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Abstract  
Complex industr ia l  processes  l ike  Marine Diesel  Propuls ion Plant  (MDPP) have complex 
in terrela t ions  and in terdependencies  between var iables  and parameters .  This  character is t ic  
could be used in  est imating unknown or  unmeasured var iables  from the information 
gathered by other  measurements  and sources using information fusion by means of  a  sof t  
computing methods.  In  the paper ,  a  s tructural  analysis  approach to ident ifying most  
re levant  var iable  in terre la t ions,  components  or  subsystems of  MDPP with  inherent  
redundant  information has been proposed.  Sensor  information fusion method was chosen 
to be using ar t if ic ial  neural  networks (ANN).  The paper  presents  proposed ANN with 
s t ructure  and learning algori thms.  Simulat ion have been carr ied  out  in  Matlab-Simulink 
environment with  engine speed es t imation example.  
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1.  INTRODUCTION 
 
Diagnost ic  and control  systems of  mar ine 
diesel  propuls ion plant  require  a  large 
number  of  d ifferent  sensors  with  d ifferent 
measur ing types  and locat ions  a t  var ious  
cr i t ical  points  on the propuls ion engine 
and i ts  subsystems ( temperatures,  
pressures,  f low rates ,  levels ,  metal  content  
of  the  lubr icat ing oi l ,  water  content  in  the 
fuel  o i l  and more) .  The data  from sensors  
are  col lected and t ransmit ted  to  the 
processing uni ts .   
The main purpose of  most  s ignal 
processing is  to  yield  knowledge of  a  
s i tuat ion so that  proper  decis ions can be 
done.  Many of  these s ignals  should be 
combined in  some way to  enable  decis ions 
of  such condit ions as  emergency s tates ,  
when to  change oi l ,  t ime to  repair  or  
replace par ts ,  engine eff ic iency etc.  
In  some specif ic  s i tuat ions human 
in tui t ion,  heur is t ic  knowledge and 
exper ience have to  be fused together  with 
sensor  data  for  good plant  est imation 
(overal l  engine eff ic iency,  degradat ion of  
o i l  condi t ion,  faul t  condi t ions, . . ) .  One 

effect ive approach in such case is  
information fusion that  wil l  be  d iscussed 
in  the paper .  
In  the cases  when a  sensor  fai ls  to  
operate  or  operates  with  faults ,  sensor  
information fusion methods are  needed to 
reconstruct  the los t  s ignals  -  information.  
Aiming to  use sensor  information fusion 
with  exis t ing sensors  the need for  
explor ing possible  redundancies  inherent  
to  the  system structure  is  evident .  One 
sui table  method is  s tructural  descr ip t ion 
or  analysis  of  the system decomposing i t  
in to  funct ional  dependent  end rela ted 
components  or  subsystems.  This  approach 
for  MDPP wil l  be  presented in  the paper .  
Sensor  information fusion method was 
chosen to be using ar t if ic ia l  neural  
networks which are  very sui table  in  the 
case  of  on- l ine gathered data.  
Simulat ion example wil l  be  g iven for  
marine  diesel  engine speed es t imation 
using redundant re la t ions and data .  
 
 
 



 

2.   STRUCTURAL DESCRIPTION OF A  
SYSTEM: GENERAL APPROACH 

 
One can consider  a  system S l ike  union of  
i ts  funct ional  components  

i
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∪ , each of them  

establishing some relations or constraints fi between a 
set of variables and parameters (known or unknown) 
zj of the system, i.e. :  
 ),,....,,( 21 pi zzzf     1 < p ≤ m  
where fi can represent dynamic, static, linear or non 
linear relation, crisp or fuzzy rules, empirical or any 
other relation-constraint.  
Structural model of the system can then be 
represented with a set of 
constraints: { }nfffF ,.....,, 21=  and a set of variables 
and parameters { } XK

m ZZzzzZ ∪== ,.....,, 21  to 
which constraints are valid. CYUZ K ∪∪=  is a set 
of known variables and parameters, where U  
represents a set of control variables, Y is a set of 
measured outputs and C  is a set of known constant 
parameters. XZ  is a set of unknown variables and 
parameters of the system. 
Now, the structural model of the system can be 
represented by directed graph with nodes and 
connecting arcs ( )AZFG ,, . The elements of a set of 
arcs in such graph ( )FxZA ⊂  are defined with the 
following mapping scheme - binary relations: 
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For more details see (Izadi-Zamanabadi 1999). 
 
3.    STRUCTURAL ANALYSIS OF MARINE 

DIESEL PROPULSION PLANT – 
REDUNDANT DATA AND RELATIONS 

 
A s tructural  analysis  model  to  ident ify 
most  relevant var iable  in terrelat ions,  
components  or  subsystems of  MDPP with 
inherent  redundant  information which 
could be used in  fusion process  wil l  be 
explored.  
 
3.1 Structural descript ion of  MDPP 
  
The main purpose of the structural description of 
MDPP here is to explore some inherent redundant 
relations which can be used in calculating unknown 
or unmeasured variables using sensor information 
fusion method. 
Figure 1 shows the structure of MDPP with its main 
structural components: C1 - diesel engine dynamics, 
C3 - engine shaft dynamics, C5 and C6 - propeller 
shaft dynamics, C8 - ship speed dynamics, C10 - hull 
dynamics, and  corresponding sensors: fuel index 

sensor C2,  engine speed sensor C4, pitch propeller 
sensor C7 an ship speed sensor C9. 
Relations and constraints between variables and 
parameters can be obtained in various ways: by 
mathematical modelling, by simulation, using 
experimental data, eliciting expert's and operator's 
knowledge, etc. For details see (Antonić and Radica 
1991; Antonić et al. 2000; Antonić and Vukić 2002; 
Vukić et al. 1998; Izadi-Zamanabadi 1999). 
 

 
 

Figure 1: The structural diagram of diesel 
propulsion plant 

 
where:   nref - engine reference speed (set value); n - 

engine speed; gϕ  - fuel link position; hPref - propeller 

pitch set value;  hP - propeller pitch; v - ship speed; KM 
, TM - engine gain and time constant; MP, TP - propeller 
torque and thrust; 
va - advance propeller speed; Ru - total hull resistance 

The structure of MDPP in Figure 1 can be 
represented as union of its components : 

ii C∪ 10
1=

. 
A set of constraints / structural relations is: 
 { }1021 ,.....,, fffF =           (2) 

A set of known measurable variables and 
parameters is: { }MmPmmgm

K KvhnZ ,,,,ϕ=        (3) 
A set of unknown variables and parameters is:
 { }uPPMPg

X RTMMvhnZ ,,,,,,,ϕ=        (4) 
The measuring noise is here neglected so:  
 vvhhnn mPPmggmm ==== ;;; ϕϕ .      (5) 
Adequate structure graph of the MDPP with 
variable and parameter relations is shown in figure 
2. 

 

 
 

Figure 2: Structure graph of MDPP system with 
variable and parameter relations 

 
 



 

3.2  Redundant relations and information fusion 
 
From the structural graph of MDPP system one can 
get analytical redundant relations between variables 
and parameters: direct relations and indirect or 
derived ones (with sensor information fusion and 
some reasoning method). For direct relations 
structural constraints are applied only to known - 
measured variables i.e. to subset KZ , while derived 
relations are those to which structural constraints of 
unknown - unmeasured variables are applied, i.e. to 
subset XZ . 
Indeed, derived redundant relations are more 
interesting, because they result with analytical 
redundancy what is a key point for information 
fusion. These are frequently based on the human 
expert knowledge and operator experience. 
It is evident from the structure graph model of 
MDPP, that there are redundant relations and 
information which can be used in case of faulty 
sensors. 
For instance, in the case of engine speed sensor fault 
(component C2 in structural diagram) the value of the 
engine speed could be estimated i.e. calculated using 
information fusion from other sources (C5 and C6). 
Unknown variable can be estimated by integrating 
several other measurements into a single robust 
estimator (software sensor). The fusion of data from 
different sensors will add new valuable information 
that would be otherwise unavailable. The need of data 
fusion arises also from the fact the information 
gathered is often incomplete, uncertain, imprecise or 
may be from a faulty sensor. There are several 
possible methods for data fusion and the very 
effective one is artificial neural network approach. 
 
4.    INFORMATION FUSION IN MDPP USING 

ANN APPROACH – SIMULATION 
EXAMPLE 

 
The ability of ANN to learn from experience i.e. from 
history of data during on-line operation is making 
them the preferred choice for process modelling with 
intrinsic variable and parameter interrelations. In the 
above structural description of MDPP the redundant 
relations between variables and parameters were 
illustrated . Some of them will be used in the 
information fusion example. 
 
4.1 Engine speed estimation using information 
fusion: Speed sensor faulty - simulation example 
 
Engine diagnosis and control system needs speed 
information during normal operation and gets it 
continually from speed sensor. 
In the case of speed sensor failure it would be 
desirable to have a system that could estimate engine 
speed (most critical variable in closed loop speed 
control) from various sets of inputs i.e. information 
sources giving redundancy in speed information and 
thus leading to more robust control system. That is 

especially important if a l l  speed sensors (usually 
two) are in faulty conditions.  
The required engine speed value could be estimated 
on-line from other variables which are related to it 
(see Figure 2) : propeller torque MP or propeller 
thrust TP, ship speed v,  propeller pitch hp if the 
propeller is controllable (CPP).  
Figure 3 a and b illustrate engine speed estimation 
from other known variables - signals measured on-
line (MP, TP, v).  

 
 a)    b) 

Figure 3: Engine speed estimation using 
information fusion 

 
4.2  Neural network structure and learning 
algorithms 
 
In the engine speed estimation example three 
independent input signals to the ANN and one 
output signal which should be the best estimate of 
engine speed in case of faulty sensor were used.  
The data from different sources are usually pre-
processed (data normalization, filtering, principal 
component analysis, etc.) before applied to the 
ANN for fusion purpose. 
The ANN, in this experiment,  was organized in 
two processing stages i.e. two ANN were designed 
and used (Figure 4). 
The first stage consists of estimation ANN and is 
for feature extraction from input signals. The 
second stage consists of ANN for information 
fusing i.e. decision making and selecting the best 
estimate from the first ANN.  
 

 
 

Figure 4: Concept of ANN for engine speed  fusion 
 
The first stage consists of three identical feed 
forward NN (in Figure 5a shown only one for input 



 

variable Mp) each with one hidden layer with log-
sigmoid transfer function and one output layer with 
linear transfer function. The second stage consists of 
self-organising NN with one competitive layer with 
three inputs (these are outputs from the first stage) 
and one output ADALINE stage (in figure 5 b). There 
are three neurones in competitive layer and only one 
is a winner in a time. Euclidean distance measure (see 
Antonić and Vukić 2002) in decision making i.e. 
choosing the best estimate in each time step was used. 
In the estimation stage of  NN, 3 inputs are fed 
(propeller torque Mp, propeller thrust Tp and ship 
speed v) to estimate engine speed n.  
 

 
a) 

 
b) 

Figure 5: Structure of ANN for engine speed 
estimation 

 
The mse (the mean squared error between the target 
i.e expected values and the network outputs – 
estimated values) performance function is chosen as a 
criterion. 
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Performance goal was set to mse = 0.01 rads-1. 
In minimising performance function the gradient 
descent back-propagation learning algorithm for 
updating network weights and biases with adaptive 
learning rate was used.  

)k(g)k()k(x)k(x α -=1+             (7) 
where x(k) is a vector of current weights and biases, g(k) is 
the current gradient and α(k) is the learning rate. 
For comparison purpose we used two learning 
algorithms: 

 Quasi-Newton (BFGS) learning algorithm, 
)()(-)()1( 1- kgkHkxkx =+          (8) 

H(k) is the Hessian matrix (second derivatives) of 
performance function at the current values of the 
weights and biases. 

 Levenberg-Marquardt learning algorithm 
[ ] eJIJJkxkx TT 1-)()1( µ+−=+          (9) 

where J is the Jacobian matrix which contains first 
derivatives of the network errors with respect to the 

weights and biases, e is a vector of network errors, 
µ is a scalar. 
 
4.3  Simulation results in engine speed 

estimation 
 
The training set used for the proposed ANN is 
obtained from the real diesel engine propulsion 
plant simulator PPS2000 (Norcontrol) with 
propulsion diesel engine MAN B&W type 5L90MC 
with maximum power of 18.000 kW installed on 
the very large crude carrier, (fully loaded). We’ve 
got training set values with diesel engine working 
in four basic operating regimes – modes (table 1): 
Full ahead (with engine power of 100 %) , Half 
(engine power of 75 %), Slow (engine power of 50 
%) and Dead slow (engine power of 25 %).  
   

Table 1: Simulated engine data for training ANN 
Engine 
regime 
 

Engine 
power 
(%) 

Engine 
speed - 

n 
(rad/s) 

Mp 
(Nm) 
x106 

Tp 
(N) 
x106 

Ship 
speed 

v 
(m/s) 

Full 
Ahead 

100 7.74 2.20 1.46 7.71 

Half 75 7.02 1.90 1.21 7.06 
Slow 50 5.14 1.05 0.66 5.11 
Dead 
slow 

25 3.10 0.41 0.26 3.10 

 
The second part of the simulation was carried out 
by using Matlab/Simulink environment. 
After training the ANN given in Figure 5 using 
training data set from table 1, we've got very good 
results for engine speed estimates in four operating 
points (Full Ahead, Half, Slow, Dead slow) . These 
are presented in table 2 and Figure 6. The 
differences between speed estimates are very small 
(with mse: 3.3*10-3 with Mp data, 9.98*10-4 with 
Tp and 6.16*10-4 with v data set. 
 

 
 

Figure 6: Engine speed estimation with training 
data set from Mp, Tp, v 

 
 
 



 

Table 2: Estimated engine speed n from Mp, Tp, v 
Estimated speed from other signals 

(with training data) 
Engine 
speed 

(target) 
n (rad/s) 

Mp Tp v 

7.740 7.682 7.712 7.692 
7.020 7.114 7.065 7.073 
5.140 5.097 5.114 5.124 
3.100 3.114 3.113 3.118 

 
Comparing results obtained during training session of 
NN with two different learning algorithms: 
Levenberg-Marquardt (LM) and Quasi-Newton we've 
noticed very little difference (table 3). 
Nevertheless, we prefer LM learning algorithm 
because the estimation error (mse) and training period 
(epochs) were a bit lesser. 
 

Table 3: Comparison results of two learning 
algorithms in training NN 

              Levenberg-Marquardt           Quasi-Newton             
 Mp Tp v Mp Tp v 
mse 3.30 

*10-3 
9.98 
*10-4 

6.16 
*10-4 

3.30 
*10-3 

9.79 
*10-4 

9.61 
*10-4 

epoch >500 115 26 >500 118 35 
 
Performance goal (mse = 0.01) for the best engine 
speed estimate (with Tp data set) was reached in very 
shot time (4.17 s) i.e.  after only 115 epochs of 
training. 
Applying test ing data  set  to  ANN 
concurrent ly for  three inputs :  Mp,  Tp and 
v,  less  accurate   resul ts  were obtained 
(Figure  7)  but  never theless  useful  for  
pract ical  use ,  except  those es t imated from 
ship  speed data  where the mean squared 
error  was 11.55 %. The best  results  were 
obtained from propeller  thrust  
measurement  Tp (mse = 1.73 %).  
The largest  d iscrepancy between t ra ining 
and tes t ing resul ts  were obtained for  ship 
speed s ignal ,  maybe because of  small  
t ra in ing set .  
 

 
 

Figure 7: Engine speed estimation with testing data 
set from Mp, Tp, v. 

 
In each time step, the designed ANN chooses the 
best estimate on its output so the final results were 
acceptable. Testing example with engine power of 
100 % and expected real value of n = 7.74 rad/s: the 
best speed estimate, was with Tp data: ne = 7.712 
rad/s (see Figure 8a). We also tested ANN output in 
the case of lost one or even two of three input 
signals and have got good engine speed estimate. 
Figure 8b illustrates situation with two input signals 
missed (sensor faults). The ANN output was ne = 
7.785 rad/s (Figure 8b). 
 

 
a)  

 
   b)   
  
Figure 8: Engine speed estimate (best ANN output) 
 
Applying testing data within all operating regions is 
illustrated in Figure 9. Test results for engine speed 
estimate are fairly good for Mp and Tp. 

 
 

 
 

Figure 9: Estimating engine speed with testing data 
Mp, Tp, v within the operating region 

 
Data fusion of three signals with expert 
modification of contribution coefficients on engine 
speed with KMp = 0.34, KTp=0.36, Kv=0.30  had 
given quite good estimate (see Figure 10). 



 

 
 

 
 

Figure 10: Estimating engine speed with data fusion 
of Mp,  Tp, v 

 
Finally, three testing cases with MP as input signal to 
the ANN has been studied in parallel and the output 
(speed estimate) was recorded in the diagram (see 
Figure 11):  
The first case was with MP as only input signal. Input 
signal in the second case was MP with the added noise 
(zero mean Gaussian with variance of 0.02). In the 
third case, the disturbance signal (sine wave of 
amplitude of 0.1 and frequency of 1 rad/s)  was added 
to MP . We could conclude that proposed fusion 
scheme  is rather robust to noise and disturbance in 
input signals. 
 

 
 

 
 

Figure 11: Estimating engine speed with Mp: 1 – 
normal ; 2-with Gauss noise; 3-with sine 

disturbance 
 
 
CONCLUSION 
 
Sensor information fusion concept is becoming 
more and more attractive especially in the area of 
diagnostics and control systems. Some important 
advantages of using information fusion in 
combination with soft computing technologies like 
artificial neural networks, fuzzy logic, genetic 
programming could give more robustness, 
reliability, fault tolerance and intelligence to control 
systems. 
The structural approach is presented and applied to 
the marine diesel engine propulsion plant as an 
effective method to identify the subsystems with 
inherent redundant information. Based on that 
analysis we proposed ANN for information fusion 
process which consists of two stages: The first stage 
is an estimation ANN for feature extraction from 
input signals and the second stage is for information 
fusing i.e. decision making and selecting the best 
estimate from the first stage ANN. We tested it with 
the simulation example. Diesel engine speed was 
estimated on the basis of three other signals: 
propeller torque MP, propeller thrust TP and ship 
speed v. It was shown that good speed estimation 
could be obtained using other available information 
in the case of faulty speed sensor. Only a part of the 
obtained results was presented in the paper. 
The proposed fusion scheme was also tested with 
noise and disturbance signals added to the MP input 
signal and concluded fairly good scheme 
robustness. 
Better results would probably be obtained if larger 
sets of training and testing data were used. The 
generalisation scheme in the sensor information 
fusion within MDPP will be of our interest in the 
near future. 
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