
SIMULATION MODELING OF UML SOFTWARE
ARCHITECTURES ∗

SIMONETTA BALSAMO MORENO MARZOLLA

Dipartimento di Informatica
Universit̀a Ca’ Foscari di Venezia

via Torino 155, 30172 Mestre (VE), Italy
e-mail: {balsamo | marzolla }@dsi.unive.it

Abstract Quantitative analysis of software systems is being recognized as an important issue in the software development
process. Performance analysis can help to address quantitative system analysis from the early stages of the software development
life cycle, e.g., to compare design alternatives or to identify system bottlenecks. Modeling software systems by simulation allows
the analyst to represent detailed characteristics of the system. We consider simulation for performance evaluation of software
architectures specified by UML. We derive a simulation model for annotated UML software architectures. First we propose the
annotation for some UML diagrams to describe performance parameters. Then we derive the simulation model by automatically
extracting information about Use Case and Activity Diagrams from the XMI descriptions of UML diagrams. This information is
used to build a discrete-event simulation model, which is finally executed. Simulation results are inserted back into the original
UML diagrams as tagged values to provide feedback at the software architectural design level.

Keywords:Process-Oriented Simulation, Software Systems, Unified Modeling Language, Performance Evaluation.

1 INTRODUCTION

In recent years it has been recognized that the software
development processes should be supported by a suit-
able mechanism for early assessment of software per-
formance. Early identification of unsatisfactory perfor-
mance of Software Architecture (SA) can greatly re-
duce the cost of design change [Smith, 1990; Smith and
Williams, 2002]. The reason is that correcting a de-
sign flaw is more expensive the later the change is ap-
plied during the software development process. This is
particularly true if the waterfall software development
model is employed, as any change during the develop-
ment process requires to start back from the beginning.
However, this is still a relevant issue whenever a differ-
ent development process is used.

Both quantitative and qualitative analysis can be per-
formed at the software architectural design level. Qual-
itative analysis deals with functional properties of the
software system such as for example deadlock-freedom
or security. Qualitative analysis is carried out by mea-
surement or by modeling the software system to derive
quantitative figures of merit, such as, for example, the
execution profile of the software, memory or network
utilization. We focus on performance models of soft-
ware systems at the SA level.

In this paper we consider quantitative evaluation of
the performance of SA at the design level by means of
simulation models. We consider SA expressed in terms
of Unified Modeling Language (UML) [Object Man-

∗This work has been partially supported by MURST Research
Project “Sahara” and by MIUR Research Project “Performance Eval-
uation of Complex Systems: Techniques, Methodologies and Tools”.

agement Group, 2001] diagrams. We propose to anno-
tate the UML diagrams using a subset of annotations
defined in the UML Profile for Schedulability, Per-
formance and Time Specification [Object Management
Group, 2002a] (referred asUML performance profile).

Simulation is a powerful modeling technique that
allows general system models; simulation models
can represent arbitrarily complex real-world situations,
which can be too complex or even impossible to rep-
resent by analytical models. We define a simulation
model of an UML software specification introducing
an almost one-to-one correspondence between behav-
iors expressed in the UML model and entities or pro-
cesses in the simulation model. This correspondence
between system and the model helps the feedback pro-
cess to report simulation results back into the original
SA.

There are a few previous works dealing with simu-
lation of UML specifications. Arief and Speirs [Arief
and Speirs, 1999a,b, 2000] developed an automatic tool
for deriving simulation models from UML Class and
Sequence diagrams. Their approach consists in trans-
forming the UML diagrams into a simulation model de-
scribed as an XML document. This model can then be
translated into different kinds of simulation programs,
even written in different languages. In this way the per-
formance model is decoupled from its actual implemen-
tation. De Miguel et al. [De Miguel et al., 2000] intro-
duced UML extensions for the representation and auto-
matic evaluation of temporal requirements and resource
usage, particularly targeted at real-time systems. The
extensions are expressed in term of stereotypes, tagged
values and stereotyped constraints. These were intro-

mailto:balsamo@dsi.unive.it
mailto:marzolla@dsi.unive.it

duced in a commercial UML CASE tool, which has
been made able to generate OPNET simulation models
starting from annotated UML diagrams.

Previous simulation-based performance modeling
approaches for evaluation of UML SA were developed
before the UML performance profile was defined. Thus,
they introduced their special extensions of UML or in-
troduced non standard annotations to express quantita-
tive information useful for deriving the model. In this
paper we describe UML Performance Simulator (UML-
PSI), a performance evaluation tool which translates
UML Use Case and Activity diagrams into a discrete-
event process oriented simulation model. The UML
diagrams are annotated according to a subset of the
UML Performance Profile. This additional informa-
tion is used to define the simulation model, which is fi-
nally executed. Simulation results are inserted back into
the original UML diagrams as tagged values to provide
feedback at the software architectural design level.

This paper is organized as follows. In Section2 we
illustrate the proposed methodology for generating sim-
ulation models from UML SA. In Section3 we describe
UML-PSI, a tool we built to implement that method-
ology. In Section4 we illustrate a simple case study,
and conclusions and future works are discussed in Sec-
tion 5.

2 METHODOLOGY

In order to assist the software developer during the de-
sign process, we illustrate in Fig.1 a general framework
for quantitative analysis of UML SA [Balsamo et al.,
2002]. The starting point is a description of the SA.
We consider a description as a set of UML diagrams
annotated with quantitative information in order to de-
rive a simulation-based performance model. The model
is obtained using a suitable Modeling Algorithm. The
model is then implemented in a simulation program,
which is eventually executed. Simulation results are a
set of performance measures that can be used to pro-
vide a feedback at the original SA design level. The
feedback should pinpoint performance problems on the
SA, and possibly provide suggestions to the software
designer about how the problem can be solved. The
modeling cycle can be iterated until a SA with satisfac-
tory performances is developed.

Note that the modeling and performance evaluation
framework of Fig.1 is independent from the particu-
lar performance model that we apply. In this paper
we consider simulation-based performance models of
UML SA. We describe UML-PSI, a prototype perfor-
mance evaluation tool which processes an XMI [Object
Management Group, 2002b] description of UML Use
Case and Activity diagrams. The UML SA has to be
annotated using a simplified subset of the UML Pro-
file for Schedulability, Performance and Time Specifi-
cation [Object Management Group, 2002a]. The sim-
ulation model is process oriented and its objects are

Diagrams
UML

Scenarios

Architecture
Software

Model

Feedback

Impl.
Model

Modeling Algorithm

Performance

Performance
Measures

Program

Model
Evaluation

Model Impl.

Evaluation Tool
Performance

Figure 1: Framework for quantitative evaluation of
UML diagrams

derived by the analysis of the UML diagrams anno-
tated with performance specification of the software
system components. The simulation model is imple-
mented as a discrete-event simulation program written
in C++, whose execution provides results for a set of
performance indices. We evaluate through simulation
the mean response time associated with the execution of
each scenario (Use Case) and each scenario step (Activ-
ity). Simulation results, i.e., the performance measures
of the software components are inserted back into the
original UML SA as tagged values to provide feedback
to the system designer.

Figure2 illustrates the structure of the performance
simulation model derived from the UML diagrams. The
basic object of the simulation model is aPerfor-
manceContext . This object contains the other el-
ements of the model, namely Workloads and Scenar-
ios. Workloads can be open or closed, depending on
whether the number of users accessing the system is
unbounded or fixed. Open workloads are characterized
by the following attribute (the exact notation used to
describe the attributes is given in the next section):

occurrencePattern (of type RTarrivalPattern, defined
in Section3) the pattern of interarrival times of
consecutive requests

Closed workloads are characterized by two attributes:

population the total number of users in the workload

externalDelay (of type PAPerfValue, defined in Sec-
tion 3) the delay between the end of a scenario ex-
ecution and the beginning of the next request

Each workload actually drives one or more scenarios.
Each time a new workload user requests service to the
system, one of the scenarios associated with that work-
load is selected. Selection is done randomly, according
to the probability associated to each scenario.

A scenario is a set of abstract scenario steps, repre-
sented by theAbsStep class. All kinds of scenario
steps are characterized by the following attributes:

probability the probability to execute this step, in the
case the predecessor step has multiple successors

Workload

AbsStep

+probability : Double

+repetition : Integer

+delay : PAperfValue

+interval : PAperfValue

+PAdemand : PAperfValue

+responseTime : confInterval

PerformanceContext

ClosedWorkload

+population : Integer

+externalDelay : PAperfValue

OpenWorkload

+occurrencePattern : RTarrivalPattern

PStep

Pstep_fork

PStep_join

PScenario PResource

1..*
1..*

1..*

root steps

1..*

1..*

+_predecessors

+_successors

1..*
1..*

Figure 2: Structure of the simulation performance model

repetition the number of times this step has to be re-
peated

delay (of type PAPerfValue) an additional delay in the
execution of this step, for example to model a user
interaction

interval (of type PAPerfValue) the time between repe-
titions of this step, if it has to be repeated multiple
times

PAdemand (of type PAPerfValue) the processing de-
mand of this step

responseTime the computed delay between the start-
ing and finishing time of this step. The estima-
tion of this quantity is the result of the simulation
model execution. This value has type confInter-
val, which we define as the pair of the confidence
interval bounds.

Abstract scenario steps can either be composite steps
(described by thePScenario class), or atomic steps
of different kinds. Scenarios are collections of steps;
exactly one of these steps is marked as the root step
(starting step) of the scenario. Atomic steps can be of
typePStep fork for nodes representing the creation
of multiple execution threads,PStep join for nodes
representing synchronization points between different
threads, andPStep for normal atomic steps.

There are two main differences between the perfor-
mance model depicted in Figure2and the one described
in the UML Performance Profile. First, we assume a
very simple model for resources: each Use Case has
an associated computational resource; the resource is
acquired when the Use Case starts, and is released at
its completion. Thus, two instances of the same Use
Case cannot be executed in parallel. This simplification

is motivated by the fact that we evaluate SA at the ar-
chitectural level, without assuming any implementation
on a specific platform. Indeed we assume that the soft-
ware architect ignores the specific hardware platform on
which the software will be executed. Detailed resource
modeling is usually done in later stages of the software
development process.

Second, the structure we propose for the class hierar-
chy describing the processing steps is slightly different
from that in [Object Management Group, 2002a]. The
UML Profile defines aPScenario class from which
a PStep class is derived, thus every step is a scenario.
This is because each step, at a deeper level of detail,
could be modeled as a whole scenario, that is, a se-
quence of multiple sub-steps. We choose a different
structure to model thePStep andPScenario hierar-
chy to keep atomic steps and scenarios as separate en-
tities. We apply the Composite Pattern [Gamma et al.,
1995] to reflect the hierarchical nature of the processing
steps. This choice makes the construction of the simu-
lation model easier, because there are different kinds
of step (e.g.,PStep , PStep fork , PStep join)
which are modeled as different simulation object types.
The behavior of a fork step consists of activating all the
successor steps concurrently. A join step waits for the
completion of all predecessor steps before activating the
successor. A normal step simulates execution according
to the specified delays, and activates one of the succes-
sor steps. Finally, the behavior of a scenario is to acti-
vate its root step.

To summarize, the proposed approach to derive the
simulation model to evaluate SA performance from
UML Use Case and Activity diagrams is defined as fol-
lows:

1. Consider an UML representation of a software

system in terms of Use Case and Activity dia-
grams. Both diagrams are respectively annotated
as follows:

• UML Use Case diagrams describe the inter-
action between the software system and one
or more Actors requiring service. As pro-
posed in [Cortellessa and Mirandola, 2002;
Pooley and King, 1999] we identify Actors
to represent workloads applied to the system
and Use Cases to represent scenarios. Ac-
tors can be stereotyped as�PAopenLoad�
or � PAclosedLoad � to represent respec-
tively open and closed population of users
accessing the system. Use Cases are tagged
with PAprob tags, whose value indicates the
probability of executing that scenario.

• Each Activity of an Activity diagram can
be tagged with the following informations:
the number of times the step has to be re-
peated (PArep); the delay between repeti-
tions (PAinterval) of the same step; an
additional delay for each step representing
user “think time” (PAdelay); the service
demand of the step (PAdemand).

2. The simulation model is automatically derived
from the XMI description of the UML diagrams.
Currently UML-PSI uses the XMI dialect of the
open-source ArgoUML CASE tool [ArgoUML,
2003], The simulation model is an instance of the
general class structure depicted in Figure2, and
includes aPerformanceContext object and a
set of workloads and scenarios.

3. The simulation model is executed, optionally ask-
ing the user to specify some parameters for the
simulation, such as the desired confidence level for
the estimation of the performance indices, the con-
fidence interval width and the simulation length.

4. Simulation results are inserted back into the UML
model as tagged values associated with Activities
and Use Cases. We consider as simulation results
the average delays (PArespTime) of Activities
and Use Cases execution.

3 UML-PSI TOOL DESCRIP-
TION

The steps of the proposed methodology are imple-
mented into a simulation tool called UML-PSI. As con-
cerns the first step of the annotation of UML diagrams,
the UML Performance Profile suggests the use of TVL
(Tag Value Language) to describe values of tags applied
to model elements, which is a subset of the Perl lan-
guage [Wall et al., 2000]. We use a freely available Perl
interpreter library [CPAN, 2003] to evaluate tag values,
so taking advantage of the full Perl language. Note that

both the UML Performance Profile and UML-PSI do
not strictly depend on the specific language used to ex-
press annotations.

The PAperfValue and RTarrivalPattern
data types are expressed according to the following
BNF notation, which is a simplified version of the an-
notations defined in the UML Performance Profile:

< PAperfValue> := ′[′assm|pred|msrd,

dist, < PDFstring>′]′

< PDFstring> := ′[′< constantPDF> |
< uniformPDF> |
< exponentialPDF> |
< normalPDF>]

< constantPDF> := < real>

< uniformPDF> := uniform, < real>, < real>

< exponentialPDF> := exponential, < real>, < real>

< normalPDF> := normal, < real>, < real>

< RTarrivalPattern> := ′[′< bounded> |
< unbounded> |
< bursty>′]′

< bounded> := bounded, < int >, < int >

< bursty> := bursty, < PDFstring>, < int >

< unbounded> := unbounded, < PDFstring>

UML-PSI parses an XMI description of UML dia-
grams, annotated as described above. The UML model
is translated into a C++ discrete-event simulation pro-
gram according to step 2 of the proposed methodol-
ogy. UML-PSI includes a general purpose discrete-
event simulation library providing roughly the same
functionality of theSimulation class of the SIMULA

language [Dahl and Nygaard, 1966], namely pseudo-
parallel process execution using coroutines and Se-
quencing Set scheduling facilities. We developed the
simulation library for several reasons, mainly code
portability, availability of compilers and the necessity
to use a freely available C library for parsing XML doc-
uments [libxml, 2003].

The simulation library includes random number gen-
erators and some statistical functions. Random vari-
ates of various distributions are generated using the uni-
form random number generator described in [L’Ecuyer,
1999].

The library provides basic estimation functions, e.g.
mean, variance and confidence interval. Since we con-
sider steady-state simulation, we discard an appropriate
initial portion of the observations to remove the initial-
ization bias. The mean is computed using the method
of independent replications [Banks, 1998]. The simula-
tion stops when the relative width of the computed con-
fidence intervals is smaller than a given threshold. Both
the confidence level and the threshold can be defined
by the user. If they are not provided, we assume default
values of 90% confidence level and 5% threshold.

Each UML Actor is mapped into an appropriate
Workload object, that can be an open or closed work-
load, depending on the stereotype which is applied to
the UML element. Workloads are active objects in the
simulation, which simply perform an endless loop in
which they select and activate a Use Case, whose be-
havior is activating the root step of its associated Ac-
tivity diagram. Each Activity in the Activity diagram
is translated into the corresponding kind ofAbsStep
object. These objects simulate execution of the corre-
sponding step or scenario according to the structure of
the diagram and the value of the associated tags. At the
end of the simulation, the computed average response
time of eachAbsStep object (that is, a step or sce-
nario) is inserted into the original UML diagram the
PArespTime tag.

We propose to apply the UML-PSI tool as described
in the modeling cycle illustrated in Figure1. Namely,
the software designer defines an UML SA with Ar-
goUML and specifies model parameters as tagged val-
ues associated with UML elements. Then, the user op-
tionally selects parameters such as simulation length
or confidence interval width, and runs the simulation.
When the simulation finishes, the results are automati-
cally inserted into the UML diagrams. At this point the
software designer accesses the simulation performance
results by opening the ArgoUML project file to access
the results, and then possibly iterates the performance
evaluation analysis by providing a new set of parame-
ters in the UML model tags.

4 CASE STUDY

In this section we illustrate with a simple example how
UML-PSI works. The example involves an e-commerce
application in which users can browse a web catalog of
products or submit purchase orders. We assume an un-
limited stream of users requiring service. Users inter-
arrival time is exponentially distributed with meanA.
Users can browse the online catalog with probabilityp,
and make an order with probability1−p. Browsing the
catalog involves two sequential activities, which are: is-
suing a request to the product database and composing
the web page. Making an order involves the following
activities: selecting a product, filling the order form,
processing the order and verifying the payment infor-
mations. Orders must be paid by credit card, whose
number must be validated. Order validation and credit
card checking are performed in parallel.

The UML Use Case and Activity diagrams are de-
picted in Figure3. Model elements are tagged accord-
ing to the notation described in Section2.

Note that an analytical model of the system of Fig-
ure 3 can not be easily evaluated due to the fork/join
component of the Make Order Activity. The simulation
model which is derived from the SA is made of sev-
eral active components (processes) arranged according
to the structure of Figure2. The actor is represented by

RTarrivalPattern=["unbounded",
"exponential", 1.0/50.0]] PAprob=0.1

PAprob=0.9

(a) Use Case (b) Browse Catalog Activ-
ities

(c) Make Order Activities

Figure 3: UML representation of an E-commerce appli-
cation.

an object of typeOpenWorkload , which generates a
stream of users. Use Cases are objects of typePSce-
nario and have a queue which collects users accord-
ing to their arrival order. Users select the Use Case to
join according to the associated probability. Use Cases
simulate one user request at a time activating the root
step of the correspondingPScenario . When the sce-
nario execution completes, a new user requests in the
Use Case queue is started. Finally, there is one simu-
lation process for each node in the Activity diagram.
Nodes can be Activity nodes, which are modeled by
processes of typePStep , or fork and join nodes which
are modeled by processes of typePStep fork and
PStep join , respectively.

Scenario Average delay (seconds)
Make Order [2.98394, 3.00172]
Browse Catalog [54.7787, 55.7254]

Table 1: Simulation results for the e-commerce appli-
cation of Figure3.

A numerical example of the performance results,
computed as steady-state average delays are reported in
Table1. The results are obtained by settingA = 50sec
andp = 0.9; other model parameters are set as shown in
Figure3. The computed intervals are at 90% confidence
level. The results are inserted into the original UML
diagrams as values of thePArespTime tag. These

tagged values are attached to each relevant model ele-
ment. The software designer can now explore different
situations by repeating the modeling and performance
evaluation process with different tag values.

5 CONCLUSIONS

We have proposed a simulation-based performance
modeling approach for UML software architectures.
The notation we have used to describe performance pa-
rameters is a subset of the one defined in the UML Per-
formance Profile. We have derived a simulation model
from Use Case and Activity diagrams. The simula-
tion model is executed and the results are inserted into
the original UML diagrams as tagged values. We have
presented UML-PSI, a prototype tool to implement the
methodology.

The proposed approach has been defined to evaluate
software performances at the SA design level. We plan
to extend this approach to further steps of the software
development process, by considering Deployment dia-
grams and resource allocation. Further research will be
devoted to a more complete set of performance mea-
sures. UML-PSI will be extended accordingly.

REFERENCES

ArgoUML (2003). ArgoUML – Object-
oriented design tool with cognitive support.
http://www.argouml.org/.

Arief, L. B. and N. A. Speirs (1999a, June). Auto-
matic generation of distributed system simulations
from UML. In Proceedings of ESM ’99, 13th Euro-
pean Simulation Multiconference, Warsaw, Poland,
pp. 85–91.

Arief, L. B. and N. A. Speirs (1999b, November). Us-
ing SimML to bridge the transformation from UML
to simulation. InProc. of One Day Workshop on Soft-
ware Performance and Prediction extracted from De-
sign, Heriot-Watt University, Edinburgh, Scotland.

Arief, L. B. and N. A. Speirs (2000, September). A
UML tool for an automatic generation of simulation
programs. See [Proceedings of WOSP 2000, 2000],
pp. 71–76.

Balsamo, S., A. D. Marco, P. Inverardi, and M. Sime-
oni (2002, December). Software performance: state
of the art and perspectives. Technical Report MIUR
SAHARA Project TR SAH/04.

Banks, J. (Ed.) (1998). Handbook of Simulation.
Wiley–Interscience.

Cortellessa, V. and R. Mirandola (2002, July). PRIMA–
UML: a performance validation incremental method-
ology on early UML diagrams. InProceedings of the

Third International Workshop on Software and Per-
formance (WOSP 2002), Rome, Italy. ACM Press.

CPAN (2003). Comprehensive Perl Archive Network
(CPAN). http://www.cpan.org/.

Dahl, O.-J. and K. Nygaard (1966, September).
SIMULA–an ALGOL-based simulation language.
Comm. of the ACM 9(9), 671–678.

De Miguel, M., T. Lambolais, M. Hannouz, S. Betgé-
Brezetz, and S. Piekarec (2000, September). UML
extensions for the specifications and evaluation of la-
tency constraints in architectural models. See [Pro-
ceedings of WOSP 2000, 2000], pp. 83–88.

Gamma, E., R. Helm, R. Johnson, and J. Vlissides
(1995). Design Patterns: Elements of reusable
Object-Oriented programming. Addison–Wesley.

L’Ecuyer, P. (1999). Good parameters and implementa-
tions for combined multiple resursive random num-
ber generators.Operations Research 47, 159–164.

libxml (2003). libxml : the XML C library for
Gnome.http://xmlsoft.org/.

Object Management Group (2001, September). Unified
modeling language (UML), version 1.4.

Object Management Group (2002a, March). UML pro-
file for schedulability, performance and time speci-
fication. Final Adopted Specification ptc/02-03-02,
OMG.

Object Management Group (2002b, January). XML
Metadata Interchange (XMI) specification, version
1.2.

Pooley, R. J. and P. J. B. King (1999, February). The
Unified Modeling Language and performance engi-
neering. InIEE Proceedings – Software, Volume
146, pp. 2–10.

Proceedings of WOSP 2000 (2000, September).ACM
Proceedings of WOSP 2000, 2nd International Work-
shop on Software and Performance, Ottawa, Canada.

Smith, C. U. (1990).Performance Engineering of Soft-
ware Systems. Addison-Wesley.

Smith, C. U. and L. Williams (2002).Performance So-
lutions: A Practical Guide to Creating Responsive,
Scalable Software. Addison–Wesley.

Wall, L., T. Christiansen, and J. Orwan (2000, July).
Programming Perl(third ed.). O’Reilly & Asso-
ciates.

http://www.argouml.org/
http://www.cpan.org/
http://xmlsoft.org/

	INTRODUCTION
	METHODOLOGY
	UML-PSI TOOL DESCRIPTION
	CASE STUDY
	CONCLUSIONS

	c0: Proceedings 17th European Simulation Multiconference(c) SCS Europe BVBA, 2003 ISBN 3-936150-25-7

