
DESIGNING A DISTRIBUTED JVM ON A CLUSTER

JOHN N ZIGMAN AND RAMESH S SANKARANARAYANA

Department of Computer Science
The Australian National University

Canberra, ACT 0200, Australia
{john@cs.anu.edu.au, ramesh@cs.anu.edu.au}

Abstract dJVM provides a distributed Java virtual Machine (JVM) on a cluster. It hides the distributed nature of
the underlying machine from a Java application by presenting a single system image (SSI) to that application.
dJVM is based on the Jikes RVM [Alpern et al, 1999] (a JVM written entirely in Java) and is the first distributed
implementation of the Jikes RVM. This provides a framework for exploring a range of distributed runtime support
algorithms on large clusters. Implementing this system using the Jikes RVM raises a number of issues that are
addressed in this paper.

keywords: Cluster, Java, Java Virtual Machine, Single System Image.

1 INTRODUCTION

A significant number of server side applications are
currently written in Java. The main advantage of Java
programs is their portability, principally as a result of
a clearly defined Java Virtual machine [Lindholm and
Yellin, 1999]. In the past, the performance of Java
programs have been much worse than that of
corresponding C or C++ programs, resulting in the
limited use of Java for writing applications that needed
quick response times, like server applications.
However, improvements in just-in-time (JIT)
compilers have enabled Java programs to perform
almost on par to similar C and C++ programs. This
has resulted in Java being used to implement a
significant proportion of server applications.
Server applications are typically multi-threaded, with
limited interaction between threads servicing different
clients. Scalability and performance are two important
issues with such applications. Clusters of commodity
hardware can provide a cheap solution to both of the
above issues. However, to facilitate the use of such
hardware without introducing additional programming
complexity, it is necessary to provide an abstraction
that efficiently uses the distributed nature of the
hardware, while maintaining a unified view of the
system. This allows a programmer to concentrate on
the task of reducing the level of synchronization
without the need to address issues of distribution.

There are many projects working on solving this
problem. The approach taken by them to provide an
SSI can be broadly divided into three categories:
1. Provide an implementation above the JVM.

This is typically implemented by transforming the
Java program from the non-distributed form into a
form that incorporates the bytecode to implement
distribution. These transformations can be done
either:
• Statically—by transforming the Java classes

prior to execution [Caromel and Vayessiere,

1998; Launnay and Pazat, 1997; Objectspace;
Philippsen and Zenger, 1997]

• Dynamically—by transforming the Java
classes upon loading using a replacement
class loader technique [Marquez et al, 2000].

However, this is not completely hidden from the
program because of Java's introspection facilities.

2. Build the JVM on top of a cluster enabled
infrastructure. For example, a distributed shared
memory [Ma et al, 1999; MacBeth et al, 1998; Yu
and Cox, 1997]. While this presents a single
system image of the cluster, it is incapable of
taking advantage of the semantics of Java to
improve efficiency and performance.

3. Build a cluster aware JVM. This is the approach
we have taken. The JVM presents an SSI to the
application, but is itself aware of the cluster. This
opens up possibilities for optimization based on
the semantics of Java. As far as we know, there is
only one other group [Adidor et al, 1999] that has
taken a similar approach.

Hicks et. al. [1999] provide extensions to the Java
language to support distributed applications. However,
the programmer has to make use of these extensions to
distribute the objects and hence this does not provide a
true SSI.

Our cluster aware implementation of a Java Virtual
Machine is dJVM, which stands for distributed Java
Virtual Machine. It is based on the Jikes RVM Alpern
et al [1999] and provides an SSI to Java applications.
The target machine for the dJVM is a 96 node, 192
processor machine, Bunyip [Bunyip] running Linux. It
has Fast Ethernet communication hardware using M-
VIA [NERSC] and a Linux implementation of the VI
Architecture [VIArch] to provide low software
overhead on inter-node communication. This will
provide a good platform for evaluating the scalability
of dJVM and distributed runtime support algorithms.

The Jikes RVM is written entirely in Java and
provides an extensible framework for distributed

virtual machines. There are two compilers in the Jikes
RVM: the Baseline compiler and the Optimizing
compiler. The Baseline compiler does not perform any
analysis and translates Java bytecodes to a native
equivalent. The optimizing compiler performs many
aggressive optimizations. It can run on itself,
producing competitive performance with production
JVMs. This facility is leveraged to improve the
performance of any extensions. In addition, it rovides
several facilities including those for escape analysis,
data dependence analysis and synchronization graphs.
These are used, with extensions where required, to
assist in the analysis of programs for load distribution.
The initial design of dJVM targets the Baseline
compiler; further development will be on the
Optimizing compiler.

As far as we are aware, this is the first distributed
implementation of a JVM written entirely in Java. One
of the big advantages of such a JVM is that
transformation and optimization mechanisms
developed can be used both on application programs
and on the JVM itself. The Jikes RVM exposes
additional features that enable manipulation of system
classes. This allows us to do the following:
1. Reconfigure the core VM, as well as the

application, for distribution (or any other purpose
like persistence or optimization).

2. Regenerate already loaded code to improve
functionality as more of the application is loaded
into the system.

The first point above can only be partially exploited,
and the second not at all, in a JVM that is not written
in Java. In developing the dJVM, we have only made
marginal modifications to the Jikes compilers. This
allows us to use the optimizing compiler and all of its
various features to their full potential. All of the code
will be made available under CPL.

The first goal, that of achieving an SSI, has been met.
We have developed a prototype version of the dJVM
that runs on workstations connected via Ethernet, as
well as on several nodes of the Bunyip cluster. We are
now in the process of modifying the prototype to use
the current release of the Jikes RVM. This will be
followed by optimizations on the system to improve
performance. In order to enable an SSI, the following
were some of the important issues that had to be
addressed:
Infrastructure—In order to construct a distributed

VM, several infra-structural components needed
to be altered. These include inter-node
communication, the booting process and the use
of system libraries.

VM Modifications—The VM handles the manipulation
of remote data in addition to local data. In order to
achieve this, class loading, method invocation and
object access mechanisms had to be enhanced.

Object Allocation and Placement—The allocation and
placement of objects is crucial to distribution.

Mechanisms to provide local and remote
allocation of objects had to be put in place.

In this paper, we look at the above issues and provide
broad outlines of our solutions. Implementation details
are not dealt with in this paper. Section 2 deals with
infrastructure, Section 3 with modifications to the
Jikes RVM, Section 4 briefly discusses object
allocation and placement and Section 5 outlines
current status and future directions.

2 INFRASTRUCTURE

dJVM employs a master-slave architecture, in which
one of the nodes acts as a master node and the rest are
slave nodes. All global data is held at the master node,
which also owns all of the classes in the system. Once
the system is up and running, all of the class loading
occurs initially at this node as well.

2.1 Building and Booting

The core of the Jikes RVM is used to generate the
contents of the initial virtual machine image. This
image incorporates a number of key classes essential
to the functionality of the Jikes RVM including: class
loading, type description structures, compiler(s),
memory management and scheduling infrastructure.
The build process utilizes the class loading, type and
compilation systems to read and generate the essential
components of the Jikes RVM image. Additionally, a
number of classes, used to support remote objects and
remote execution, are included in that image.
Furthermore, not all runtime support classes become
global; some of these remain local to a node.
Consequently, only a subset of the core classes have
transformations for distribution applied to them. The
resulting image boots initially in a non-distributed
context and later in a distributed context.

Booting loads the generated image into memory and
executes a two phase boot process. The first completes
the initialization of some of the runtime support
structures for class loading, memory management,
transforms and compilation that could not be
incorporated into the boot image. The second phase
sets up scheduling support for multi-threading,
allowing the daemon and main threads to execute.
This provides adequate support to enable the boot
phase for the distributed virtual machine.

The dJVM must activate the communication layer to
support distribution. The master node coordinates the
connection between all the slave nodes, resulting in
each node connecting to every other node in the
cluster. Once the connections are established, the
classes initially loaded are given a consistent identity
across the system, thereby enabling the
communication daemons to function correctly.

The communication system (see Section 2.2) is started
prior to enabling the remote class loading. It initiates
the message systems and threads for handling

requests. Consequently, it must be initiated after the
scheduler is operational.

After the communication system is initiated, the local
and remote class identities must be resolved (including
any classes that are needed for this phase). Once this is
done, all globally usable statics initialized at boot time
must be coalesced. In general, it suffices to indicate
that these values are now held by the master node.

Finally, remote class loading is enabled. From this
point on, all class loading (see Section 3.1) on a slave
node will interact with the master node. All class
loading by the master will still be done locally.

The application thread is blocked until the
communication processes and remote class loading are
available, at which point the application thread can
start executing the desired main method.

2.2 Communication

The communication mechanisms employed in dJVM
provide a simple abstraction over the underlying
interfaces. This abstraction is designed to satisfy an
initial set of requirements: independent memories (and
the management of those memories) and, initially,
flexibility.

Highly targeted hand crafted solutions can provide the
best performance at the cost of flexibility and
development time. A more flexible system introduces
impediments such as copying and allocation.
Consequently, the initial communication system
design is a compromise between our initial need for
flexibility and our long term goal of performance.

To minimize the impact of internal communication
design on the rest of the system, a communication
manager interface is provided. It hides the underlying
communication hardware being used, and the
management of the resources associated with
synchronous and asynchronous messages. It is
responsible for initializing the system, bringing up a
substrate (Section 2.2.1), a message registry (Section
2.2.2) and a pool of message processing threads
(Section 2.2.3).

2.2.1 Substrate

Using an abstract object to provide an interface to the
underlying communications allows different
communications mechanisms to be plugged in. Two
different implementations (or substrates) have been
developed:
• TCP/IP—providing a simple and reliable

implementation for our initial system, and
• MVIA—a lower overhead solution for local

networks.
The role of both substrates is to provide startup and
shutdown of connections, and to handle outgoing and
incoming messages.

Startup in a reliable and static set of nodes is simple. A
node is designated as the coordinator and all initial

connections are made with it. In turn, the coordinator
informs all the nodes about all the other nodes. Each
establishes the connections required with its peers.
Once the connections are established, each node may
send messages to and receive messages from any other
node. Later development will include the case where
nodes join and leave the set while it is running.

Outgoing messages are encoded into a buffer before
being sent. A buffer is obtained from the substrate
which maintains a pool of buffers, eliminating
allocations requiring garbage collection (GC). This
pool can be expanded if an inadequate number of
buffers are currently available. Transmitted buffers are
sent back to the pool to be reused. This buffer
mechanism adds one level of copying to the
transmission process. However, in the case of MVIA,
it allows these buffers to be permanently locked in
memory and used directly by the hardware.

Incoming messages are handled by message receiver
threads. Each receiver thread blocks on a read from a
connection. It processes the incoming packets and
links them together to form a message; no additional
copying is involved. The assembled message is then
decoded (see Section 2.2.2) and executed, after which
it waits for the next message.

2.2.2 Messaging Model

Flexibility plays a significant role in the initial system
design.

To achieve this, a class tree of message types is
developed, which allows for quick and easy extension.
Such a system introduces some overhead in the form
of additional method calls and translation costs.

Each message type is described by a message class,
which extends and implements a common abstract
class. Each message class encapsulates the code to
send, decode and process a message. Thus, the
message functionality is message type dependent and
may in part be determined at send time as either:
• A synchronous message, requiring a response

before processing continues (for obtaining data,
locks and invoking methods), or

• An asynchronous message, which does not need
to block the sender. An asynchronous message:
o does not require a response (commonly used

for GC messages), or
o requires a response (may be used for some

system load monitoring or other non time-
critical information).

Send The send method first requests a buffer from the
substrate and encodes itself into that buffer. A
message requiring a response registers itself with the
communication manager before sending it through the
substrate to the target node, and waits for the response
message to notify it.

Decode Upon receipt, the message type is determined
and the appropriate decode method is invoked. The

decode method recovers the message from the buffer
and does any initial processing where appropriate. A
message that will only take a short time to execute
may process itself and immediately generate a
response (if required), e.g. getting a field of a remotely
held object. A method that would potentially take a
long time to execute (such as a method invocation)
may grab an available message process thread for later
processing.

Process This contains the code to perform the actual
processing of the message. It may be invoked either by
the decode method (for short duration operations) or
by a handler thread.

2.2.3 Message Processing Threads Pool

A pool of threads waiting to handle incoming requests
is managed by the communication manager. A
message that only takes a short time to process may be
handled immediately. Other messages will be handed
over to a handler thread, thus freeing its message
receiver thread to process other incoming messages.
The handler thread will process the message and, on
completion, place itself back on the queue waiting for
the next message to process.

3 VM MODIFICATIONS

3.1 Class Loading and Resolution

The Jikes RVM maintains descriptions of types in the
form of VM_Class, VM_Field and VM_Method
objects. Loading a Java class generates a set of these
objects to describe the type information of that class.
In a distributed context this raises issues of acquisition
and ownership of class information. Furthermore, the
dynamic class loading mechanism of Java provides an
opportunity to intercept the incorporation of classes
and codes into the executing system. These issues are
discussed in this section.

3.1.1 Distributed Class Loading

In a distributed system, it is necessary to have a
commonly agreed to identification of classes, and in
the dJVM we use a centralized class loader to achieve
this. Centralized class loading has some advantages
and disadvantages. It provides a simple single point of
coordination, but does create a bottleneck. However,
class loading becomes less common as the program
executes, and consequently this is not seen as a
performance priority in long running applications.

The class loading strategy employed must
accommodate the dJVM boot process and normal
running. Therefore, it has two phases:
Booting—an initial boot phase, prior to becoming a

member of the cluster, in which classes must be
loaded locally. Classes loaded locally must have
their identity resolved with classes that are also
present on the remote machines prior to activating
centralized class loading.

Running—each class is loaded through a master node,
ensuring a commonly agreed to identity for all
newly loaded classes.

A set of objects are used to describe the type of a
class, i.e. fields, methods and interfaces. A class type
remains constant during the lifetime of the JVM. As
such, each object describing this high level type
information can be copied. Its identity is maintained
by mapping each local copy to the same global
identifier (UID).

In addition to replicating type information, for
performance purposes, it is necessary to replicate
literal values and static finals. This requires the class
loading process to obtain these values and place them
in the local VM's table of contents (JTOC).
Furthermore, the local dictionaries used to maintain
indexes to this data must also be updated.

Once loaded, a class can be instantiated. Instantiation
compiles all static and virtual methods needed.
Compilation can be done locally, generating code
objects that are only visible within a node. The code
generated is placed in arrays of type INSTRUCTION
which can be directly executed. Each object has a
TIB1 (Type Information Block) as part of its header
that describes some low level type specific
information which includes a method table. In a
homogeneous system, it is possible to replicate the
TIB objects and the method code objects (this will be
explored later).

The final phase is class initialization. This executes the
static initialization code <clinit> for a class. In a
JVM, class initialization happens only once. However,
in the dJVM some of the runtime support structures
are local to each node and must be initialized on each
node where it is used. Thus, class initialization:
• for a runtime support class (specified by

implementing DVM_LocalOnlyStatic),
occurs once on each node that uses it, or

• for a globally used class, occurs once on the
master node.

Recall that the runtime support classes are for the
internal management purposes of the dJVM and not
for use by the application.

3.1.2 Dynamic Class Loading

The dynamic class loading mechanism of Java allows
the definition and use of user class loaders. Loading
classes through this mechanism provides opportunities
to modify class definitions and code [Marquez et al,
2000]. This provides a powerful tool which has been
used to implement persistence and can be used to
effect distribution. Mechanisms at the user class loader
level suffer from two drawbacks:
• User class loaders are prevented from operating

on system classes. Although this does not prevent
wrapper classes from being used to redefine

1 A TIB is an object used to describe object type information.

system class behaviour, it does impede the
development of effective transformations as well
as the efficiency of those transformations.

• Once a class has been loaded into a virtual
machine, it signature and its place in the hierarchy
becomes immutable.

As the Jikes RVM is written in Java, these two
disadvantages disappear.

A small set of bytecode transformation tools [Zigman,
2002] integrated into the Jikes RVM are used to
provide hooks for applying code transformations for
effective distribution. The use of these tools minimizes
the intrusiveness of the modifications to the
compilation systems within the Jikes RVM by
allowing transformations of class hierarchies, class
signatures and method bytecodes including system
classes. If necessary, these changes can be masked
from the application code through a modified
introspection mechanism.

3.2 Method Invocation

When a method is invoked on an object, there are two
main issues that need to be addressed before the
method can be executed. The first is to determine
where the object containing the method resides. The
second is to decide where the method should be
executed. We deal with the first issue in Section 3.4.
Here, we look at the latter issue, that of method
execution.

Once we locate the home node of the object, we need
to decide where to execute the invoked method. We
can migrate the object to the node that invoked the
method and execute it there. However, effective object
placement locates objects at nodes based on execution
pattern and hence, random movement of objects is to
be avoided. Therefore, we will not pursue this
approach and will use the following options based on
context:
• Where the method is a static method, or is a

method that does not access fields of its object, or
accesses only immutable (that is, read only) fields
of its object, the method is executed locally, since
the method code is replicated and available
locally. The immutable fields of the object are
cached locally to reduce remote accesses.

• In all other cases, the method is executed on the
node where the object is located, through the
remote method invocation mechanism described
in Section 2.2.

If an object is known to be immutable, then that object
is replicated and cached locally. The LID to UID
mapping of that object is changed to indicate that it is
locally cached.

When we execute a method on a remote node, the
execution context of the corresponding thread
changes, along with the physical identity of the thread.
However, the global identity of the thread must not
change. In order to ensure this, each logical thread has

a unique global identifier and the mapping of that
identifier to a local physical thread (VM_Thread) is
changed at each node where it executes. This requires
special handling and caching of application level
threads, i.e. threads that extend java.lang.Thread.

Node 1 Node 2

VM_Thread VM_ThreadA B

a.m()

c.y() b.x()

Figure 1: Local Thread Reuse

This raises the question of the reuse of local thread
structures. Figure 1 depicts a thread, Thread A,
instigated on Node 1 that remotely calls a method
b.x() on Node 2. The local thread structure, Thread B,
is given the same global identity as Thread A. Method
b.x() performs a remote call to method c.y() back on
Node 1. Local Thread A is reused, continuing the
processing of threads call chain. This is more efficient
than allocating a new thread at Node 1 that logically
should have the same global identity as Thread A. Our
design differs in this respect from that of Aridor et al
[1999], where they create a new thread at Node 1 in
such a scenario.

Method calls are synchronous. Thus, a call made to
another will block the instigating thread until that call
is satisfied. However, as in the above example, if the
same global thread calls a method on that node, then
the blocking thread is interrupted and informed of the
new incoming operation it is required to perform.
Once that operation has been completed, it then waits
for the completion of the remote method call.

To effect a remote invocation, a message
encapsulating the identity of the thread and the method
to be executed, along with the appropriate parameters,
is generated. This message is passed to the target node,
where a local thread resource is assigned (if one
already hasn't), the parameters placed on the stack and
the appropriate method invoked. This mechanism can
be implemented either by:
Inline code modification—Code is constructed at

compile time to retrieve the parameters from the
stack (converting each reference from a local to a
global representation), packing them into a
message, which is sent as a request to the target
node. Upon receipt of an invocation request, the

parameters must be unpacked onto the stack and
the method invoked. However, such a method can
pollute the instruction cache of the initiating site.

Proxy methods—Each method that is compiled has
two additional methods generated, proxy and stub.
The first packs and sends a request and the second
unpacks and invokes the method. This requires
determining whether an object is local or remote.
Aridor et. al. [2001] state that ``We cannot make
this determination by using different classes for
the master and proxy, or by adding a field to the
application, as the introspection APIs would make
this visible to the application, violating SSI''.
However, this can be circumvented by modifying
the introspection mechanism in the Jikes RVM
runtime libraries, so that the mutations in the class
definitions are hidden from the application.

Clearly, the second solution is cleaner and more
flexible. For expediency, in the initial prototype we
used the first solution, but have moved to the second
solution with the port of Jikes RVM 2.2.0.

Exceptions and interrupts must also be accounted for.
A thread that handles an incoming request must catch
all possible exceptions from the application code.
Once an exception is caught, it must package that
exception and return it to the node that initiated the
call, where it will be re-raised. By contrast, an
interrupt must be propagated along the call chain to
the node currently executing the global thread, where
it is finally dispatched to the underlying VM_Thread.
3.3 Data Access

In broad terms, there are two areas that need to be
considered: globally referenced data (i.e. static
variables) and instance data (i.e. objects and arrays).

3.3.1 Globally Referenced Data

Each node must manage its local resources. The local
resource management information in a non-distributed
JVM is global data. However, in a distributed JVM,
most of that information is global only within the
context of that node. Hence, the set of static variables
in a distributed JVM can be divided into two mutually
disjoint sets, namely:
• the set of static variables that are global to all the

nodes, and
• the set of static variables that are global within a

specific node.

One way to implement the above is to encapsulate the
node specific information in an object that is visible
only within the specific node. Another is to change the
code that accesses static data according to the data that
is being accessed. We take the second approach.

A runtime test is necessary to determine if a static
variable is held locally or remotely. The Jikes RVM
(and its runtime structures) are written in Java which
raises the following two issues:

1. Determine whether or not the static variable under
consideration is just a local runtime support
variable.

2. If not, check whether it is of the type that may be
held locally or remotely. If so, test where it is
actually located by using a local runtime structure.

If care is not taken, then the code generated to test
whether a static variable is locally or remotely held
may itself require a similar test, resulting in an infinite
loop.

In the Jikes RVM, the static fields are held in a Java
Table of Contents (JTOC). Associated with each field
is a descriptor that identifies the category and type of
information held, e.g. literal int, static field long. The
set of descriptors is an array of bytes, held as a static
array in VM_Statics, and is referenced from the
JTOC. Each descriptor has two unused bits and w use
these to indicate whether it is a read only field and/or a
remotely held field.

In general, the runtime support classes in the Jikes
RVM only contain static variables that are used
locally within a node. This is communicated to the
compiler through a simple annotation method
commonly used in Java—an empty interface
DVM_LocalOnlyStatic implemented by any class
that contains static data that is always accessed locally.
The code generated to access a static field of such a
class is unchanged from that of the original compiler.
For other classes, the test described above is
performed. Clearly, this does not introduce any
overhead for locally used static variables. However, it
does introduce some overhead for other static
variables. The overhead will be reduced in later
implementations by combining the descriptor and
JTOC information into the one array.

3.3.2 Instance Data

The approach taken to implementing the reference
faulting mechanism, outlined in Section 3.4, dictates
the compiler changes necessary for handling instance
data. In particular, there are four different types of
code to consider: object and array access, code
execution, lock operations and type checks.

Field access (getfield and putfield) and array element
access (aaload, aastore etc.) dereference an object2 to
determine the memory location of the data. The
software detection of remote references mentioned in
Section 3.4 necessitates a test of the reference itself. A
local reference is accessed in the normal manner,
whereas a remote access is initiated by calling a static
method, which generates a message that contains a
description of the remote operation (see Section 2.2).

2 An array element access is considered to be a variant of field
access.

3.3.3 Type Operations

The remaining operations are type checking
operations. Explicit type checking operations
checkcast and instanceof) can interrogate the types
through remote calls. We cache this information
locally, since an object's type remains unchanged
during its life time. Any interrogation of an object to
obtain its TIB is intercepted to obtain the TIB from the
local cache.

3.4 Object Location

We use a reference faulting mechanism to determine
whether an object is available locally, or is only
available remotely. This is achieved by using an
appropriate global and local addressing scheme for
objects. Each object has an associated universal
identifier or UID that uniquely identifies the object in
the cluster. The UID needs to be resolved into an
object address at a specific node. One of the ways in
which the UID can be allocated is centrally, where the
allocation of UIDs is done by a master node in the
cluster. However, this could lead to a bottleneck at that
node. We have chosen to use a decentralized
approach, where each node in the cluster allocates a
UID for an object that it owns, from a range of UIDs
under its control. A UID is generated when an object
reference is exported for the first time. The node that
owns an object is called the home node of that object.
While this eliminates the above mentioned bottleneck
problem, it does lead to more complicated updates
resulting from object movement from one node to
another.

At any given node in the cluster, an object reference
either points to a local object or to a remote object. In
our implementation, a local object has an associated
object identifier or OID. This is identical to the
address of the object at that node and thus avoids any
overheads incurred through indirection tables or
indexes. A remote object has an associated local
logical identifier or LID at that node. This LID needs
to be mapped to the UID of the object to determine its
exact location in the cluster.

In the Jikes RVM, all object and array addresses are 4
byte aligned. We use this property to make the
reference faulting mechanism work. All the LIDs are
misaligned, while the OIDs, being actual object
addresses, are not. This can be implemented by either:
Software—Misaligned addresses can be detected by

examining the LSBs (least significant bits) of an
address and branching if not zero. This introduces
a couple of instructions into the instruction
pipeline. Importantly, no indirection or additional
loads are required.

Hardware—In the Jikes RVM, checking array bounds
and object types are 4 byte aligned operations, and
their interrogation via a misaligned address will
cause a hardware trap. Most accesses will be to
local objects, so the added expense of a hardware

trap for remote objects will be outweighed by zero
overhead for local access.

We have currently implemented this using software,
but intend to implement the hardware faulting
mechanism.

3.5 Locking

Locking operations are directed to the home node of
the object, and in the case of locks on classes they are
directed to the home node of the class (the master
node). The thread identifier sent with the lock is the
global identifier of the thread, for obvious reasons. A
thread that already has a lock can acquire additional
locks on the same object. The number of locks and
unlocks must be equal. For efficiency, additional
requests need not be sent to the home node. A local
count can be kept, and an unlock request sent to the
home node once the count reaches zero.

The explicit lock operations monitorenter and
monitorexit are handled by the Jikes RVM runtime
system and do not need compiler modifications.
Implicit locks on object instances (synchronized
methods) are similarly handled. However, implicit
locks on statics must be directed to the home node of
the class. In the case of classes that implement
DVM_LocalOnlyStatic, this is done locally. In all
other cases, it is done by the master node.

4 OBJECT ALLOCATION AND PLACEMENT

In order to enable the distribution of objects across the
nodes in the cluster, there should be a way of remotely
allocating an object on a specified node. In the Jikes
RVM, the VM_Allocator class does the work of
object allocation. In dJVM, this is replaced with an
allocator that directs requests to a standard local
allocator or to an allocator on another node. On
initialization, each node will have an instance of an
allocator that directs allocation requests to the local
node. Each allocator instance acts as a placeholder,
enabling the remote invocation mechanism to be used
to effect remote allocation requests to specific nodes.
The UID of this placeholder object is known to all the
other nodes. A remote allocation request is passed on
to the placeholder object of the node at which the
allocation is to be made, which then allocates the
object locally at that node.

Introducing a local or remote allocation decision
process at runtime can be expensive. Compile time
analysis can eliminate some of these decisions by
generating local allocation code where it is clearly
sensible to do so. Object placement is important for
load balancing and performance improvements.
Ideally, a new object should be placed on the node
where it is most required. Aridor et. al. [1999; 2001]
enumerate a number of techniques and patterns used to
improve efficiency and these will be incorporated into
the dJVM. Additionally, we will examine further
techniques using escape analysis, call chain, and static

and dynamic profiling information to enhance object
placement.

5 CONCLUSIONS AND FUTURE WORK

In this paper, we present some of the design issues that
we came across in developing dJVM. We also outline
some solutions to these issues. Currently, we have a
working prototype that uses the baseline compiler. We
are working on modifying this prototype to use the
latest version of the Jikes RVM. Once this is done, we
will look at the following issues:
Optimizing Compiler—The optimizing compiler

implements a range of analysis and optimization
techniques. These optimization techniques can be
applied to the Jikes RVM (and hence our
extensions) as well as the application code.
Consequently, we intend to use facilities such as
escape analysis and profiling, to feed into the
object placement and migration decision making
processes.

Proxy/Stub—For code execution a proxy/stub
mechanism provides a cleaner implementation of
code invocation. This will be mixed with the
reference faulting scheme, to provide minimum
overhead for field and array accesses, while
providing a clean implementation for remote calls.

Communication—Flattening the communication
hierarchy and removing all but essential object
creation and data copying.

From our experience with building the dJVM, we feel
that the JVM specification should allow for a system
class loader facility that minimizes the set of system
classes that cannot be modified. Although, such a
mechanism does raise significant security issues.

Concurrently with the development of dJVM using the
optimizing compiler, we will investigate techniques to
improve performance. We intend to use techniques
such as code analysis, and static and dynamic
profiling, for determining object placement and
migration, object caching and thread migration. We
also intend to implement efficient distributed garbage
collection algorithms.

6 ACKNOWLEDGEMENTS

The dJVM project is funded under the ANU-Fujitsu
CAP Research program.

7 REFERENCES
Bowen Alpern, Anthony Cocchi, Derek Lieber, Mark
Mergen and Vivek Sarkar. Jalapeño—a Compiler-
supported “Java Virtual Machine for Servers”. In
Workshop on Java for High-Performance Computing
(with ICS99), Rhodes Greece, June 1999.

Yariv Aridor, Michael Factor and Avi Teperman.
“CJVM: a Cluster Aware JVM”. In First Annual
Workshop on Java for High-Performance Computing
(with ICS99), Rhodes Greece, June 1999.

Yariv Aridor, Michael Factor and Avi Teperman.
Implementing Java on Clusters. In Euro-Par 2001,
LCNS 2150, Rhodes Greece, 2001, Springer-Verlag,
Pp722-732.

D Caromel and J Vayssiere. “A Java famework for
seamless sequential, multi-threaded, and distributed
programming”. In ACM 1988 Workshop on Java for
High-Performance Network Computing, INRIA
Sophia Antipolis, Greece, 1998.

DCS. Bunyip (Beowulf) Project.
http://tux.anu.edu.au/Projects/Bunyip/.

Michael Hicks, Suresh Jagannathan, Richard Kelsey,
Jonathon T Moore and Cristian Ungureanu.
“Transparent Communication for Distributed Objects
in Java”. In ACM 1999 Conference on Java Grande,
San Francisco, California, USA, 1999, ACM Press.

P Launnay and J Pazat. “A framework for parallel
programming in Java”. EUT Report 1154, IRISA,
December 1997.

T Lindholm and F Yellin. “The Java Virtual Machine
Specification”. 2nd Ed, 1999.

M J M Ma, F C M Lau, C L Wang and Z Xu.
“JESSICA: Java-Enabled Single System Image
Computing Architecture”. In Ronald Morrison, Mick
Jordan and Malcom Atkinson, editors, International
Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA99), Las Vegas,
July 1999.

M MacBeth, K McGuigan and P Hatcher. “Executing
Java threads in parallel in a distributed-memory
environment”. In IBM Centre for Advanced Studies
Conference, Canada, November 1998.

Alonso Marquez, John N Zigman and Stephen M
Blackburn. “Fast portable orthogonally persistent
Java”. Software: Practice and Experience, 30(4):449-
479, April 2000.

NERSC. M-VIA.
http://www.nersc.gov/research/FTG/via/.

Objectspace. Voyager.
http://www.objectspace.com/products/voyager/.

Michael Philippsen and Matthias Zenger.
“JavaParty—Transparent Remote Objects in Java”.
Concurrency: Practice and Experience, 9(11):1225-
1242, November 1997.

VIArch. VIArch. http://www.viarch.org/.

Weimin Yu and Alan L Cox. “Java/DSM: A Platform
for Heterogeneous Computing”. Concurrency: Practice
and Experience, 9(11):1213-1224, November 1997.

John N Zigman. “Bytecode Transformation Tools for
Jikes RVM”. http://www.wastegate.org/systems/,
2002.

	c0: Proceedings 17th European Simulation Multiconference(c) SCS Europe BVBA, 2003 ISBN 3-936150-25-7

