
DIME-II: A COMPUTING FRAMEWORK FOR TRAFFIC
SYSTEMS

MOHAMED KHALIL and EVTIM PEYTCHEV

School of Computing and Mathematics, The Nottingham Trent University,

Burton Street, Nottingham, NG1 4BU, UK
mohamed.khalil@ntu.ac.uk, evtim.peytchev@ntu.ac.uk

Abstract: Building a successful distributed shared memory system depends enormously on the degree of
consideration of certain design issues in the designing stage. This degree varies according to the nature of the
distributed application itself. DIME-II, an extension of DIME-I system, is designed with features specific for
traffic control distributed systems taken into account. The paper presents implementation of this system
considering number of common design issues and inheriting some features from the implementation of DIME-I.

Key words: DIME, Granularity, Scalability, Heterogeneity, Distributed Computing.

1. INTRODUCTION

Over the last years, distributed shared memory
(DSM) paradigm has attracted researchers who
have investigated different approaches that hide
remote communication mechanism from the
programmers on a cluster of workstations, where
each workstation has computing power comparable
to the mini-mainframe in the past.

Many of Distributed shared memory (DSM)
algorithms have been successfully implemented in
a wide range of experimental and commercial
applications. Building an efficient, successful
software distributed shared memory system
depends mostly on the application that implements
the DSM algorithm. However, there are number of
requirements or designing issues which influence
the performance and the efficiency of the system, as
presented in [Nitzberg B. et al, 1991]. The level of
satisfying these issues varies from one application
to another. Therefore, considering the nature of an
application in the designing stage can effectively
increase the performance of that application. These
design issues are: structure and granularity;
scalability; heterogeneity; and memory consistency.

The DIstributed Memory Environment (DIME)
[Argile A. et al, 1999] is a software DSM system
that provides an interface between distributed
software modules that execute on networked
workstations. DIME has been designed specifically
to support vast range of transport telematics
applications and it offers a convenient interface to
the applications programmer. The first
implementation of DIME system is called DIME-I.
As it was built as a user-level software DSM
system, DIME-I provides an easy to use
communication interface that simply and reliably
delivers data and messages to all nodes in the
system. In [Khalil M. et al, 2003] a revised

framework of DIME-I was introduced in order to
improve the performance of DIME system mainly
by avoiding its limitations and minimizing the time
of data retrieval from the viewpoint of user
application. This new framework is called DIME-
II. This paper presents an implementation for
DIME-II.

The presented implementation chooses to continue
using user-level implementation for DIME-II
software DSM system, as it does not require
changes in the lower levels of the system (compiler
and operating system). Besides, such
implementation provides good portability in
distributed systems. There are some pre-existing
requirements that have been taken into account in
the designing stage of DIME-II. For example, the
implementation of DIME-II, as in DIME-I,
supports two types of data structures that naturally
exist in urban traffic information and control
system. Other inherited properties from the DIME-I
system are the granularity and the non-locking
approach.

2. TYPES OF DATA IN TRAFFIC CONTROL
SYSTEM

Building a successful DSM system requires a
detailed knowledge of the data transactions in the
system; therefore a special consideration of data
flows in a traffic control system was taken in the
design stage of DIME-I [Peytchev E., 1999]. In a
traffic control system there are two kinds of data
can be recognized:

- Dynamic data: It is collected by the real-time
traffic control system. It contains all information
about traffic counts and local controls as they
occur in the traffic network. It is characterized by
its high volume - in excess of 120 Mbytes per day
per one specific type of message. Besides, this

User
Application 1

User
Application N

DIME-client N

Intermediate Storage

Data
Areas Buffer

Network

Network

DIME-II

Figure 1: Non-Locking Housekeeping Model –
DIME-II Structural Design

DIME-client 1

Intermediate Storage

Data
Areas Buffer

DIME-Server

Original Storage

Data
Areas Buffer

kind of data is updated in a high frequency rate
(per second basis).

- Static data: This kind of data is updated in a
much longer period of time and its purpose (in
general) is to make the results from traffic
modules available for reading by the other
functional modules in the system.

3. DESIGNING ISSUES

In the designing stage of building DIME-II
numbers of design issues have been considered. In
the traffic system there are two types of data
structures: dynamic and static data. The data
representing the dynamic data type is in fact a
constant flow of uniform messages issued from the
traffic system. To accommodate this type of data,
the system needs a formation capable of accepting a
number of uniform structures at a time, and at the
same time keeping the most recent data only. The
implementation of DIME-I utilizes circular buffer
for this type of data, where each element of the
buffer is a user defined message structure and its
size depends on the size of the urban traffic
network. On the other hand, the relatively static
data in the traffic system usually reflects the value
of some internal variables in the traffic modules.
The volume and format of this data is usually
module dependent since each module has its own
internal representation of the traffic. Therefore,
DIME-I utilizes an array of bytes of user’s defined
size for static data, as it’s the most suitable choice
[Peytchev E., 1999]. The implementation presented
in this paper continues using this granularity, since
it is suitable and convenient for representing the
two types of data of traffic control systems.

Moreover, DIME-II is designed to run on different
platforms, and therefore, it can run in a
heterogeneous environment. However, DIME-II
employs communication algorithm that internally
exchanges data and messages as bytes; therefore,
software modules have to make their own internal
simple conversions. DIME-II is designed with
capability of extension to contain further addition
of software modules. As described in [Nitzberg B.
et al, 1991] there are two factors that can greatly
limit the scalability of distributed shared memory
systems. Theses factors are: general common
knowledge and central bottleneck. In DIME-II
these factors have been overcome. The framework
of DIME-II supports the presence of data replicas at
intermediate memories each in a location near to
certain application. Since each application in
DIME-II performs its operation on an intermediate
memory with no competition with other
applications [Khalil M. et al, 2003], therefore; this
housekeeping algorithm can reduce the contention
on the central shared memory. Consequently, it can

decrease the likelihood of central bottleneck.

4. DIME-II STRUCTURAL DESIGN

As introduced in [Khalil M. et al, 2003], the
architecture of DIME-II system employs non-
locking approach and consists of three layers as
depicted in Figure 1. In the first layer DIME-server
takes control over the original shared memory
system, and has the role of monitoring any
modification in the central memory in order to keep
all intermediate memories throughout the system
informed with the updates. In the second layer
DIME-client controls accesses to certain
intermediate memory that is associated with only
one user application. An intermediate memory
holds copy of part of the original shared memory
which is required by the associated traffic module.

DIME-client’s task is to communicate with DIME-
server on behalf of its user application to perform
write operations, and at the same time it looks up in
the intermediate memory to retrieve certain data for
the user application. In the third layer there are user
applications, which are traffic control system
modules. A user application performs its operations
on the local memory, leaving the time delay burden
of contacting the server to DIME-client for making
the intermediate memory up to date, and reflecting
the update in the original memory. This saves
valuable time for user applications - usually wasted
in network communications- to perform its native
tasks.

Since this model supports the presence of data
replicas, special care has been taken to avoid data
inconsistency in this architecture. The consistency
model presented in [Khalil M. et al, 2003] intends
to maintain systemwide consistent view of the
memory in terms of data area and buffer structures.
This model is designed specifically to support the

User
Application 1

User
Application N

DIME-client N

Intermediate Storage

Data
Areas Buffer

Network

DIME-II

Figure 2: The current implementation of DIME-II

DIME-client 1

Intermediate Storage

Data
Areas Buffer

DIME-Server

Original Storage

Data
Areas Buffer

two types of data structures that comprise the
shared memory, and it has a flavour of sequential
consistency model [Lamport L., 1979] as it is the
most intuitive definition for programmers. In other
words, it’s a relaxed definition of sequential
consistency model. Unlike sequential consistency,
the consistency definition is advantageous in such a
way that it supports multi-reading/multi-writing.

5. AN IMPLEMENTATION FOR DIME-II

The first decision has to be taken in this stage is
where to locate the process of DIME-client in the
framework. This implementation chooses to place
DIME-client process at the same machine as its
associated user application in order to achieve the
sought goals. Therefore, slight modification to the
framework in figure 1 has to be made and is
illustrated in figure 2.

For implementing this framework, two separate
executables have been coded for DIME-server and
DIME-client. Both make use of the Java
programming language.

Java’s multithreaded support is essential for the
successful programming of the DIME-II software.
The presented implementation exploits the potential
of multithreading as it has shown improved
performance in DSM systems by hiding the long
communication latencies typically associated with
software DSM systems [Speight E. et. al, 1997]
[Mueller F., 1997].

The produced software is described
comprehensively in the following subsections in
terms of DIME-server and DIME-client.

5.1. DIME-server

DIME-server executes command packets

(cmmnd_pckt) in the order they are received (not
the order they were sent). In accordance with the
atomicity of DIME-II system, each command is
performed as an indivisible operation. In other
words, there is no interleaving when DIME-server
is performing a command.

DIME-server keeps a list of every created shared
item and a list for each item in the list, which
contains names of user applications that currently
have replica of it. When it receives a request for
creating shared item, DIME-server allocates space
for the item in the DSM only if it has not been
created before. Otherwise, the name of the
requesting application is just added to the list of the
applications that have the replica of that shared
item. In the case of write operations; it sends
updates only to the applications that have replica of
the updated value using the relative list of
applications. In other words, unlike BDSM [Auld
P. et al, 2000], DIME-II system employs a
multicast-based algorithm to disseminate updates to
the application that are involved in the write
operation. On the other hand, when it receives a
request for the deletion of a shared item, DIME-
server deletes the name of the application from the
list of that item. The item is removed permanently
only if the requesting application is the last one in
the list.

In order to improve the performance of DIME-
server, numbers of threads are used. Each
application is serviced by separate thread that
listens to its requests and inserts them in a queue of
command packets. This thread is called client-
service and is created when DIME-server receives
request from a user application to use the shared
memory. The thread of client-service consists of
two other threads: 1.ListenToPacket that
continuously listens to command packets sent from
its user application and inserts them in a queue to
be processed later, 2.SendPacket thread that keeps
checking another queue of command packets ready
to be sent to the user application. All client-service
threads -particularly ListenToPacket threads- insert
every received command packet in one single
queue. This queue is processed by another thread
called sequencer. The sequencer is the only thread
that can perform operations on the shared memory
in DIME-server. After processing an operation, the
sequencer passes an appropriate command packet
to certain client-services, which in turn send the
command to certain applications – particularly done
by SendPacket thread.

Employing several threads allows dividing the task
of the DIME-server into a number of sub-tasks to
be executed at the same time, enhancing the
functionality of the DIME-server.

R
ea

d

In
se

rt

ClientService

 Socket

SendPacket

Se
nd

 R
eceive

ListenToPacket

ClientService

Socket

SendPackListenToPacket

ClientService

Socket

SendPackListenToPacket

Sequencer

Original
Memory

Read Insert

Ex
ec

ut
e

Figure 3: DIME-server – General View.

Cmnd_pckt31 Cmnd_pcktm
Cmnd_pckt12 Cmnd_pcktm-1
Cmnd_pckt43 Cmnd_pcktm-2

 ……..

Cmnd_pck3m-1 Cmnd_pckt2
Cmnd_pckt2m Cmnd_pckt1

The speed of the sequencer performing commands
in the shared memory (read & write) is much higher
than the speed of the underlying network and
therefore this is not a cause for bottleneck
problems. Figure 3 illustrates a general view of
DIME-server.

In addition to the main task of controlling the
shared memory, DIME-server holds number of
permission tables. These tables prescribe levels of

access that each user application has on the shared
memory. The level of access is either no access,
read only or read/write. DIME-server disseminates
certain permission table to a DIME-client upon
initiating a process of traffic module. This
permission table is used by DIME-client upon
performing any operation on the shared memory.

5.2. DIME-client

DIME-client keeps a copy of the permission table
of its user application. It checks the privilege of its
user application upon performing any operation in
the intermediate memory. An operation is
processed only if the application is permitted to do

so, otherwise an error message is sent to it. For
write operation, DIME-client can apply the update
locally in the case of area writing, and then the
update is sent to the DIME-server.

At DIME-client side, there is a thread that
continually listens to messages from DIME-server
and acknowledges them. The main task of this
thread is to receive new updates from the DIME-
server and then update the intermediate memory

accordingly. Thereby, DIME-client can guarantee
the consistency of the local replicas of the shared
memory. On the other hand, any read operation can
be performed directly on the available local
memory without need to contact the main shared
memory controlled by the DIME-server over the
network. This locality of reference is advantageous
in saving network bandwidth, and reducing time of
data retrieval for user application.

5.3. User’s Interface of DIME-II Software

So far, the produced system provides number of

functions for performing different operations on the
distributed computers shared memory. These
functions are:

- Initializing intermediate shared memory.
User application calls this function to get
permission for initializing the shared memory and
start using the DSM. If the application has
permission to use the system, a permit will be
sent along with permission table. This permission
table contains names of shared items the
application is permitted to use, and the access
privileges for each item.

- Creating data area/buffer. This function is
called to create new shared memory item. A
shared memory item is created only if the
creating user application is permitted to use it.

- Writing in area/buffer. A user application
invokes this function to update an existed shared
item. This operation is performed only if the user
application has enough permission to write in that
item.

- Reading from area/buffer. The required
data are sent to the requesting application along
with the number of the values. Zero is sent if the
requested item is empty. This operation is
performed locally.

- Destroying area/buffer. Performing such
operation results in removing certain shared item
from the intermediate memory of the requesting
application.

6. RELATED WORKS

TreadMarks [Amza C. et al, 1996] is a software
DSM system where messages and data traffic is
reduced by relaxing consistency semantics of the
shared memory. TreadMarks is a user-level
implementation of DSM relies on UNIX standard
libraries in order to accomplish remote process
communication, and memory management,
therefore no need to make modifications on the
operating system kernel. In [Lu H. et al, 1995]
experimental results have shown that the separation
of synchronization and data transfer and the
request-response nature of data communication are
responsible for lower performance comparing with
PVM message-passing model. In DIME-II, there is
no need for synchronization mechanism for a user
application to have an exclusive access to the
shared memory, since each user application is
associated with an intermediate memory where all
its operations are performed.

BDSM [Auld P. et al, 2000] is a broadcast-based,
fully replicated software distributed shared memory
system. Similar to our framework, each user
process has an associated DSM subsystem that
manages the shared memory, however, each user
process has a complete copy of the shared memory
where it processes all reads and writes locally.

Also, unlike our system, all writes to memory
modify the local copy and arrange to broadcast the
updated values to all the other processes. Another
major difference with the presented framework is
that BDSM allows one user process to be executed
on a workstation.

Brazos system [Speight E. et al, 1997] utilizes
multithreading at both the user level and system
level. Multiple user-level threads allow applications
to take advantage of symmetric multiprocessor
servers by using all available processors for
computation. In the runtime system there are two
main threads. One thread is responsible for quickly
responding to asynchronous requests data from
other processes and runs at the highest possible
priority. The other thread handles replies to
requests previously sent by the process. This
multithreaded aspect of Brazos allows greater
amount of computation to communication overlap.
The use of separate thread to handle incoming
replies allows the system to maintain multiple
simultaneous outstanding network requests, which
can significantly improve performance.
Additionally important, the exploitation of
multithreaded DSM algorithms proved significant
in hiding the communication latencies [Muller F.,
1997].

7. CONCLUSION

This paper presents description of an
implementation of the framework of DIME-II. This
implementation is believed to improve the
performance of the whole system in many aspects:
saving network resources, reducing data retrieval
from user application viewpoint, performing
number of tasks per-node simultaneously, and at
the same time maintaining consistency by a simple
straightforward model. Currently number of
experiments are set-up and under way in order to
evaluate the performance of the DIME-II system in
comparison with the current DIME-I system

8. REFERENCES

[1] Argile A., Peytchev E., Bargiela A., Kossonen
I., “Dime: A Shared Memory Environment for
Distributed Simulation, Monitoring and Control Of
Urban Traffic”, 8th European Simulation
Symposium, Genoa, Italy, ISBN 1-565555-099-4,
Vol.1, pp. 152-156.
[2] Peytchev E., “Integrative Framework for
Discrete Systems Simulation and Monitoring”,
Ph.D. thesis, Department of Computing, The
Nottingham Trent University, Nottingham,
England. Feb. 1999.
[3] Nitzberg B., Lo V., “Distributed shared
memory: A survey of issues and algorithms”, IEEE
Computer, vol. 24, pp. 52--60, Aug. 1991.

[4] Khalil M., Peytchev E., “Traffic Telematic
Computing Framework based on Non-Locking and
Housekeeping Distributed Shared Memory
Algorithm”, Sixth United Kingdom Simulation
Society Conference (UKSim 2003), Apr. 2003,
Emmanuel college, Cambridge, UK.
[5] Lamport L., “How to make a Multiprocessor
Computer that correctly executes Multiprocessor
Programs”. IEEE Trans. Comp., vol. C-29, no. 9,
pp. 690-691, Sept. 1979.
[6] Auld P., Kearns P., “Broadcast Distributed
Shared Memory”, Proceedings of the ICSA 13th
International Conference on Parallel and
Distributed Computing Systems, ICSA, pp., 2000.
[7] Speight E., Bennett J., “Brazos: A Third
Generation DSM System”, In Proceedings of the
1st USENIX Windows NT Symposium, pp. 95-106,
August 1997.
[8] Mueller F., “Distributed Shared-Memory
Threads: DSM-Threads”, Workshop on Run-Time
systems for Parallel Programming, Apr 1997.
[9] Amza C., Cox A., Dwarkadas S., Keleher P.,
Honghui L., Rajamony R., Weimin Y., Zwaenepoel
W., “TreadMarks: Shared Memory Computing on
Networks of Workstations”. Computer, vol.29,
no.2, Feb. 1996, pp.18-28. Publisher: IEEE
Comput. Soc, USA.
[10] Lu H., Dwarkadas S, Cox AL, Zwaenepoel W.
“Message Passing versus Distributed Shared
Memory on Networks of Workstations”.
Proceedings of the 1995 ACM/IEEE
Supercomputing Conference (IEEE Cat.
No.95CB35990). ACM. Part vol.1, 1995, pp.865-
906 vol.1. New York, NY, USA.

Mr. Mohamed Khalil is a Research
Student at the School of
Computing and Mathematics, the
Nottingham Trent University. He
was graduated from Faculty of
Mathematical Sciences,
University of Khartoum, Sudan

with a bachelor degree (honour) in computer
sciences. He worked in the Department of
Computer Sciences, Faculty of Mathematical
Sciences, University of Khartoum as a teaching
assistant for nearly three years. He won two
university prizes for the best academic performance
while he was student in the academic years 93/1994
and 96/1997. Mr. Khalil started his PhD in August
2001 and the title of his thesis is “Integrative
Monitoring and Control Framework Based on
Software Distributed Shared Memory Non-Locking
Model” under the supervision of Dr. Evtim
Peytchev and Prof. Andrzej Bargiela. His research
interests are: Distributed shared memory algorithms
and prototyping, Distributed Shared memory
Applications, and Traffic Telematics Systems.

Dr. Evtim Peytchev is a Senior
Lecturer at the School of
Computing and Mathematics, the
Nottingham Trent University and
has been a member of Intelligent
Simulation and Modelling group
for 10 years. Most of the recent

research work in the group, dealing with the traffic
control telematics, has been carried out by Dr.
Peytchev under the supervision and leadership of
the head of the RTTS group Prof. Andrzej Bargiela.
As a result of the research work Dr. E. Peytchev
has successfully presented his Ph.D. work entitled
“Integrative Framework for Discrete Systems
Simulation and Monitoring”. He worked as a
researcher for the successful conclusion of an
EPSRC project “Integrative framework for the
predictive evaluation of traffic control strategies”
(GR/K16593) and most of his publications reflect
the work under this project. Dr. Peytchev’s interests
span: traffics simulation modelling, traffic
Telematics, mathematical modelling of the
uncertainties in traffic, distributed computing
environments, shared memory design, Telematics
technology application in the urban traffic control.
He is involved in International collaboration with
the Transportation Systems Laboratory at the
Helsinki University of Technology (Dr. I. Kosonen)
and in the DTI funded ‘Traffimatics’ project.

	c0: Proceedings 17th European Simulation Multiconference
(c) SCS Europe BVBA, 2003 ISBN 3-936150-25-7

