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Abstract: The evolution of the Internet gave rise to new applications. The need to disseminate high volumes of 
data to numerous users along with the evolution of Peer-to-Peer systems, introduced a new alternative to the 
traditional client-server paradigm. File sharing networks became the platform for thousands of users to share 
content. Users often turn to these networks to find highly anticipated, newly released software or video files 
which sometimes are of considerable size. However, increased mean response time or even network failures can 
be observed in such P2P systems, often caused because of uneven flow of data and intersperse congestion points. 
In this paper, the structure of Peercast, an agent based dissemination network, is presented. Several simulation 
experiments were conducted and their results are examined in order to determine how the network’s bandwidth 
can be best utilized during the dissemination process. 
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1. INTRODUCTION 

 
As bandwidth availability is increasing, users’ 
demands change constantly. Today the internet is 
used to download music, software, video clips and 
other files of considerable size. This can saturate the 
network quickly, clogging the host computer. Such is 
the case for example when any highly anticipated 
software is released and several people are trying to 
download it at the same time. This became known as 
the middle night madness problem [Schooler and 
Gemmell, 1997]. Conventional FTP servers can no 
longer serve as a way of distributing large amounts of 
data. For example, modern Linux distributions can 
span more than one CD. Assuming that the server's 
bandwidth is 1 MBit/sec and the requested software 
is distributed in 2 ISO CD images, the server could 
only serve about 50 clients in a period of one week, 
even in the theoretical case that no errors occur. 
Mirroring the required content on several dispersed 
servers, cannot always compensate for the rapid 
traffic increase.  
 
In such cases, traditional ways of making data 
available to the masses do not apply to modern 
demands. The main architecture used for casting data 
through the Internet is IP multicast, which mainly 
targets real-time non-reliable applications. It extends 
the IP architecture so that packets travel only once on 
the same parts of a network to reach multiple 
receivers. A transmitted packet is replicated only if it 
needs to, on network routers along the way to the 
receivers. Although it has been considered as the 

foundation for Internet distribution and it is available 
in most routers and on most operating systems, IP 
multicast has not so far lived up to early 
expectations. Its fundamental problem is that it 
requires that all recipients receive the content at the 
same time. The most popular solution to this problem 
was to multicast the content multiple times until all 
of the recipients obtain it. Some of the other 
drawbacks of IP multicast include small address 
space (26-bit), need of large routing tables and lack 
of congestion control and reliable transfer control. 
 
Several algorithms arise for membership 
management and packet replication to solve 
problems such as server implosion from client side 
NACKs (negative acknowledgments), server 
explosion from maintaining status of the download 
process for each client and managing downloads 
requests by users connected with different 
bandwidths. Forward Error Correction (FEC) has 
long been used for the dissemination of static data as 
it provides graceful degradation of performance in 
the presence of packet losses. Its greatest 
disadvantage is that it is very demanding on CPU and 
memory [Rizzo, 1997]. 
 
Although IP multicast might be considered ideal for 
applications that require relatively high and constant 
throughput but not much delay, it is not suitable for 
applications that may tolerate significant delays but 
no losses. This is the case with file distribution. 
These days, a new way of disseminating files 
emerged. File sharing networks [Parameswaran et al, 



2001] are perhaps the most commonly used 
Peer-To-Peer applications. P2P systems existed since 
the birth of the Internet, but as bandwidth, 
computational power and great storage capacity 
became available, their popularity increased. Such 
systems have been used for diverse applications: 
combining the computational power of thousands of 
computers, forming collaborative communities, 
instant messaging, etc.  
 
P2P file sharing networks' main purpose is to create a 
common pool of files where everybody can search 
and retrieve any shared files. Depending on the 
algorithm used, these sharing networks can be 
divided in two groups. Networks that maintain a 
single database of peers and their content references 
are known as centralized. Such file sharing networks 
[Shirky, 2001] have several advantages, such as easy 
control and maintenance, and some disadvantages as, 
for example, server overload. On the other hand, 
dynamically reorganizing networks such as Gnutella 
[Ripeanu, 2001], have a rather more elaborate service 
discovery mechanism, avoiding this way the use of a 
centralized server. Those kinds of networks are 
known as decentralized, and their main advantage is 
the absence of a single point of failure. However, the 
lack of a coordinating server may lead to inefficient 
use of the network’s resources. 
 
Along with the widespread use of those networks, 
several problems emerged. A study conducted at the 
Xerox Palo Alto Research Center showed that 70% 
of Gnutella users provided no files or resources to the 
system and that 1% of the users were providing half 
of the total system resources [Adar and Huberman, 
2000]. This created network bottlenecks causing 
further inter-domain jamming. File sharing networks 
had never been designed for file dissemination. 
Nevertheless people turn to them to find highly 
anticipated files, when the official server stops 
responding due to high demand. Extensive research 
has been done about how existing P2P networks 
operate over time and how they can be optimized 
[Markatos, 2002; Ripeanu et al, 2002]. However, the 
dissemination process of highly anticipated files on 
P2P networks over unreliable network connections 
remains unexplored. Peercast, a P2P network first 
presented in [Zerfiridis and Karatza, 2003], is 
designed to assist the dissemination of a file in a 
heterogeneous network of clients. The purpose of this 
paper is to show how the Peercast performs under 
different bandwidth utilization scenarios using a 
simulated model of the network. The drown 
conclusions can be used to optimize other P2P file 
sharing networks as well. 
 
The structure of this paper is as follows. In section 2 
PeerCaster, the agent based infrastructure used, is 
presented. Section 3 shows Peercast’s structure, 
along with its latest extensions. Section 4 elaborates 

on the network’s simulation model and in section 5 
the results and drawn conclusions are summarized. 
Finally, section 6 presents plans for further research. 
 
2. THE INFRASTRUCTURE 
 
Software agents are programs that act on behalf of 
clients. They are able to perform predefined tasks 
that are assigned to them. This is done either with or 
without the supervision of the user, depending on the 
given job. Mobile agents have an additional property 
[Chess et al, 1995]. The ability to transport 
themselves on different systems after being executed, 
carrying with them their program code, current state 
of execution and any data which was obtained. This 
gives them the unique capacity of living on a 
distributed network rather than on a distant stationary 
system, and to take advantage of the services that 
each host has to offer locally. Furthermore, mobile 
agents allow proprietary code to be used on the hosts, 
allowing complete customization of the retrieved 
results.  
 
The unique properties of the mobile agents give them 
the edge in comparison to the traditional client-server 
paradigm. They have been used in the past instead of 
protocols [Joy, 2000], for file transfer [Spalink et al, 
1999] and as a dynamic system for information 
discovery and retrieval. There are many applications 
that would benefit from the use of mobile agents as a 
vehicle for getting around bottlenecks. PeerCaster 
[Zerfiridis and Karatza 2002] is a platform 
implemented in Java that uses mobile agents as a 
vehicle delivering great amount of static data to users 
on a heterogeneous network. This is done by splitting 
the data into small packets, loading them onto mobile 
agents and releasing them to the peers where the 
payload is delivered and continue according to their 
itinerary. The coordination and communication 
overhead is acceptable considering the scalability 
that can be gained by the dynamic nature of the 
agents. As they can operate asynchronously and 
independently of the process that created them, they 
do not need to report back to the server. In this paper, 
PeerCaster was used as a mean of distributing high-
demand files without clogging the host computer. 
This system could be integrated as part of a P2P file 
transfer network, or it could be used as an alternative 
to multicast for large files with great demand, such as 
the release of a new version of popular software as 
depicted in [Schooler and Gemmell, 1997]. 

 
3. THE NETWORK 
 
When a file needs to be downloaded by more clients 
than the server can handle, alternative algorithms 
have to be utilized. The naive way of avoiding 
retransmissions is to pipeline the file through all the 
clients. But this is not a viable solution because 
clients might have to indefinitely wait to be served.  



 
The proposed algorithm uses centralized approach in 
order to avoid uneven flow of data and intersperse 
congestion points which can compromise 
inter-domain quality of service. The server can 
upload the file to a certain number of clients 
simultaneously. When the server successfully 
uploads a file to a client, it keeps a reference of this 
client to a list. The server has the responsibility of 
maintaining a complete list of served clients that are 
currently on-line. 
 
Although the server has a queue, most of the clients 
are expected to find this queue full. This is the case 
especially at the beginning of the dissemination 
process, as clients arrive more rapidly than the server 
can handle. When this happens, the server sends to 
the client a short (up to 100 entries) list of randomly 
selected peers that downloaded successfully the file, 
and are known to be on-line. This way, the new client 
can download the file from a peer that was already 
served, removing the congestion from the server. If 
the client cannot be served by any of those peers it 
requests another list of clients in order to continue 
searching for service. If the server is contacted more 
than 10 times, or the returned list is less than 100 
entries long, the client waits for a certain period of 
time before it contacts the server again. If a client 
cannot contact a peer either because it is off-line or 
because it is unreachable due to network failure, it 
sends to the server a short message so that the server 
can update its database. 
 
As it was mentioned earlier, when a client finishes 
the download it acts as a server for other clients. 
Similarly to the server, the clients have a short queue. 
If a client A requests the file from a client B that has 
it, and client B can not serve client A immediately, A 
is queued. If the queue is full, client B dismisses 
client A. When a client finishes the download, it 
sends a short report message to the server in order to 
include it in its list. 
 
When a peer leaves the network, the list maintained 
at the server is left in an inconsistent state. In order to 
compensate for this, clients that are not able to 
contact other peers, report to the server that this peer 
is no longer reachable. If the server receives several 
such reports for the same peer, it removes its 
reference from the list. 
 
In order to utilize all the available upload bandwidth, 
a single peer can serve several clients concurrently. 
Additionally, each client can initiate multiple 
concurrent download connections in order to utilize 
all the available download bandwidth. At the end of 
the transfer, the downloading client sends a message 
to the server in order to be included in the list.  
 

Several issues arise about the performance of this 
algorithm under different network conditions in a 
heterogeneous network of clients. For example, what 
is the benefit of allowing several clients to download 
from a single peer? It will reduce the average waiting 
time, but what consequences will it have on the 
downloading speed and in the long run on the total 
number of served clients? On the other hand, if the 
clients are able to download from multiple peers 
simultaneously, how will it affect the system’s 
dissemination process? This can in theory utilize all 
the download bandwidth of client and therefore, 
reducing the mean response time. 
 
4. SIMULATION MODEL 
 
In this section details are presented about the 
simulation model for the proposed network, and 
show how different strategies might affect the 
dissemination process. An object-oriented model of 
the network was used for the simulation. The 
programming language used was Java. The system 
was populated with clients arriving according to the 
exponential distribution. The simulation period was 
set to be 2 weeks (1209600 seconds). During the first 
week the mean interarrival time was incremented 
linearly from 5 to 20 sec in order to simulate demand 
on a highly anticipated file. For the second week the 
exponential distribution was used with 20 sec mean 
interarrival time. The file size was set to be 650MB 
(the size of a full CD). 
 
All the clients that populated the system were set to 
have broadband connections to the Internet, 
resembling cable modems and DSL. This is done in 
order to use a realistic model. As in many cases, such 
connections have different download and upload 
speeds. Four different categories of users were used. 
The first category (10% of the clients) had download 
and upload speed of 256 Kbps, the second (40% of 
the clients) had 384 Kbps and 128 Kbps respectively, 
the third (20% of the clients) had 384 Kbps download 
and 384 Kbps upload speed, and the fourth (30% of 
the clients) had 1.5 Mbps and 384 Kbps respectively. 
This configuration is a theoretical model, and is used 
to compare how the same network performs under 
different conditions. 
 
These kinds of clients are always on-line. However, 
they are not expected to share the file for ever. 
Therefore they were set to leave the dissemination 
network with exponential distribution and mean time 
of four days. The server was set to have 1.5 Mbps 
download / 384 Kbps upload connection (resembling 
a DSL user) to the net and never to go off-line. As 
the server is only uploading files, the simulation 
would have given the same results if the server had 
384/384 connection to the net (third category). An 
additional difference between the server and the 
clients is that the server keeps a list of all the served  



clients that are currently on-line. This list is 
constantly updated. 
 
The actual connection speed between two clients is 
calculated at the beginning of each session, taking 
into consideration the theoretical maximum speed 
they could achieve and an exponentially distributed 
surcharge, in order to simulate additional network 
traffic and sparse bottlenecks. If a new client cannot 
be served or queued immediately, it waits for 600 
seconds and retries. In order to simulate peers that 
are not willing to assist in the dissemination process, 
10% of the clients were set to go off-line 
immediately after they finish downloading the file. 
This is expected to significantly decrease the 
performance of the dissemination process. 
Nevertheless it is a behavior that can be expected. 

 
If a client cannot contact another peer, it sends a 
message to the server that this peer is unreachable. 
When the server receives three such messages from 
different clients for the same peer, that peer is 
removed from the list. This is done to avoid 
removing a client from the list just because one 
connection could not be established. However, if a 
client that is participating in the dissemination 
process is not requested to serve another peer for 
over 1200 seconds, it contacts the server to verify 
that it is still included in the server’s list. This is done 
as a countermeasure to accidental removals from the 
list.  
 
As it was mentioned earlier, the behavior of this 
network can change significantly under certain 
conditions. The system’s performance is investigated 
at the beginning (2 weeks) of the dissemination, 
under different conditions. Our focus is on how the 
system behaves under different bandwidth loads. 
More specifically, the simulations tested the system’s 
performance when 1, 2, 4 and 8 concurrent upload 
streams were used. In each case, a serving-client was 
able to serve one or multiple peers at the same time 
by sharing the client’s bandwidth. By sharing the 
bandwidth to multiple peers the full bandwidth is 
utilized, but the connection speed decreases. 
Additionally, the system’s performance was tested 
with clients that were able to download from 1, 2, 4 
and 8 serving-clients simultaneously. If a client can 
not use all its available download streams it retries to 
find an available serving-client after 600 seconds. 
With this approach, the client’s download bandwidth 
can be utilized to the maximum. On the other hand, 
several serving-clients are occupied by serving one 
client, diminishing this way overall network 
performance.  
 
5. SIMULATION RESULTS AND CONCLUSION 
 
In total 16 simulations were done. Table 1 reveals 
significant differences between the tested scenarios. 
The increased mean response time in all cases can be 
explained as the clients that arrive early on the 
dissemination process have to wait for a long period 
of time to be served. When the rate of arrivals 
balances with the rate of clients being served, the 
mean response time stabilizes to lower levels. This 
balance occurs when a critical mass of serving-clients 
has been built. The critical mass is reached when the 
number of served clients in the system starts to 
decline (figure 1). Therefore, clients arriving later in 
the system benefit from a faster service. This is 
depicted in figure 2 where mean response time is 
shown in 12 hour intervals according to each client’s 
arrival in the system. 
 

 

 
Figure 1. Network’s status over time, 4 upload 
and 4 download streams 
 

 
Figure 2. Mean response time in 12–hour 
intervals according to each client’s arrival 
 



Table 1 shows that using 8 concurrent upload streams 
for each client increased dramatically the mean 
response time in all cases. Additionally, figure 2 
shows that although the mean response time for the 
8/8 case is increase at the beginning of the 
dissemination process, after the critical mass is 
reached it decreased dramatically, even to lower 
levels than those of the other cases,. The explanation 
for this is that when the critical mass has been built, 
there are enough serving-clients in the system to 
accommodate the rest of the peers and the new 
clients as they arrive. Therefore, the multiple upload 
streams utilize the client’s upload bandwidth to the 

maximum and assist the peers in finding service 
immediately as they arrive in the system.  
On the other hand, multiple upload streams have the 
opposite affect at the beginning of the dissemination 
process. Sharing the serving-client’s bandwidth to 
multiple peers reduces the downloading speed. This 
increases the response time, and therefore the critical 
mass is built much later in the dissemination process. 
This is shown in figures 3 and 4, where as the upload 
streams increase, the time period in which the system 
reaches the critical mass increases also. Comparing 
these two figures reveals also that the use of multiple 
download streams accelerates the build of the critical 
mass. 
 
Figure 5 reveals that for the 4 upload streams case, 
the more download streams used, the sooner the 
critical mass is built. This can be seen in table 1 as 
well, where shorter mean response time is observed 
as the download streams increase. This is also the 
case for the 8 upload streams scenario. However, 
table 1 shows that this is not valid for the other two 
sets of tests. For example, the 1 download / 4 upload 
streams test produced reduced mean service time in 
comparison with the 1 download / 8 upload streams 
case. This shows that although multiple download 
streams have a positive affect on the utilization of the 
given bandwidth, they can also be accountable for the 
depletion of network resources. 
 
Overall, the system’s behavior can change 
dramatically by using different bandwidth utilization 
scenarios. Increased number of download streams 
helped in all the cases to the faster build of the 
critical mass. However in some cases this was the 
reason for an increase in the mean response time. On 
the other hand the use of multiple upload streams 
increased the mean response time before the build of 
the critical mass, but afterwards it decreased the 
mean response time. We propose the use of a 
dynamically changing number of upload and 
download streams as the dissemination process 
develops. The server can estimate when the critical 
mass is reached by the size of the list of 
serving-clients that it maintains. Before that point, 
using 2 upload and 4 download streams can speed up 
the build of the critical mass. After that point, by 
gradually increasing the upload and download 
streams to 8, is expected to decrease the mean 
response time. Simulation results of this scenario are 
under way. 
 
6. FUTURE WORK 
 
The use of a decentralized approach, as described in 
[Zerfiridis and Karatza, 2003], is also investigated in 
order to determine the best upload/download 
bandwidth utilization scenario in that case. 
Additional simulation experiments are under way, 
using distributions varying with time for more 

Figure 4. Total clients served over time (8 
download streams) 
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Figure 5. Total clients served over time (4 upload 
streams) 

Figure 3. Total clients served over time (1 download 
stream) 
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realistic long-run simulations, as depicted in 
[Karatza, 2002]. Peercast is an evolving platform. 
For the current P2P network implementation we used 
a monolithic approach: all the data has to be sent to a 
client, before this client starts sending it to another 
peer. A new version that replicates groups of 256KB 
packets, to adjacent peers as they arrive, is under 
way. This is expected to alleviate the problems that 
are caused from peers that go off-line immediately or 
soon after they finish downloading the requested file. 
The synchronization between the peers is done in 
predetermined time intervals, called epochs [Karatza 
and Hilzer, 2001]. The peers are segmented in virtual 
groups according to their bandwidth and the epoch 
size depends on an estimation of the minimum 
bandwidth between the peers that form each 
dissemination group. Simulation results from this 
network are expected to show alleviation of several 
issues raised in this paper such as the increased mean 
response time at the beginning of the dissemination. 
An alternative way which we also investigate is to 
use prior knowledge of a peer's content to push newly 
arrived packets. 
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