memory
storage requirement is also reduced since there is
no need to save the c and Z variables, which sim-
plifies even further the proposed numerical scheme.
However, one should remember that the proposed
simulation scheme does not represent an accurate
physical model since the dynamics of the system
becomes dependent upon the number of nodes and
simulation time step.

(4) e1(t) = Z [f1(t) + f2(t − T )] + p2(t − T )

(5) e2(t) = Z [f2(t) + f1(t − T )] + p1(t − T )

Therefore the simple integration of the velocity
and positional states of the nodes becomes as in
equation 6 and 7.

(6) ẋn = ẋn−1
T

2
[ẍn + ẍn−1]

(7) xn = xn−1
T

2
[ẋn + ẋn−1]

The acceleration ẍ is defined by the mass m of
each node and the summed force Fn.

2.5. Numerical stability. As said before, it is ben-
eficial for the computational efficiency if the simu-
lation algorithm has a linear memory layout. This
can be achieved almost completely by introducing
some approximations to the time domain simula-
tion model. Let assume that the node are described
by the following equation of momentum.

(8) FA − Kx − Bẋ = mẍ

This may be transformed into the frequency s-
plane.



Figure 5: The general layout of actuators and nodes in the proposed
simulation algorithm. Notice that the actuators do not include any
dynamics.

(9) FA − KX − BsX = ms2X

In solving equation 9 it becomes necessary to
handle the numerical stability in a sensible way and
at the same time keep the computational efficiency
up. The proposed way of doing that tries to esti-
mate an upper limit of the stiffness and damping
factors for each node in the neuro mechanical net-
work. The actuator stiffness may be defined in a
traditional way.

(10)
∆FA

∆X
K = 1 +

B

K
s +

m

K
s2 = 1 +

2δ

ω
s +

s2

ω2

Assuming optimal damping, that means real-
valued roots to the polynomial in 10 we get an ex-
pression for Bopt.

(11) Bopt = 2
√

Km

Even though the system might refers to a phys-
ical layout we apply a damping factor of Bopt to
improve the numerical stability .The damping fac-
tor is applied in all dimensions of the nodes coor-
dinates.

The actuators is attached to nodes by springs,
see figure 5, that represent the stiffness of the ac-
tuator or rod connecting between two nodes. The
worst case in terms of stiffness for all possible con-
figurations of actuators and nodes is when all actu-
ators lines up in one direction. A damper is intro-
duced in every nodes origin in each coordinate di-
rection. Normally we get one, two or three dampers
in an orthogonal arrangement. The least damped
system will be found when all actuators of a node
are aligned to a coordinate axis. Notice that the
damping is not applied in the actuators themselves
but directly at the nodes. The K in eq. 11 refers
to the total stiffness of all attached actuators of a
node.
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Figure 6: The number of actuators, AN , scales almost linear with the
number of nodes, N .
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Figure 7: The number of design variables follows the number of con-
nectors quite well, see figure 6. Still it is a function of topology, nodes
and connectors.

Another important factor for stability is the time
step T for the numerical integration. As the trape-
zoidal rule has a complete stability region the ex-
pression for the maximum T to marching the state
integration becomes as follows.

(12) Topt ≤ min
N

[

π

√

m

K

]

The two limiting values of Bopt and Topt may
preferable be updated before the first time step of
each simulation. This requires the stiffness K of
each spring in the nodes to remain unchanged dur-
ing all of the simulation. This might seems a se-
vere limitation, but it only applies to the maximum
stiffness achievable in the interior of the actuators.
In most cases that is a well known factor. It is
also possible to have different Bopt and Topt for all
nodes. This has not been studied further in this
work but may be an interesting approach for further
improve the computational speed. In the same way
the time step may be varying across the structure.
Some parts of the structure are then only updated
every second or third time step. Equations 11 and
11 then becomes important for the sectioning of the
different numerical domains of the structure.

3. Results

The characteristics of the simulation software is
presented as diagrams in figure 6 to 9. The used ge-
netic algorithm typically require a population size
that is normally 10 to 50 times the number of de-
sign variables, Nd. This means that the computer
memory storage requirement has a characteristic
quadratic scaling to the number of design variables,
∝ Nd

2. This is clearly seen in figure 8.
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Figure 8: The amount of computer memory needed for the optimiza-
tions is growing exponential in a most unpleaseant way. From the
diagram one can make the conclusion that on 32-bit machine only
systems with less than about 200 nodes can be trained. This under-
lines the need for a better implementation of the framework.
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Figure 9: This is the simulation time for one 1024 simulation steps
evaluation of the system. It is noticed that the simulation time does
not drop even if the amount of used memory is higher than the avail-
able in the machine (768 Mb). This gives a hint that the memory
problem of figure 8 is solvable.

4. Discussion

There are several aspects of the current imple-
mentation of the simulation software for neuro me-
chanical networks. One is the memory requirement.
This will need to be addressed in the future. Since
most of computational time is required for the sim-
ulation process one can think of several improve-
ments to the current approach. The comparisons
between different solutions during the optimization
may very well be performed at each time step of the
simulation and then it becomes possible to abort
a simulation that has already shown a worse goal
function value than the currently best one. The
use of multi functional optimization is also interest-
ing. The optimization scheme very often requires a
population size proportional to the number of de-
sign variables times some constant. Typically the
memory requirement in these applications follows
a 50N2

a scaling.
Another interesting area to improve the simula-

tion time further is to make use of different time
step in different parts of the structure. The equa-
tions 11 and 12 gives a clear hint of that. At the
same time this will most likely be quite difficult to
handle if the stiffness of the actuators are one of
the objectives of the training or adoption phase.

5. Conclusions

A first attempt to simulate networks of self or-
ganizing mechanical structures has been presented.
The important feature of linear scaling with the
number of actuators reveals a promising future ap-
plication for this scheme as a synthesis design tool.

The exponential requirement for computer mem-
ory needs to be further studied. The use of bidi-
rectional elements as the foundation element of the
network has proved to give fast and accurate sim-
ulation results that can be used for optimization
techniques and selection schemes. This forms an
evolutionary design process to self-organizing struc-
tures. The memory requirement shows that it is
possible to train a neuro mechanical network of
about 1000 nodes on a regular 32-bit PC.
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