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Abstract dJVM provides a distributed Java virtual Machine (JVM) on a cluster. It hides the distributed nature of 
the underlying machine from a Java application by presenting a single system image (SSI) to that application. 
dJVM is based on the Jikes RVM [Alpern et al, 1999] (a JVM written entirely in Java) and is the first distributed 
implementation of the Jikes RVM.  This provides a framework for exploring a range of distributed runtime support 
algorithms on large clusters. Implementing this system using the Jikes RVM raises a number of issues that are 
addressed in this paper.  
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1 INTRODUCTION 

A significant number of server side applications are 
currently written in Java. The main advantage of Java 
programs is their portability, principally as a result of 
a clearly defined Java Virtual machine [Lindholm and 
Yellin, 1999]. In the past, the performance of Java 
programs have been much worse than that of 
corresponding C or C++ programs, resulting in the 
limited use of Java for writing applications that needed 
quick response times, like server applications.  
However, improvements in just-in-time (JIT) 
compilers have enabled Java programs to perform 
almost on par to similar C and C++ programs. This 
has resulted in Java being used to implement a 
significant proportion of server applications. 
Server applications are typically multi-threaded, with 
limited interaction between threads servicing different 
clients. Scalability and performance are two important 
issues with such applications. Clusters of commodity 
hardware can provide a cheap solution to both of the 
above issues. However, to facilitate the use of such 
hardware without introducing additional programming 
complexity, it is necessary to provide an abstraction 
that efficiently uses the distributed nature of the 
hardware, while maintaining a unified view of the 
system. This allows a programmer to concentrate on 
the task of reducing the level of synchronization 
without the need to address issues of distribution. 

There are many projects working on solving this 
problem. The approach taken by them to provide an 
SSI can be broadly divided into three categories: 
1. Provide an implementation above the JVM.  

This is typically implemented by transforming the 
Java program from the non-distributed form into a 
form that incorporates the bytecode to implement 
distribution. These transformations can be done 
either: 
• Statically—by transforming the Java classes 

prior to execution [Caromel and Vayessiere, 

1998; Launnay and Pazat, 1997; Objectspace; 
Philippsen and Zenger, 1997] 

• Dynamically—by transforming the Java 
classes upon loading using a replacement 
class loader technique [Marquez et al, 2000]. 

However, this is not completely hidden from the 
program because of Java's introspection facilities.  

2. Build the JVM on top of a cluster enabled 
infrastructure. For example, a distributed shared 
memory [Ma et al, 1999; MacBeth et al, 1998; Yu 
and Cox, 1997]. While this presents a single 
system image of the cluster, it is incapable of 
taking advantage of the semantics of Java to 
improve efficiency and performance. 

3. Build a cluster aware JVM. This is the approach 
we have taken. The JVM presents an SSI to the 
application, but is itself aware of the cluster. This 
opens up possibilities for optimization based on 
the semantics of Java. As far as we know, there is 
only one other group [Adidor et al, 1999] that has 
taken a similar approach. 

Hicks et. al. [1999] provide extensions to the Java 
language to support distributed applications. However, 
the programmer has to make use of these extensions to 
distribute the objects and hence this does not provide a 
true SSI. 

Our cluster aware implementation of a Java Virtual 
Machine is dJVM, which stands for distributed Java 
Virtual Machine. It is based on the Jikes RVM Alpern 
et al [1999] and provides an SSI to Java applications. 
The target machine for the dJVM is a 96 node, 192 
processor machine, Bunyip [Bunyip] running Linux. It 
has Fast Ethernet communication hardware using M-
VIA [NERSC] and a Linux implementation of the VI 
Architecture [VIArch] to provide low software 
overhead on inter-node communication.  This will 
provide a good platform for evaluating the scalability 
of dJVM and distributed runtime support algorithms.   

The Jikes RVM is written entirely in Java and 
provides an extensible framework for distributed 



virtual machines.  There are two compilers in the Jikes 
RVM: the Baseline compiler and the Optimizing 
compiler. The Baseline compiler does not perform any 
analysis and translates Java bytecodes to a native 
equivalent.  The optimizing compiler performs many 
aggressive optimizations.  It can run on itself, 
producing competitive performance with production 
JVMs. This facility is leveraged to improve the 
performance of any extensions. In addition, it rovides 
several facilities including those for escape analysis, 
data dependence analysis and synchronization graphs. 
These are used, with extensions where required, to 
assist in the analysis of programs for load distribution. 
The initial design of dJVM targets the Baseline 
compiler; further development will be on the 
Optimizing compiler. 

As far as we are aware, this is the first distributed 
implementation of a JVM written entirely in Java. One 
of the big advantages of such a JVM is that 
transformation and optimization mechanisms 
developed can be used both on application programs 
and on the JVM itself. The Jikes RVM exposes 
additional features that enable manipulation of system 
classes. This allows us to do the following: 
1. Reconfigure the core VM, as well as the 

application, for distribution (or any other purpose 
like persistence or optimization).  

2. Regenerate already loaded code to improve 
functionality as more of the application is loaded 
into the system.  

The first point above can only be partially exploited, 
and the second not at all, in a JVM that is not written 
in Java. In developing the dJVM, we have only made 
marginal modifications to the Jikes compilers. This 
allows us to use the optimizing compiler and all of its 
various features to their full potential. All of the code 
will be made available under CPL. 

The first goal, that of achieving an SSI, has been met. 
We have developed a prototype version of the dJVM 
that runs on workstations connected via Ethernet, as 
well as on several nodes of the Bunyip cluster. We are 
now in the process of modifying the prototype to use 
the current release of the Jikes RVM. This will be 
followed by optimizations on the system to improve 
performance. In order to enable an SSI, the following 
were some of the important issues that had to be 
addressed: 
Infrastructure—In order to construct a distributed 

VM, several infra-structural components needed 
to be altered. These include inter-node 
communication, the booting process and the use 
of system libraries. 

VM Modifications—The VM handles the manipulation 
of remote data in addition to local data. In order to 
achieve this, class loading, method invocation and 
object access mechanisms had to be enhanced. 

Object Allocation and Placement—The allocation and 
placement of objects is crucial to distribution. 

Mechanisms to provide local and remote 
allocation of objects had to be put in place. 

In this paper, we look at the above issues and provide 
broad outlines of our solutions. Implementation details 
are not dealt with in this paper. Section 2 deals with 
infrastructure, Section 3 with modifications to the 
Jikes RVM, Section 4 briefly discusses object 
allocation and placement and Section 5 outlines 
current status and future directions. 

2 INFRASTRUCTURE 

dJVM employs a master-slave  architecture, in which 
one of the nodes acts as a master node and the rest are 
slave nodes. All global data is held at the master node, 
which also owns all of the classes in the system. Once 
the system is up and running, all of the class loading 
occurs initially at this node as well. 

2.1 Building and Booting 

The core of the Jikes RVM is used to generate the 
contents of the initial virtual machine image. This 
image incorporates a number of key classes essential 
to the functionality of the Jikes RVM including: class 
loading, type description structures, compiler(s), 
memory management and scheduling infrastructure. 
The build process utilizes the class loading, type and 
compilation systems to read and generate the essential 
components of the Jikes RVM image. Additionally, a 
number of classes, used to support remote objects and 
remote execution, are included in that image. 
Furthermore, not all runtime support classes become 
global; some of these remain local to a node. 
Consequently, only a subset of the core classes have 
transformations for distribution applied to them. The 
resulting image boots initially in a non-distributed 
context and later in a distributed context. 

Booting loads the generated image into memory and 
executes a two phase boot process. The first completes 
the initialization of some of the runtime support 
structures for class loading, memory management, 
transforms and compilation that could not be 
incorporated into the boot image. The second phase 
sets up scheduling support for multi-threading, 
allowing the daemon and main threads to execute. 
This provides adequate support to enable the boot 
phase for the distributed virtual machine. 

The dJVM must activate the communication layer to 
support distribution. The master node coordinates the 
connection between all the slave nodes, resulting in 
each node connecting to every other node in the 
cluster. Once the connections are established, the 
classes initially loaded are given a consistent identity 
across the system, thereby enabling the 
communication daemons to function correctly. 

The communication system (see Section 2.2) is started 
prior to enabling the remote class loading. It initiates 
the message systems and threads for handling 



requests. Consequently, it must be initiated after the 
scheduler is operational. 

After the communication system is initiated, the local 
and remote class identities must be resolved (including 
any classes that are needed for this phase). Once this is 
done, all globally usable statics initialized at boot time 
must be coalesced. In general, it suffices to indicate 
that these values are now held by the master node. 

Finally, remote class loading is enabled. From this 
point on, all class loading (see Section 3.1) on a slave 
node will interact with the master node. All class 
loading by the master will still be done locally. 

The application thread is blocked until the 
communication processes and remote class loading are 
available, at which point the application thread can 
start executing the desired main method. 

2.2 Communication 

The communication mechanisms employed in dJVM 
provide a simple abstraction over the underlying 
interfaces. This abstraction is designed to satisfy an 
initial set of requirements: independent memories (and 
the management of those memories) and, initially, 
flexibility. 

Highly targeted hand crafted solutions can provide the 
best performance at the cost of flexibility and 
development time. A more flexible system introduces 
impediments such as copying and allocation. 
Consequently, the initial communication system 
design is a compromise between our initial need for 
flexibility and our long term goal of performance. 

To minimize the impact of internal communication 
design on the rest of the system, a communication 
manager interface is provided. It hides the underlying 
communication hardware being used, and the 
management of the resources associated with 
synchronous and asynchronous messages. It is 
responsible for initializing the system, bringing up a 
substrate (Section 2.2.1), a message registry (Section 
2.2.2) and a pool of message processing threads 
(Section 2.2.3). 

2.2.1 Substrate 

Using an abstract object to provide an interface to the 
underlying communications allows different 
communications mechanisms to be plugged in. Two 
different implementations (or substrates) have been 
developed: 
• TCP/IP—providing a simple and reliable 

implementation for our initial system, and 
• MVIA—a lower overhead solution for local 

networks.  
The role of both substrates is to provide startup and 
shutdown of connections, and to handle outgoing and 
incoming messages. 

Startup in a reliable and static set of nodes is simple. A 
node is designated as the coordinator and all initial 

connections are made with it. In turn, the coordinator 
informs all the nodes about all the other nodes. Each 
establishes the connections required with its peers. 
Once the connections are established, each node may 
send messages to and receive messages from any other 
node. Later development will include the case where 
nodes join and leave the set while it is running. 

Outgoing messages are encoded into a buffer before 
being sent. A buffer is obtained from the substrate 
which maintains a pool of buffers, eliminating 
allocations requiring garbage collection (GC). This 
pool can be expanded if an inadequate number of 
buffers are currently available. Transmitted buffers are 
sent back to the pool to be reused.  This buffer 
mechanism adds one level of copying to the 
transmission process. However, in the case of MVIA, 
it allows these buffers to be permanently locked in 
memory and used directly by the hardware. 

Incoming messages are handled by message receiver 
threads. Each receiver thread blocks on a read from a 
connection. It processes the incoming packets and 
links them together to form a message; no additional 
copying is involved. The assembled message is then 
decoded (see Section 2.2.2) and executed, after which 
it waits for the next message. 

2.2.2 Messaging Model 

Flexibility plays a significant role in the initial system 
design. 

To achieve this, a class tree of message types is 
developed, which allows for quick and easy extension. 
Such a system introduces some overhead in the form 
of additional method calls and translation costs.  

Each message type is described by a message class, 
which extends and implements a common abstract 
class. Each message class encapsulates the code to 
send, decode and process a message. Thus, the 
message functionality is message type dependent and 
may in part be determined at send time as either: 
• A synchronous message, requiring a response 

before processing continues (for obtaining data, 
locks and invoking methods), or 

• An asynchronous message, which does not need 
to block the sender. An asynchronous message: 
o does not require a response (commonly used 

for GC messages), or 
o requires a response (may be used for some 

system load monitoring or other non time-
critical information). 

Send  The send method first requests a buffer from the 
substrate and encodes itself into that buffer. A 
message requiring a response registers itself with the 
communication manager before sending it through the 
substrate to the target node, and waits for the response 
message to notify it. 

Decode  Upon receipt, the message type is determined 
and the appropriate decode method is invoked. The 



decode method recovers the message from the buffer 
and does any initial processing where appropriate. A 
message that will only take a short time to execute 
may process itself and immediately  generate a 
response (if required), e.g. getting a field of a remotely 
held object. A method that would potentially take a 
long time to execute (such as a method invocation) 
may grab an available message process thread for later 
processing. 

Process  This contains the code to perform the actual 
processing of the message. It may be invoked either by 
the decode method (for short duration operations) or 
by a handler thread. 

2.2.3 Message Processing Threads Pool 

A pool of threads waiting to handle incoming requests 
is managed by the communication manager. A 
message that only takes a short time to process may be 
handled immediately. Other messages will be handed 
over to a handler thread, thus freeing its message 
receiver thread to process other incoming messages. 
The handler thread will process the message and, on 
completion, place itself back on the queue waiting for 
the next message to process. 

3 VM MODIFICATIONS 

3.1 Class Loading and Resolution 

The Jikes RVM maintains descriptions of types in the 
form of VM_Class, VM_Field and VM_Method 
objects. Loading a Java class generates a set of these 
objects to describe the type information of that class. 
In a distributed context this raises issues of acquisition 
and ownership of class information. Furthermore, the 
dynamic class loading mechanism of Java provides an 
opportunity to intercept the incorporation of classes 
and codes into the executing system. These issues are 
discussed in this section. 

3.1.1 Distributed Class Loading 

In a distributed system, it is necessary to have a 
commonly agreed to identification of classes, and in 
the dJVM we use a centralized class loader to achieve 
this. Centralized class loading has some advantages 
and disadvantages. It provides a simple single point of 
coordination, but does create a bottleneck. However, 
class loading becomes less common as the program 
executes, and consequently this is not seen as a 
performance priority in long running applications. 

The class loading strategy employed must 
accommodate the dJVM boot process and normal 
running. Therefore, it has two phases: 
Booting—an initial boot phase, prior to becoming a 

member of the cluster, in which classes must be 
loaded locally. Classes loaded locally must have 
their identity resolved with classes that are also 
present on the remote machines prior to activating 
centralized class loading. 

Running—each class is loaded through a master node, 
ensuring a commonly agreed to identity for all 
newly loaded classes. 

A set of objects are used to describe the type of a 
class, i.e. fields, methods and interfaces. A class type 
remains constant during the lifetime of the JVM. As 
such, each object describing this high level type 
information can be copied. Its identity is maintained 
by mapping each local copy to the same global 
identifier (UID). 

In addition to replicating type information, for 
performance purposes, it is necessary to replicate 
literal values and static finals. This requires the class 
loading process to obtain these values and place them 
in the local VM's table of contents (JTOC). 
Furthermore, the local dictionaries used to maintain 
indexes to this data must also be updated. 

Once loaded, a class can be instantiated. Instantiation 
compiles all static and virtual methods needed. 
Compilation can be done locally, generating code 
objects that are only visible within a node. The code 
generated is placed in arrays of type INSTRUCTION 
which can be directly executed.  Each object has a 
TIB1 (Type Information Block) as part of its header 
that describes some low level type specific 
information which includes a method table.  In a 
homogeneous system, it is possible to replicate the 
TIB objects and the method code objects (this will be 
explored later). 

The final phase is class initialization. This executes the 
static initialization code <clinit> for a class. In a 
JVM, class initialization happens only once. However, 
in the dJVM some of the runtime support structures 
are local to each node and must be initialized on each 
node where it is used. Thus, class initialization: 
• for a runtime support class (specified by 

implementing DVM_LocalOnlyStatic), 
occurs once on each node that uses it, or 

• for a globally used class, occurs once on the 
master node. 

Recall that the runtime support classes are for the 
internal management purposes of the dJVM and not 
for use by the application. 

3.1.2 Dynamic Class Loading 

The dynamic class loading mechanism of Java allows 
the definition and use of user class loaders. Loading 
classes through this mechanism provides opportunities 
to modify class definitions and code [Marquez et al, 
2000]. This provides a powerful tool which has been 
used to implement persistence and can be used to 
effect distribution. Mechanisms at the user class loader 
level suffer from two drawbacks: 
• User class loaders are prevented from operating 

on system classes. Although this does not prevent 
wrapper classes from being used to redefine 

                                                     
1 A TIB is an object used to describe object type information. 



system class behaviour, it does impede the 
development of effective transformations as well 
as the efficiency of those transformations. 

• Once a class has been loaded into a virtual 
machine, it signature and its place in the hierarchy 
becomes immutable.  

As the Jikes RVM is written in Java, these two 
disadvantages disappear. 

A small set of bytecode transformation tools [Zigman, 
2002] integrated into the Jikes RVM are used to 
provide hooks for applying code transformations for 
effective distribution. The use of these tools minimizes 
the intrusiveness of the modifications to the 
compilation systems within the Jikes RVM by 
allowing transformations of class hierarchies, class 
signatures and method bytecodes including system 
classes. If necessary, these changes can be masked 
from the application code through a modified 
introspection mechanism. 

3.2 Method Invocation 

When a method is invoked on an object, there are two 
main issues that need to be addressed before the 
method can be executed. The first is to determine 
where the object containing the method resides. The 
second is to decide where the method should be 
executed. We deal with the first issue in Section 3.4. 
Here, we look at the latter issue, that of method 
execution. 

Once we locate the home node of the object, we need 
to decide where to execute the invoked method. We 
can migrate the object to the node that invoked the 
method and execute it there. However, effective object 
placement locates objects at nodes based on execution 
pattern and hence, random movement of objects is to 
be avoided. Therefore, we will not pursue this 
approach and will use the following options based on 
context: 
• Where the method is a static method, or is a 

method that does not access fields of its object, or 
accesses only immutable (that is, read only) fields 
of its object, the method is executed locally, since 
the method code is replicated and available 
locally. The immutable fields of the object are 
cached locally to reduce remote accesses.  

• In all other cases, the method is executed on the 
node where the object is located, through the 
remote method invocation mechanism described 
in Section 2.2. 

If an object is known to be immutable, then that object 
is replicated and cached locally. The LID to UID 
mapping of that object is changed to indicate that it is 
locally cached. 

When we execute a method on a remote node, the 
execution context of the corresponding thread 
changes, along with the physical identity of the thread. 
However, the global identity of the thread must not 
change. In order to ensure this, each logical thread has 

a unique global identifier and the mapping of that 
identifier to a local physical thread (VM_Thread) is 
changed at each node where it executes. This requires 
special handling and caching of application level 
threads, i.e. threads that extend java.lang.Thread. 

Node 1 Node 2

VM_Thread VM_ThreadA B

a.m()

c.y() b.x()

 
Figure 1: Local Thread Reuse 

This raises the question of the reuse of local thread 
structures. Figure 1 depicts a thread, Thread A, 
instigated on Node 1 that remotely calls a method 
b.x() on Node 2. The local thread structure, Thread B, 
is given the same global identity as Thread A. Method 
b.x() performs a remote call to method c.y() back on 
Node 1. Local Thread A is reused, continuing the 
processing of threads call chain. This is more efficient 
than allocating a new thread at Node 1 that logically 
should have the same global identity as Thread A.  Our 
design differs in this respect from that of Aridor et al 
[1999], where they create a new thread at Node 1 in 
such a scenario. 

Method calls are synchronous. Thus, a call made to 
another will block the instigating thread until that call 
is satisfied. However, as in the above example, if the 
same global thread calls a method on that node, then 
the blocking thread is interrupted and informed of the 
new incoming operation it is required to perform. 
Once that operation has been completed, it then waits 
for the completion of the remote method call. 

To effect a remote invocation, a message 
encapsulating the identity of the thread and the method 
to be executed, along with the appropriate parameters, 
is generated. This message is passed to the target node, 
where a local thread resource is assigned (if one 
already hasn't), the parameters placed on the stack and 
the appropriate method invoked. This mechanism can 
be implemented either by: 
Inline code modification—Code is constructed at 

compile time to retrieve the parameters from the 
stack (converting each reference from a local to a 
global representation), packing them into a 
message, which is sent as a request to the target 
node. Upon receipt of an invocation request, the 



parameters must be unpacked onto the stack and 
the method invoked. However, such a method can 
pollute the instruction cache of the initiating site. 

Proxy methods—Each method that is compiled has 
two additional methods generated, proxy and stub. 
The first packs and sends a request and the second 
unpacks and invokes the method. This requires 
determining whether an object is local or remote. 
Aridor et. al. [2001] state that ``We cannot make  
this determination by using different classes for 
the master and proxy, or by adding a field to the 
application, as the introspection APIs would make 
this visible to the application, violating SSI''. 
However, this can be circumvented by modifying 
the introspection mechanism in the Jikes RVM 
runtime libraries, so that the mutations in the class 
definitions are hidden from the application. 

Clearly, the second solution is cleaner and more 
flexible. For expediency, in the initial prototype we 
used the first solution, but have moved to the second 
solution with the port of Jikes RVM 2.2.0. 

Exceptions and interrupts must also be accounted for. 
A thread that handles an incoming request must catch 
all possible exceptions from the application code. 
Once an exception is caught, it must package that 
exception and return it to the node that initiated the 
call, where it will be re-raised. By contrast, an 
interrupt must be propagated along the call chain to 
the node currently executing the global thread, where 
it is finally dispatched to the underlying VM_Thread. 
3.3 Data Access 

In broad terms, there are two areas that need to be 
considered: globally referenced data (i.e. static 
variables) and instance data (i.e. objects and arrays). 

3.3.1 Globally Referenced Data 

Each node must manage its local resources. The local 
resource management information in a non-distributed 
JVM is global data. However, in a distributed JVM, 
most of that information is global only within the 
context of that node. Hence, the set of static variables 
in a distributed JVM can be divided into two mutually 
disjoint sets, namely: 
• the set of static variables that are global to all the 

nodes, and 
• the set of static variables that are global within a 

specific node. 

One way to implement the above is to encapsulate the 
node specific information in an object that is visible 
only within the specific node. Another is to change the 
code that accesses static data according to the data that 
is being accessed.  We take the second approach. 

A runtime test is necessary to determine if a static 
variable is held locally or remotely. The Jikes RVM 
(and its runtime structures) are written in Java which 
raises  the following two issues: 

1. Determine whether or not the static variable under 
consideration is just a local runtime support 
variable. 

2. If not, check whether it is of the type that may be 
held locally or remotely. If so, test where it is 
actually located by using a local runtime structure. 

If care is not taken, then the code generated to test 
whether a static variable is locally or remotely held 
may itself require a similar test, resulting in an infinite 
loop. 

In the Jikes RVM, the static fields are held in a Java 
Table of Contents (JTOC).  Associated with each field 
is a descriptor that identifies the category and type of 
information held, e.g. literal int, static field long. The 
set of descriptors is an array of bytes, held as a static 
array in VM_Statics, and is referenced from the 
JTOC. Each descriptor has two unused bits and w use 
these to indicate whether it is a read only field and/or a 
remotely held field. 

In general, the runtime support classes in the Jikes 
RVM only contain  static variables that are used 
locally within a node. This  is  communicated  to the 
compiler  through  a  simple  annotation  method  
commonly used in Java—an empty interface 
DVM_LocalOnlyStatic implemented by any class 
that contains static data that is always accessed locally.  
The code generated to access a static field of such a 
class is unchanged from that of the original compiler. 
For other classes, the test described above is 
performed.  Clearly, this does not introduce any 
overhead for locally used static variables. However, it 
does introduce some overhead for other static 
variables. The overhead will be reduced in later 
implementations by combining the descriptor and 
JTOC information into the one array. 

3.3.2 Instance Data 

The approach taken to implementing the reference 
faulting mechanism, outlined in Section 3.4, dictates 
the compiler changes necessary for handling instance 
data. In particular, there are four different types of 
code to consider: object and array access, code 
execution, lock operations and type checks. 

Field access (getfield and putfield) and array element 
access (aaload, aastore etc.) dereference an object2 to 
determine the memory location of the data. The 
software detection of remote references mentioned in 
Section 3.4 necessitates a test of the reference itself. A 
local reference is accessed in the normal manner, 
whereas a remote access is initiated by calling a static 
method, which generates a message that contains a 
description of the remote operation (see Section 2.2). 

                                                     
2 An array element access is considered to be a variant of field 
access. 



3.3.3 Type Operations 

The remaining operations are type checking 
operations. Explicit type checking operations 
checkcast and instanceof) can interrogate the types 
through remote calls. We cache this information 
locally, since an object's type remains unchanged 
during its life time. Any interrogation of an object to 
obtain its TIB is intercepted to obtain the TIB from the 
local cache. 

3.4 Object Location 

We use a reference faulting mechanism to determine 
whether an object is available locally, or is only 
available remotely. This is achieved by using an 
appropriate global and local addressing scheme for 
objects. Each object has an associated universal 
identifier or UID that uniquely identifies the object in 
the cluster. The UID needs to be resolved into an 
object address at a specific node.  One of the ways in 
which the UID can be allocated is centrally, where the 
allocation of UIDs is done by a master node in the 
cluster. However, this could lead to a bottleneck at that 
node. We have chosen to use a decentralized 
approach, where each node in the cluster allocates a 
UID for an object that it owns, from a range of UIDs 
under its control. A UID is generated when an object 
reference is exported for the first time. The node that 
owns an object is called the home node of that object. 
While this eliminates the above mentioned bottleneck 
problem, it does lead to more complicated updates 
resulting from object movement from one node to 
another. 

At any given node in the cluster, an object reference 
either points to a local object or to a remote object. In 
our implementation, a local object has an associated 
object identifier or OID. This is identical to the 
address of the object at that node and thus avoids any 
overheads incurred through indirection tables or 
indexes. A remote object has an associated local 
logical identifier or LID at that node. This LID needs 
to be mapped to the UID of the object to determine its 
exact location in the cluster. 

In the Jikes RVM, all object and array addresses are 4 
byte aligned. We use this property to make the 
reference faulting mechanism work. All the LIDs are 
misaligned, while the OIDs, being actual object 
addresses, are not. This can be implemented by either: 
Software—Misaligned addresses can be detected by 

examining the LSBs (least significant bits) of an 
address and branching if not zero. This introduces 
a couple of instructions into the instruction 
pipeline. Importantly, no indirection or additional 
loads are required. 

Hardware—In the Jikes RVM, checking array bounds 
and object types are 4 byte aligned operations, and 
their interrogation via a misaligned address will 
cause a hardware trap.  Most accesses will be to 
local objects, so the added expense of a hardware 

trap for remote objects will be outweighed by zero 
overhead for local access. 

We have currently implemented this using software, 
but intend to implement the hardware faulting 
mechanism. 

3.5 Locking 

Locking operations are directed to the home node of 
the object, and in the case of locks on classes they are 
directed to the home node of the class (the master 
node). The thread identifier sent with the lock is the 
global identifier of the thread, for obvious reasons. A 
thread that already has a lock can acquire additional 
locks on the same object. The number of locks and 
unlocks must be equal. For efficiency, additional 
requests need not be sent to the home node.  A local 
count can be kept, and an unlock request sent to the 
home node once the count reaches zero. 

The explicit lock operations monitorenter and 
monitorexit are handled by the Jikes RVM runtime 
system and do not need compiler modifications. 
Implicit locks on object instances (synchronized 
methods) are similarly handled. However, implicit 
locks on statics must be directed to the home node of 
the class. In the case of classes that implement 
DVM_LocalOnlyStatic, this is done locally. In all 
other cases, it is done by the master node. 

4 OBJECT ALLOCATION AND PLACEMENT 

In order to enable the distribution of objects across the 
nodes in the cluster, there should be a way of remotely 
allocating an object on a specified node.  In the Jikes 
RVM, the VM_Allocator class does the work of 
object allocation. In dJVM, this is replaced with an 
allocator that directs requests to a standard local 
allocator or to an allocator on another node. On 
initialization, each node will have an instance of an 
allocator that directs allocation requests to the local 
node. Each allocator instance acts as a placeholder, 
enabling the remote invocation mechanism to be used 
to effect remote allocation requests to specific nodes. 
The UID of this placeholder object is known to all the 
other nodes. A remote allocation request is passed on 
to the placeholder object of the node at which the 
allocation is to be made, which then allocates the 
object locally at that node. 

Introducing a local or remote allocation decision 
process at runtime can be expensive. Compile time 
analysis can eliminate some of these decisions by 
generating local allocation code where it is clearly 
sensible to do so. Object placement is important for 
load balancing and performance improvements.  
Ideally, a new object should be placed on the node 
where it is most required.  Aridor et. al. [1999; 2001] 
enumerate a number of techniques and patterns used to 
improve efficiency and these will be incorporated into 
the dJVM. Additionally, we will examine further 
techniques using escape analysis, call chain, and static 



and dynamic profiling information to enhance object 
placement. 

5 CONCLUSIONS AND FUTURE WORK 

In this paper, we present some of the design issues that 
we came across in developing dJVM. We also outline 
some solutions to these issues. Currently, we have a 
working prototype that uses the baseline compiler. We 
are working on modifying this prototype to use the 
latest version of the Jikes RVM.  Once this is done, we 
will look at the following issues:  
Optimizing Compiler—The optimizing compiler 

implements a range of analysis and optimization 
techniques. These optimization techniques can be 
applied to the Jikes RVM (and hence our 
extensions) as well as the application code. 
Consequently, we intend to use facilities such as 
escape analysis and profiling, to feed into the 
object placement and migration decision making 
processes. 

Proxy/Stub—For code execution a proxy/stub 
mechanism provides a cleaner implementation of 
code invocation. This will be mixed with the 
reference faulting scheme, to provide minimum 
overhead for field and array accesses, while 
providing a clean implementation for remote calls. 

Communication—Flattening the communication 
hierarchy and removing all but essential object 
creation and data copying. 

From our experience with building the dJVM, we feel 
that the JVM specification should allow for a system 
class loader facility that minimizes the set of system 
classes that cannot be modified. Although, such a 
mechanism does raise significant security issues. 

Concurrently with the development of dJVM using the 
optimizing compiler, we will investigate techniques to 
improve performance. We intend to use techniques 
such as code analysis, and static and dynamic 
profiling, for determining object placement and 
migration, object caching and thread migration. We 
also intend to implement efficient distributed garbage 
collection algorithms. 
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