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Abstract: This paper presents a new domain decomposition approach whose main goal is the computation of a
load balancing partition while reducing the overhead to compute such a partition. In the proposed approach, the
number of neighbours of each sub-domain returned by the decomposition can be bounded by an user supplied
value. This reduces the communication overhead of the application. We describe an algorithm implementing our
decomposition strategy and apply our approach to WaTOR, a classical dynamical simulation problem. We report
also some preliminaries result to prove the effectiveness of our approach.
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1 INTRODUCTION

Domain Decompositionis a technique exploited both
to balance the load and to reduce communications in
parallel applications [Culler and Singh, 1998]. It is
applied when the data set of the application can be re-
garded as a physical domainwhere the computation
performed on each element � requires the knowledge
of a small subset of data close to� only. Several paral-
lel applications belong to this class, a classical exam-
ple being that of cellular automata [Sloot and Talia,
1999].

This technique partitions the domain into a set of
sub-domains with the same computational load and as-
signs each sub-domain to a distinct process. Each pro-
cess updates the elements belonging to its sub-domain
� and communicates with the other processes only to
update the elements located on the boundary of �.

The domain decomposition problem becomes chal-
lenging when dynamical applicationsare considered
because in these applications the decomposition of the
domain has to be updated during the computation. The
update is required to take into account that the number
of the elements of the domain and/or their positions
are dynamic, i.e. change during the computation.

Several approaches have been proposed in the last
years. Each strategy takes into account the trade-off
between the overhead introduced by the dynamic par-
titioning of the domain and the benefits obtained by
balancing the load. Orthogonal Recursive Bisection
[Salmon, 1990] is a domain decomposition strategy
exploited in many parallel application. This technique

produces an optimal balance of the work, at the ex-
pense of a large computational complexity. On the
other side, simpler solutions often result in decomposi-
tions of the domain characterized by an unsatisfactory
load balance.

This work describes the BoundedNeighboursap-
proach, a domain decomposition technique whose main
goal is to reduce the overhead introduced by partition-
ing the domain while preserving an acceptable balance
of the work. Another interesting feature of our ap-
proach is that it allows the user to boundthe number
of neighbours of each sub-domain. Since each sub-
domain is assigned to a different process, this bounds
also the number of communications of each process
and, hence, the overall communication overhead.

Section 2 reviews existing proposals. The main
features of our strategy are described in section 3,
while section 4 presents the Bounded Neighboursim-
plementation. Finally, section 5 shows the application
of Bounded Neighboursto WaTOR, a classical irreg-
ular distributed simulation problem. Some significant
performance results are described as well.

2 RELATED WORKS

Several domain partitioning techniques have been
proposed in the last years. While most of them con-
sider 2-dimensional domains, almost all of them can
be easily extended to cover a larger number of dimen-
sions.

Applications defined on irregular and/or dynamical
domains generally require a dynamic partitioning of



the domain. Nevertheless, some dynamical applica-
tions exploit scattered decomposition[Saltz, 1990], a
static decomposition technique. Scattered decompo-
sition partitions the domain into a set of rectangular
zones, the templates. Each template is further divided
into a set of rectangular regions, the granules. Cor-
responding granules belonging to different templates
are assigned to the same process. The resulting load
is balanced only when the domain is characterized by
a uniform distribution of the load to the granules. The
main advantage of this technique is that the decompo-
sition defines a set of regular communication patterns.
On the other way, a satisfactory load balance may be
obtained only when the size of the granules is rather
small.

Since the communication overhead due to a gran-
ule increases with the ratio between the perimeter and
the area of the granule, a larger number of granules
improves load balancing at the expense of increasing
the ratio between the communication overhead and the
computational one.

Dynamic decomposition techniques update the do-
main partition when the number and/or the position of
the elements are modified. A well known approach
is that of [Salmon, 1990; Simon, 1994], the Orthog-
onal Recursive Bisection (ORB). ORB initially splits
the domain into two rectangular sub spaces with the
same load. The set of processes is partitioned into two
subsets as well, and each subspace of the domain is
assigned to a subset of processes. The procedure is re-
cursively applied until a single subspace is assigned to
each process. In general, ORB achieves a good bal-
ance, but its computational cost is high because of the
complexity of determining the cuts of the domain. Fur-
thermore, each process records the partitions through
a binary tree, built during the load balancing phase.
This tree is visited during the computation to detect
the neighbours of each process. This visit introduces
a further overhead in the computation. Note that, in
the worst case, an high number of neighbours may re-
sult for each process. ORB was originally proposed
for an hypercube architecture and its implementation
is greatly simplified if the number of processes of the
application equals a power of 2.

A simpler approach considers the domain as a grid
that is partitioned into blocks of contiguous rows. The
boundaries of each block are dynamically re computed
to balance the load. The main advantage of this tech-
nique is its simplicity. Furthermore, each process has
two statically defined neighbours. The main disadvan-
tage is that the balancing is not satisfactory, because of
the coarse grain of the partitioning.

The cost zone [Singh et al, 1995] or space fill-
ing curves [Singh et al, 1995; Baden and Pilkington,
1995; Moon et al, 2001] are exploited for applications

defining a hierarchical subdivision of the domain .

3 BOUNDING NEIGHBORS

Bounded Neighboursis a domain decomposition strat-
egy whose main goal is to reduce the overheadof dy-
namical domain partitioning while producing an ac-
ceptable load balance. Furthermore, Bounded Neigh-
boursallows the user to boundthe number NSof neigh-
bours of each sub-domain. This implies a reduction
of the overhead due to communications. As a mat-
ter of fact, the process associated with a sub-domain
requires elements belonging to its neighbours when it
updates the elements on the border of its partition only.
In our approach, the number of processes exchanging
data with each process of the application is bounded
by ��. Since each communication with a distinct
partner implies a new start-up phase, this reduces the
communication overhead. It is worth noticing that the
computational cost of the start-up phase of each com-
munication is high, in particular when considering ap-
plications developed on workstation clusters. Further-
more, several optimizations can be applied to reduce
the communication cost between a single pair of part-
ners.
In Bounded Neighboursthe value of the parameter��

can be defined by the user. Each decomposition pro-
duced by Boundedn Neighbourssatisfies the bounded
neighbours condition, i.e. the number of neighbours
of each sub-domain does not exceed ��.

Bounded Neighboursgeneralizes the simple domain
decomposition that assigns blocks of consecutive rows
of the grid to each process. In our approach, each row
can be further subdivided into segments and each seg-
ment can be assigned to a different sub-domain. The
leftmost part of Figure 1 shows a decomposition pro-
duced by Bounded Neighbours. This strategy returns
an optimal load balancing, but, in general, the bounded
neighbours condition is not satisfied. This constraint is
considered in a second phase, when the cuts produced
by the first one are shifted to produce a legal decom-
position. Bounded Neighboursdefines a set of sim-
ple conditions which imply the bounded neighbours
one. Consider, for instance, a ��� grid and suppose
�� � �, i.e. the number of neighbour of each domain
is bounded by 2. In this case, the following conditions
guarantees that the bounded neighbours condition is
satisfied.

� each row of the grid includes at most one cut;

� each sub-domain includes at least � points of
the grid



These conditions can be easily checked by consid-
ering the grid decomposition. For instance, in Figure
1, process P3 includes exactly m points of the grid.

[Bonotti, 2002] defines similar conditions for the
more general case. It is worth noticing that the num-
ber of cuts that can be applied to each row increases
with the value of ��. Furthermore, the balancing is
improved by a larger number of cuts. Nevertheless,
our experiments show that an acceptable compromise
between communication overhead and load balancing
may be achieved by low values of ��.

Fig. 1 compares our approach with blocks of rows
decomposition (shown in the central part of the fig-
ure) and with orthogonal recursive bisection(shown
in the right part). Our approach produces a better load
balancing with respect to the first one because a row
can be cut and the resulting subset of the row can be
assigned to different processes. In the block of row
decomposition, the number of neighbours of each pro-
cess is equal to to 2. This can be obtained also in our
approach, by setting �� to 2.

In general, the ORB strategy, achieves a better load
balancing. On the other hand, in the worst case, it may
result in a large number of neighbours of a given sub-
domain.

Furthermore, in our approach, the computation of
cuts is straightforward. Instead,��� [Salmon, 1990]
requires a parallel median finder algorithm which, in
turn, results in a large amount of communications to
implement domain decomposition.

4 THE IMPLEMENTATION

This section describes a 	
� algorithm to imple-
ment the Bounded Neighbours strategy. If � is the
number of processes of the application, the algorithm
partitions the domain into � sub-domains and assigns
���� to process 
�. Each process exploits a data
structure, the cut-array, to store the initial and the fi-
nal coordinates of each sub-domain, i.e. the cutsof the
grid.

This structure is initialized when the elements are
distributed to the processes and is updated after each
load balancing step. Note that this structure does not
store the exact location of the elements in the other
sub-domains produced by a partition, it only describes
the partition of the domain among the application pro-
cesses.

The Bounded Neighbours algorithm consists of four
phases:

� Trade off Evaluation

� Cuts Computation

� Cuts Checking

� Data Exchange

In the first phase, Trade offevaluation, processes
exchange their current load. This information is ex-
ploited to evaluate the trade-off between the overhead
introduced by the execution of the algorithm and the
unbalance of the computation. The following phases
are executed only if the trade-off is significant. In the
Cuts Computationphase the processes compute the
new partitions, i.e. the new cuts to balance the load.
This phase can produce an illegal partition of the do-
main, i.e. a partition where the number of neighbours
is larger that ��. In the following phase, Cuts Check-
ing, a partition may be updated to produce a legal so-
lution. Finally, in the Data Exchangephase, the pro-
cesses exchange data to build the new partition of the
domain. In the following, we will describe each phase
in more detail.

4.1 Trade-Off Evaluation

We assume that each process, after each load bal-
ancing step, stores in a local data structure the cuts
defining the partition of the domain and the current
load of any other process. The load may be changed
because, during a computational step, the number and/or
the position of the elements in the domain may be
modified. In this phase, processes exchange their cur-
rent load, i.e. the number of elements currently be-
longing to a sub-domain. This communication is im-
plemented by a 	
� �������� primitive.

After the collective communication, each process
computes the optimal load and evaluates the trade-off
between the overhead due to the execution of the load
balancing algorithm and the benefits of a balancing
step. The trade-off is defined by the following crite-
ria:

� Number of elements

The current number of elements can be easily
computed by summing the current load of any
process. If this value is smaller than a threshold
percentage Pof the total number of positions of
the grid, the load balancing step is not executed,
because, the overhead of the load balancing is
not balanced by the resulting speed up of the
computation.

� Maximum Unbalance

The overall execution time of a computation step
is determined by the execution time of the slow-
est process, i.e. the process 
� owning the sub-
domain �� including 	����, the largest num-
ber of elements. The load balancing algorithm
is executed only if the difference between the
	��� and the optimal number of elements of
each process is larger than threshold value V.
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Figure 1. Load Balancing Strategies

The user can modify 
 and � to tune its applica-
tion. An example is discussed in Section 5.

4.2 Cuts Computation

The Cuts Computationphase computes the new par-
tition of the domain that assigns the optimal number
of elements to each process. If the resulting partition
does not satisfy the Bounded Neighbours condition,
it will be modified in the next phase, Cut Checking
which always generates a legal partitioning.

The Cut Computationphase consists of two steps.
Let us denote by old partition, the partition computed
in the previous load balancing step and by new par-
tition that computed in this phase. In the first step,
each process computes the intersectionsbetween the
cuts defining the new partition and the sub-domains
defined by the old partition. This computation exploits
both the information gathered in the trade-off evalua-
tion phase and the cut-arraystoring the cuts of the old
partition.
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Figure 2. Cuts Computation

Consider, for instance, Figure 2. The leftmost part
of the figure shows the old partition of the domain,
which is recorded in the cut-array. For each sub do-
main we show a reference to the process owning the

sub-domain and the current load of that process. This
information, gathered during the trade off evaluation
step, is exploited to compute the optimal amount of
elements to be assigned to each process, 25 in the con-
sidered example. In the right part of the figure, the
new cutsare shown through dashed lines. It is worth
noticing that the exact location of a new cut can be de-
termined only by the process 
� owning the domain
including the cut. Since any other process 
� , � �� �,
does not know the exact location of the elements in
����, 
� can only determine the number of cutsof
the new partition intersecting ����. During this step,
each process 
� builds a list, ListCutsand an array, Re-
ceivecuts. Listcuts stores the coordinates of all the cuts
intersecting its domain. Receivecutsis an � elements
array, where the j-th position records the number of
cuts intersecting ���� , for any � �� �.

Consider again Figure 2. Process 
� computes
the coordinates of the cuts that intersects the first sub-
domain of the old partition and stores them in its List-
cuts. All other processes store the value � in the first
position of their Receivecutsarray.

The code implementing this step is shown in Fig-
ure 3. We suppose that the variable TotBalanceand
Optbalancerecord, respectively, the total number of
elements of the grid and the optimal amount of work
to be assigned to each process. The i-th position of the
array ElPart records the current load of process 
 �.

When all the processes have completed this step,
the exact location of the new cuts is notified by each
process to any other one. This communication step
is implemented by a loop executed in parallel by all
the processes, according to an �
	� programming
style. To notify its cuts to the other processes, at each
iteration process 
� executes a distinct 	
� broad-
cast communication as a sender for each of its cuts.
Each process 
� � �� � executes, in turn, � MPI broad-
cast, as a receiver, where k is the value stored in Re-
ceivecuts[i].



Tot = TotBalance;
Diff= OptBalance;
i =0; CutPos=0;
Listcuts = �;
while Tot�0

if (Elpart[i]�Diff)
Diff = Diff - Elpart[i];
Tot = Tot - Elpart[i];
i = i+1;

else
%calcolo nuovo taglio
ElPart[i] = ElPart[i] - Diff;
if myrank()�� i

Listcuts=Listcuts �NewCutUpdate(CurPos, Diff)
else

ReceiveCuts[i]=ReceiveCuts[i]+1;
endif
Tot = Tot -Diff;
Diff= OptBalance

endif
endwhile

Figure 3. Cuts Computation

4.3 Cuts Checking

This phase checks the Bounded Neighbourscondi-
tion for the partition produced by the previous step. If
appropriate, it modifies the partition as well. In the fol-
lowing, we show the implementation in the case where
�� � �. [Bonotti, 2002] describes the more general
case. Each process considers the sub-domains in a se-
quential order and it checks the following conditions
where ��� is the sub-domain that is currently con-
sidered.

� Each sub-domain ��� should include at least
� grid elements, � is the number of columns
of the grid. In this way ���� completely sepa-
rates ������ from ������. This implies that
each domain has 2 neighbours. If this condition
is not satisfied, all the processes shifts forward
the cuts of the domains following���, in order
to associate at least� points of the grid to���.
This operation can introduce a certain amount of
unbalance. However, our experiments show that
this case is not very frequent and may arise only
when the dimension of the grid is small with re-
spect to the number of available processes.

� If ��� includes � or more grid elements, each
process checks if the the bounded neighbours
condition can be verified by all the sub-domains
considered after ���. This is possible if the
number of grid cells from the final cut of ���
to the end of the grid is larger than � times the
number of sub-domains still to be considered.
If this condition is violated, then this is the first

domain violating the condition because the do-
main are considered one at a time. Then ���
and the following sub-domains can be updated
to satisfy the condition.

4.4 Data Exchange

The phase implements, the actual exchange of the
elements. Let �
� be the old sub-domain associated
with 
� and �
� its new sub-domain. Each process:

� sends to 
� each element belonging to the inter-
section of �
� with �
�

� receives from 
� any element belonging to the
intersection of �
� with �
�

In the example of Figure 2, process 
� sends some
elements to 
� because some elements in its old sub-
domain now belongs to 
�. It also receives some el-
ements from 
� and all the elements of the partition
assigned to 
�.

5 WaTOR: AN IRREGULAR DYNAM-
ICAL SIMULATION

The load balancing strategy defined in Section 4
has been exploited to implement WaTOR, a classical
distributed simulation problem. This problem, origi-
nally introduced in [Dewdney, 1984], defines an ide-
alized world where fishes and sharks move randomly,
feed, breed and die. Plankton is located randomly at
the vertices of the grid. Fish eat plankton, while sharks
eats fishes.

The exact rules describing the behaviour of fishes
and sharks are given in [Dewdney, 1984].

[Fox et al, 1988] observes that, even if these rules
are too simple to describe a realistic biological popu-
lation, the parallel implementation of WaTORpresents
a number of interesting features characterizing more
advanced parallel applications as well. First of all, the
application is characterized by a very in homogeneous
and dynamic load distribution. As a matter of fact, the
distribution of the elements in the domain is not uni-
form and the number of the elements of the domain
changes dynamically due to their death and breeding.
Second, a conflict resolution strategyhas to be defined
to solve the conflicts arising among animals. For in-
stance, two animals can decide to move to the same
point of the grid, or two sharks can decide to eat the
same fish. Since no specific rule is specified in [Dewd-
ney, 1984], any choice is acceptable. In the parallel
implementation, conflict resolution is more complex
because it can involve several processes. As a matter
of fact, conflicts can arise among processes which con-
currently try to update the same cell of the grid belong-
ing to a border of the sub-domain. Several strategies



have been proposed in [Fox et al, 1988], ranging from
the simplest one which simply eliminates the animal
losing the conflict, to that defining a complex rollback
strategy.

Let us briefly describe the main characteristics of
our implementation. Our implementation models the
problem domain as a two-dimensional toroidal grid.
Fishes and sharks are located at the vertices of this
grid and can move only to the four nearest-neighbours
vertices. A straightforward implementation stores the
grid in a rectangular two-dimensional array. The draw-
back of this solution is that processes can spend a sig-
nificant amount of time to examine empty regions of
the ocean. For this reason, an application process P
exploits a linked list storing only animals present on
the grid. The grid is represented by a one dimensional
array of � elements, where � is the number of the rows
of the grid. Each element of the array is null if the
corresponding row of the grid does not belong to 
 ,
otherwise it includes the list of all the animals in the
row. This solution reduces the memory required for
rows not belonging to the process. Furthermore, rows
can be added or deleted during load balancing without
modifying the rows not involved in the operation.

The conflicts are solved by avoiding the concur-
rent update of a grid point. In turn this is achieved
by properly ordering the communications among the
processes. The computation alternates a computation
step and a load balancing step. During the compu-
tation, first each process updates the upper border of
its domain and sends it, through an immediate 	
�

communication, to its neighbour. Then, each process
updates the inner part of its domain. Before updating
the lower border of its domain a process receives the
updated upper border from its neighbour, it updates its
lower border and it sends it back. After each computa-
tion phase, Bounded Neighboursis executed.

5.1 Results

This section shows some preliminary performance re-
sults. The experiments have been performed on Backus,
a cluster of 8 PCs running Linux and connected by a
Fast Ethernet network switch [Danelutto, 2003].

We have tested the effectiveness of the Bounded
Neighbours algorithm through the Wator implemen-
tation and compared the result obtained considering
grids of different sizes. For each case, we have com-
pared the speed-up obtained when load is not balanced
versus that achieved by exploiting Bounded Neighbours.
The speed-up achieved for a ���� ��� grid, rs. for a
����� ���� grid are shown in the leftmost, rs. in the
rightmost part, of Figure 4. The parameters of the
simulation are shown in table 1.

The percentages are referred to the total number of
elements of the grid. As far as concerns the ���� ���

number of fishes 20 %
number of sharks 30 %
initial amount of plancton: 30%
fish survival time 7
shark survival time 3
fishes breeding age 10
sharks breeding age 12
number of simulation steps : ���

Table 1. Simulation Parameters

grid, we have that the overhead introduced by Bound-
edNeighboursequals the benefits obtained by balanc-
ing the load. As a matter of fact, the speed-ups achieved
in the two experiments are comparable. In the case of
the ����� ���� grid, the speed-up that is achieved by
balancing the load is larger that the one that is achieved
without load balancing. Furthermore, the former speed-
up is close to the optimal one.

We have also investigated the relation between the
percentage of unbalanced load and the execution time,
in the case of 8 processors and a ���� � ���� grid.
Figure 5 shows the execution times corresponding to
different unbalance degrees, i.e. to different values of
the threshold value � , see section 4.1. The values
shown on the x-axis corresponds to different percent-
age of unbalance with respect to the size of the grid.
The value 0 corresponds to the execution time obtained
when Bounded Neighboursis not exploited. The re-
sults show that, even for low unbalances, the execution
time decreases when Bounded Neighboursis applied.

6 CONCLUSIONS

This paper has presented the Bounded Neighbours
approach to domain decomposition. The most impor-
tant feature of this approach is that the number of neigh-
bours of each process is bounded. An implementation
of the BoundedNeighboursapproach has been devel-
oped and its effectiveness has been tested through Wa-
TOR, a classical irregular distributed simulation prob-
lem. Current implementation supports two neighbour-
ing sub-domains for each domain produced by the par-
tition. Preliminary results show a good trade off be-
tween the overhead introduced by the load balancing
algorithm and the reduction of the execution time. We
are planning to modify the decomposition procedure in
order to support more cuts for each row. Furthermore,
we will exploit our algorithm in the implementation of
more complex simulation problems, such as real life
problems described by cellular automata.
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