
BANDWIDTH MANAGEMENT IN A CENTRALIZED LARGE
SCALE DISSEMINATION NETWORK – A SIMULATION

STUDY

KONSTANTINOS G. ZERFIRIDIS

Department of Informatics
Aristotle University of Thessaloniki, 54124, Greece

zerf@csd.auth.gr

HELEN D. KARATZA

Department of Informatics
Aristotle University of Thessaloniki, 54124, Greece

karatza@csd.auth.gr

Abstract: The evolution of the Internet gave rise to new applications. The need to disseminate high volumes of
data to numerous users along with the evolution of Peer-to-Peer systems, introduced a new alternative to the
traditional client-server paradigm. File sharing networks became the platform for thousands of users to share
content. Users often turn to these networks to find highly anticipated, newly released software or video files
which sometimes are of considerable size. However, increased mean response time or even network failures can
be observed in such P2P systems, often caused because of uneven flow of data and intersperse congestion points.
In this paper, the structure of Peercast, an agent based dissemination network, is presented. Several simulation
experiments were conducted and their results are examined in order to determine how the network’s bandwidth
can be best utilized during the dissemination process.

keywords: peer-to-peer, network modeling, middleware, grid computing

1. INTRODUCTION

As bandwidth availability is increasing, users’
demands change constantly. Today the internet is
used to download music, software, video clips and
other files of considerable size. This can saturate the
network quickly, clogging the host computer. Such is
the case for example when any highly anticipated
software is released and several people are trying to
download it at the same time. This became known as
the middle night madness problem [Schooler and
Gemmell, 1997]. Conventional FTP servers can no
longer serve as a way of distributing large amounts of
data. For example, modern Linux distributions can
span more than one CD. Assuming that the server's
bandwidth is 1 MBit/sec and the requested software
is distributed in 2 ISO CD images, the server could
only serve about 50 clients in a period of one week,
even in the theoretical case that no errors occur.
Mirroring the required content on several dispersed
servers, cannot always compensate for the rapid
traffic increase.

In such cases, traditional ways of making data
available to the masses do not apply to modern
demands. The main architecture used for casting data
through the Internet is IP multicast, which mainly
targets real-time non-reliable applications. It extends
the IP architecture so that packets travel only once on
the same parts of a network to reach multiple
receivers. A transmitted packet is replicated only if it
needs to, on network routers along the way to the
receivers. Although it has been considered as the

foundation for Internet distribution and it is available
in most routers and on most operating systems, IP
multicast has not so far lived up to early
expectations. Its fundamental problem is that it
requires that all recipients receive the content at the
same time. The most popular solution to this problem
was to multicast the content multiple times until all
of the recipients obtain it. Some of the other
drawbacks of IP multicast include small address
space (26-bit), need of large routing tables and lack
of congestion control and reliable transfer control.

Several algorithms arise for membership
management and packet replication to solve
problems such as server implosion from client side
NACKs (negative acknowledgments), server
explosion from maintaining status of the download
process for each client and managing downloads
requests by users connected with different
bandwidths. Forward Error Correction (FEC) has
long been used for the dissemination of static data as
it provides graceful degradation of performance in
the presence of packet losses. Its greatest
disadvantage is that it is very demanding on CPU and
memory [Rizzo, 1997].

Although IP multicast might be considered ideal for
applications that require relatively high and constant
throughput but not much delay, it is not suitable for
applications that may tolerate significant delays but
no losses. This is the case with file distribution.
These days, a new way of disseminating files
emerged. File sharing networks [Parameswaran et al,

2001] are perhaps the most commonly used
Peer-To-Peer applications. P2P systems existed since
the birth of the Internet, but as bandwidth,
computational power and great storage capacity
became available, their popularity increased. Such
systems have been used for diverse applications:
combining the computational power of thousands of
computers, forming collaborative communities,
instant messaging, etc.

P2P file sharing networks' main purpose is to create a
common pool of files where everybody can search
and retrieve any shared files. Depending on the
algorithm used, these sharing networks can be
divided in two groups. Networks that maintain a
single database of peers and their content references
are known as centralized. Such file sharing networks
[Shirky, 2001] have several advantages, such as easy
control and maintenance, and some disadvantages as,
for example, server overload. On the other hand,
dynamically reorganizing networks such as Gnutella
[Ripeanu, 2001], have a rather more elaborate service
discovery mechanism, avoiding this way the use of a
centralized server. Those kinds of networks are
known as decentralized, and their main advantage is
the absence of a single point of failure. However, the
lack of a coordinating server may lead to inefficient
use of the network’s resources.

Along with the widespread use of those networks,
several problems emerged. A study conducted at the
Xerox Palo Alto Research Center showed that 70%
of Gnutella users provided no files or resources to the
system and that 1% of the users were providing half
of the total system resources [Adar and Huberman,
2000]. This created network bottlenecks causing
further inter-domain jamming. File sharing networks
had never been designed for file dissemination.
Nevertheless people turn to them to find highly
anticipated files, when the official server stops
responding due to high demand. Extensive research
has been done about how existing P2P networks
operate over time and how they can be optimized
[Markatos, 2002; Ripeanu et al, 2002]. However, the
dissemination process of highly anticipated files on
P2P networks over unreliable network connections
remains unexplored. Peercast, a P2P network first
presented in [Zerfiridis and Karatza, 2003], is
designed to assist the dissemination of a file in a
heterogeneous network of clients. The purpose of this
paper is to show how the Peercast performs under
different bandwidth utilization scenarios using a
simulated model of the network. The drown
conclusions can be used to optimize other P2P file
sharing networks as well.

The structure of this paper is as follows. In section 2
PeerCaster, the agent based infrastructure used, is
presented. Section 3 shows Peercast’s structure,
along with its latest extensions. Section 4 elaborates

on the network’s simulation model and in section 5
the results and drawn conclusions are summarized.
Finally, section 6 presents plans for further research.

2. THE INFRASTRUCTURE

Software agents are programs that act on behalf of
clients. They are able to perform predefined tasks
that are assigned to them. This is done either with or
without the supervision of the user, depending on the
given job. Mobile agents have an additional property
[Chess et al, 1995]. The ability to transport
themselves on different systems after being executed,
carrying with them their program code, current state
of execution and any data which was obtained. This
gives them the unique capacity of living on a
distributed network rather than on a distant stationary
system, and to take advantage of the services that
each host has to offer locally. Furthermore, mobile
agents allow proprietary code to be used on the hosts,
allowing complete customization of the retrieved
results.

The unique properties of the mobile agents give them
the edge in comparison to the traditional client-server
paradigm. They have been used in the past instead of
protocols [Joy, 2000], for file transfer [Spalink et al,
1999] and as a dynamic system for information
discovery and retrieval. There are many applications
that would benefit from the use of mobile agents as a
vehicle for getting around bottlenecks. PeerCaster
[Zerfiridis and Karatza 2002] is a platform
implemented in Java that uses mobile agents as a
vehicle delivering great amount of static data to users
on a heterogeneous network. This is done by splitting
the data into small packets, loading them onto mobile
agents and releasing them to the peers where the
payload is delivered and continue according to their
itinerary. The coordination and communication
overhead is acceptable considering the scalability
that can be gained by the dynamic nature of the
agents. As they can operate asynchronously and
independently of the process that created them, they
do not need to report back to the server. In this paper,
PeerCaster was used as a mean of distributing high-
demand files without clogging the host computer.
This system could be integrated as part of a P2P file
transfer network, or it could be used as an alternative
to multicast for large files with great demand, such as
the release of a new version of popular software as
depicted in [Schooler and Gemmell, 1997].

3. THE NETWORK

When a file needs to be downloaded by more clients
than the server can handle, alternative algorithms
have to be utilized. The naive way of avoiding
retransmissions is to pipeline the file through all the
clients. But this is not a viable solution because
clients might have to indefinitely wait to be served.

The proposed algorithm uses centralized approach in
order to avoid uneven flow of data and intersperse
congestion points which can compromise
inter-domain quality of service. The server can
upload the file to a certain number of clients
simultaneously. When the server successfully
uploads a file to a client, it keeps a reference of this
client to a list. The server has the responsibility of
maintaining a complete list of served clients that are
currently on-line.

Although the server has a queue, most of the clients
are expected to find this queue full. This is the case
especially at the beginning of the dissemination
process, as clients arrive more rapidly than the server
can handle. When this happens, the server sends to
the client a short (up to 100 entries) list of randomly
selected peers that downloaded successfully the file,
and are known to be on-line. This way, the new client
can download the file from a peer that was already
served, removing the congestion from the server. If
the client cannot be served by any of those peers it
requests another list of clients in order to continue
searching for service. If the server is contacted more
than 10 times, or the returned list is less than 100
entries long, the client waits for a certain period of
time before it contacts the server again. If a client
cannot contact a peer either because it is off-line or
because it is unreachable due to network failure, it
sends to the server a short message so that the server
can update its database.

As it was mentioned earlier, when a client finishes
the download it acts as a server for other clients.
Similarly to the server, the clients have a short queue.
If a client A requests the file from a client B that has
it, and client B can not serve client A immediately, A
is queued. If the queue is full, client B dismisses
client A. When a client finishes the download, it
sends a short report message to the server in order to
include it in its list.

When a peer leaves the network, the list maintained
at the server is left in an inconsistent state. In order to
compensate for this, clients that are not able to
contact other peers, report to the server that this peer
is no longer reachable. If the server receives several
such reports for the same peer, it removes its
reference from the list.

In order to utilize all the available upload bandwidth,
a single peer can serve several clients concurrently.
Additionally, each client can initiate multiple
concurrent download connections in order to utilize
all the available download bandwidth. At the end of
the transfer, the downloading client sends a message
to the server in order to be included in the list.

Several issues arise about the performance of this
algorithm under different network conditions in a
heterogeneous network of clients. For example, what
is the benefit of allowing several clients to download
from a single peer? It will reduce the average waiting
time, but what consequences will it have on the
downloading speed and in the long run on the total
number of served clients? On the other hand, if the
clients are able to download from multiple peers
simultaneously, how will it affect the system’s
dissemination process? This can in theory utilize all
the download bandwidth of client and therefore,
reducing the mean response time.

4. SIMULATION MODEL

In this section details are presented about the
simulation model for the proposed network, and
show how different strategies might affect the
dissemination process. An object-oriented model of
the network was used for the simulation. The
programming language used was Java. The system
was populated with clients arriving according to the
exponential distribution. The simulation period was
set to be 2 weeks (1209600 seconds). During the first
week the mean interarrival time was incremented
linearly from 5 to 20 sec in order to simulate demand
on a highly anticipated file. For the second week the
exponential distribution was used with 20 sec mean
interarrival time. The file size was set to be 650MB
(the size of a full CD).

All the clients that populated the system were set to
have broadband connections to the Internet,
resembling cable modems and DSL. This is done in
order to use a realistic model. As in many cases, such
connections have different download and upload
speeds. Four different categories of users were used.
The first category (10% of the clients) had download
and upload speed of 256 Kbps, the second (40% of
the clients) had 384 Kbps and 128 Kbps respectively,
the third (20% of the clients) had 384 Kbps download
and 384 Kbps upload speed, and the fourth (30% of
the clients) had 1.5 Mbps and 384 Kbps respectively.
This configuration is a theoretical model, and is used
to compare how the same network performs under
different conditions.

These kinds of clients are always on-line. However,
they are not expected to share the file for ever.
Therefore they were set to leave the dissemination
network with exponential distribution and mean time
of four days. The server was set to have 1.5 Mbps
download / 384 Kbps upload connection (resembling
a DSL user) to the net and never to go off-line. As
the server is only uploading files, the simulation
would have given the same results if the server had
384/384 connection to the net (third category). An
additional difference between the server and the
clients is that the server keeps a list of all the served

clients that are currently on-line. This list is
constantly updated.

The actual connection speed between two clients is
calculated at the beginning of each session, taking
into consideration the theoretical maximum speed
they could achieve and an exponentially distributed
surcharge, in order to simulate additional network
traffic and sparse bottlenecks. If a new client cannot
be served or queued immediately, it waits for 600
seconds and retries. In order to simulate peers that
are not willing to assist in the dissemination process,
10% of the clients were set to go off-line
immediately after they finish downloading the file.
This is expected to significantly decrease the
performance of the dissemination process.
Nevertheless it is a behavior that can be expected.

If a client cannot contact another peer, it sends a
message to the server that this peer is unreachable.
When the server receives three such messages from
different clients for the same peer, that peer is
removed from the list. This is done to avoid
removing a client from the list just because one
connection could not be established. However, if a
client that is participating in the dissemination
process is not requested to serve another peer for
over 1200 seconds, it contacts the server to verify
that it is still included in the server’s list. This is done
as a countermeasure to accidental removals from the
list.

As it was mentioned earlier, the behavior of this
network can change significantly under certain
conditions. The system’s performance is investigated
at the beginning (2 weeks) of the dissemination,
under different conditions. Our focus is on how the
system behaves under different bandwidth loads.
More specifically, the simulations tested the system’s
performance when 1, 2, 4 and 8 concurrent upload
streams were used. In each case, a serving-client was
able to serve one or multiple peers at the same time
by sharing the client’s bandwidth. By sharing the
bandwidth to multiple peers the full bandwidth is
utilized, but the connection speed decreases.
Additionally, the system’s performance was tested
with clients that were able to download from 1, 2, 4
and 8 serving-clients simultaneously. If a client can
not use all its available download streams it retries to
find an available serving-client after 600 seconds.
With this approach, the client’s download bandwidth
can be utilized to the maximum. On the other hand,
several serving-clients are occupied by serving one
client, diminishing this way overall network
performance.

5. SIMULATION RESULTS AND CONCLUSION

In total 16 simulations were done. Table 1 reveals
significant differences between the tested scenarios.
The increased mean response time in all cases can be
explained as the clients that arrive early on the
dissemination process have to wait for a long period
of time to be served. When the rate of arrivals
balances with the rate of clients being served, the
mean response time stabilizes to lower levels. This
balance occurs when a critical mass of serving-clients
has been built. The critical mass is reached when the
number of served clients in the system starts to
decline (figure 1). Therefore, clients arriving later in
the system benefit from a faster service. This is
depicted in figure 2 where mean response time is
shown in 12 hour intervals according to each client’s
arrival in the system.

Figure 1. Network’s status over time, 4 upload
and 4 download streams

Figure 2. Mean response time in 12–hour
intervals according to each client’s arrival

Table 1 shows that using 8 concurrent upload streams
for each client increased dramatically the mean
response time in all cases. Additionally, figure 2
shows that although the mean response time for the
8/8 case is increase at the beginning of the
dissemination process, after the critical mass is
reached it decreased dramatically, even to lower
levels than those of the other cases,. The explanation
for this is that when the critical mass has been built,
there are enough serving-clients in the system to
accommodate the rest of the peers and the new
clients as they arrive. Therefore, the multiple upload
streams utilize the client’s upload bandwidth to the

maximum and assist the peers in finding service
immediately as they arrive in the system.
On the other hand, multiple upload streams have the
opposite affect at the beginning of the dissemination
process. Sharing the serving-client’s bandwidth to
multiple peers reduces the downloading speed. This
increases the response time, and therefore the critical
mass is built much later in the dissemination process.
This is shown in figures 3 and 4, where as the upload
streams increase, the time period in which the system
reaches the critical mass increases also. Comparing
these two figures reveals also that the use of multiple
download streams accelerates the build of the critical
mass.

Figure 5 reveals that for the 4 upload streams case,
the more download streams used, the sooner the
critical mass is built. This can be seen in table 1 as
well, where shorter mean response time is observed
as the download streams increase. This is also the
case for the 8 upload streams scenario. However,
table 1 shows that this is not valid for the other two
sets of tests. For example, the 1 download / 4 upload
streams test produced reduced mean service time in
comparison with the 1 download / 8 upload streams
case. This shows that although multiple download
streams have a positive affect on the utilization of the
given bandwidth, they can also be accountable for the
depletion of network resources.

Overall, the system’s behavior can change
dramatically by using different bandwidth utilization
scenarios. Increased number of download streams
helped in all the cases to the faster build of the
critical mass. However in some cases this was the
reason for an increase in the mean response time. On
the other hand the use of multiple upload streams
increased the mean response time before the build of
the critical mass, but afterwards it decreased the
mean response time. We propose the use of a
dynamically changing number of upload and
download streams as the dissemination process
develops. The server can estimate when the critical
mass is reached by the size of the list of
serving-clients that it maintains. Before that point,
using 2 upload and 4 download streams can speed up
the build of the critical mass. After that point, by
gradually increasing the upload and download
streams to 8, is expected to decrease the mean
response time. Simulation results of this scenario are
under way.

6. FUTURE WORK

The use of a decentralized approach, as described in
[Zerfiridis and Karatza, 2003], is also investigated in
order to determine the best upload/download
bandwidth utilization scenario in that case.
Additional simulation experiments are under way,
using distributions varying with time for more

Figure 4. Total clients served over time (8
download streams)

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

10
00

61
00

0

12
10

00

18
10

00

24
10

00

30
10

00

36
10

00

42
10

00

48
10

00

54
10

00

60
10

00

66
10

00

72
10

00

78
10

00

84
10

00

90
10

00

96
10

00

10
21

00
0

10
81

00
0

11
41

00
0

12
01

00
0

Time (sec)

T
o

ta
l c

lie
n

ts
 s

er
ve

d

1 upload slot 2 upload slots 4 upload slots 8 upload slots

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100
0
620

00

123
000

184
000

245
000

306
000

367
000

428
000

489
000

550
000

611
000

672
000

733
000

794
000

855
000

916
000

977
000

103
800

0

109
900

0

116
000

0

Time (sec)

To
ta

l c
li

en
ts

 s
er

ve
d

1 download slot 2 download slots 4 download slots 8 download slots

Figure 5. Total clients served over time (4 upload
streams)

Figure 3. Total clients served over time (1 download
stream)

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100
0
620

00

123
000

184
000

245
000

306
000

367
000

428
000

489
000

550
000

611
000

672
000

733
000

794
000

855
000

916
000

977
000

103
800

0

109
900

0

116
000

0

Time (sec)

To
ta

l c
li

en
ts

 s
er

ve
d

1 upload slot 2 upload slots 4 upload slots 8 upload slots

realistic long-run simulations, as depicted in
[Karatza, 2002]. Peercast is an evolving platform.
For the current P2P network implementation we used
a monolithic approach: all the data has to be sent to a
client, before this client starts sending it to another
peer. A new version that replicates groups of 256KB
packets, to adjacent peers as they arrive, is under
way. This is expected to alleviate the problems that
are caused from peers that go off-line immediately or
soon after they finish downloading the requested file.
The synchronization between the peers is done in
predetermined time intervals, called epochs [Karatza
and Hilzer, 2001]. The peers are segmented in virtual
groups according to their bandwidth and the epoch
size depends on an estimation of the minimum
bandwidth between the peers that form each
dissemination group. Simulation results from this
network are expected to show alleviation of several
issues raised in this paper such as the increased mean
response time at the beginning of the dissemination.
An alternative way which we also investigate is to
use prior knowledge of a peer's content to push newly
arrived packets.

REFERENCES
Adar E. and Huberman B.A. 2000, “Free Riding on
Gnutella”, Technical report, Xerox Palo Alto
Research Center.

Chess D.M., Grosof B., Harrison C.G., Levine D.,
Parris C. and Tsudik G. 1995, “Itinerant Agents for
Mobile Computing”, Journal of Personal
Communications, IEEE Computer Society, Vol. 2
(5). Pp34-49.

Joy B. 2000, “Shift from Protocols to Agents”,
Internet Computing, IEEE Computer Society, Vol. 4
(1). Pp63-64.

Karatza H.D. 2002, “Task Scheduling Performance
in Distributed Systems with Time Varying
Workload”, Neural, Parallel & Scientific
Computations, Dynamic Publishers, Atlanta, Vol. 10.
Pp325-338.

Karatza H.D. and Hilzer R.C. 2001, “Epoch Load
Sharing in a Network of Workstations”, In Proc. 34th
Annual Simulation Symposium, IEEE Computer
Society Press, SCS, Seattle, Washington. Pp36-42.

Markatos E.P. 2002, “Tracing a large-scale Peer to
Peer System: an hour in the life of Gnutella”, In
Proc. CCGrid 2002, Second IEEE/ACM
International Symposium on Cluster Computing and
the Grid. Pp65-74.

Parameswaran M., Susarla A. and Whinston A.B.
2001, “P2P Networking: An Information Sharing
Alternative”, Computer Journal, IEEE Computer
Society, Vol. 34. Pp31-38.

Ripeanu M., Foster I. and Iamnitchi A. 2002,
“Mapping the Gnutella Network: Properties of large
scale peer-to-peer systems and implications for
system design”, Internet Computing Journal, IEEE
Computer Society. Pp50-57

Rizzo L. 1997, “On the feasibility of software FEC”,
Technical report, Univ. di Pisa, Italy.

Schooler E. and Gemmell J. 1997, “Using Multicast
FEC to solve the Midnight Madness Problem”,
Technical Report, Microsoft research.

Shirky C. 2001, Peer-to-Peer: Harnessing the
Benefits of a Disruptive Technology / Listening to
Napster, ed. I.A. Oram, O'Reilly & Associates.

Spalink T., Hartman J.H. and Gibson G. 1999, “The
Effects of a Mobile Agent on File Service”, In Proc.
First International Symposium on Agent Systems and
Applications, Third International Symposium on
Mobile Agents (ASA/MA '99), Palm Springs,
California, IEEE Computer Society. Pp42-49.

Zerfiridis K.G. and Karatza H.D. 2002, "Mobile
Agents as a Middleware for Data Dissemination",
Neural, Parallel & Scientific Computations,
Dynamic Publishers, Atlanta, Vol. 10. Pp313-323.

Zerfiridis K.G. and Karatza H.D. 2003, “Large Scale
Dissemination using a Peer-to-Peer Network”. To
appear in the Proceedings of the 3rd International
Workshop on Global and Peer-to-Peer Computing on
Large Scale Distributed Systems, IEEE/ACM
International Symposium on Cluster Computing and
the Grid 2003, Tokyo.

KONSTANTINOS G. ZERFIRIDIS
received his Diploma degree in
Mathematics in June 1998 at the Aristotle
University of Thessaloniki. In 1999 he
received his M.Sc. degree in computer
science from the University of Edinburgh.
He is currently a researcher and working

towards a Ph.D. at the Aristotle University of Thessaloniki.
His research interests are mobile computing, mobile agents,
distributed and Peer-to-Peer systems.

HELEN D. KARATZA is an Associate
Professor in the Department of Informatics
at the Aristotle University of Thessaloniki,
Greece. Her research interests mainly
include Performance Evaluation of Parallel
and Distributed Systems, Multiprocessor
Scheduling, Mobile Agents, Mobile

Computing, and Simulation. Dr. Karatza is a member of
the Editorial Board of the International Journal of
Simulation: Systems, Science & Technology (the UK
Simulation Society), Associate Editor of the Journal
Simulation: Transactions of the Society for Modeling and
Simulation International and area Editor for computer
systems of the Journal of Systems and Software (Elsevier).

	c0: Proceedings 17th European Simulation Multiconference
(c) SCS Europe BVBA, 2003 ISBN 3-936150-25-7

