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Abstract

Overly optimistic processing in Time Warp can threaten the
stability of the simulation due to large memory consump-
tion and explosive rollback growth. To address the sta-
bility concerns of optimistic simulation, Choe and Trop-
per proposed a learning-based flow control algorithm which
throttles over-optimistic execution by regulating the flow of
events between pairs of processors throughout the course of
the simulation. This flow control algorithm has been shown
to effectively improve simulation stability for certain appli-
cations in a shared-memory environment.

In this paper we present an analysis and experimental ver-
ification of the performance of this flow control algorithm
in a distributed-memory environment. Results show that
the flow control algorithm reduces the memory usage, the
number of rollbacks and the number of antievents at the ex-
pense of the simulation time. Thus it becomes apparent that
the behaviour of the flow control algorithm is not a conse-
quence of learning, but it is highly dependent on the type
of simulation platform, event granularity and communica-
tion latency. Taking these results into account, we discuss
a number of approaches to learning and flow control using
the outlines of the flow control algorithm, and we consider
the extent of the performance improvement to be expected
from memory-based schemes for limiting Time Warp opti-
mism in a distributed-memory environment.

1 Introduction

The Time Warp optimistic simulation technique is designed
to exploit the maximum achievable parallelism in a discrete
event simulation system; thus, it has the potential to ob-
tain excellent performance and scalability results. Unfor-
tunately, the optimistic behaviour of Time Warp brings with
it its own hazard: instability and excessive use of memory.
For a system to be stable, it should be able to adapt quickly
to any perturbations in the environment and maintain an ac-
ceptable level of performance. In Time Warp, however, per-

turbations such as sudden bursts of incoming events, strag-
glers and anti-events may cause a host to exceed its memory
capacity, degrade its performance, propagate its adverse ef-
fects to the neighbors, and finally result in the congestion of
the simulation system with work that would soon be rolled
back. In the most extreme cases, the number of rollbacks
increases without bound, making it impossible for the sim-
ulation to finish in a finite amount of time [10].

Hence, for the best performance of a Time Warp simula-
tion system, the instability must be kept to a minimum. Nu-
merous methods for reducing the cost and the number of
rollbacks have been proposed to control instability. The ap-
proaches to reducing the number of rollbacks can be classi-
fied in two categories: the direct control approach, which
aims to slow down the processes further ahead in simu-
lated time, and the indirect control approach, which aims
to limit memory consumption, in turn limiting the advance
of a processor in simulated time. The earlier direct con-
trol algorithms used windowing techniques to bound the
progress of all processors [10, 19, 15]. Currently the fo-
cus is on adaptive protocols, which dynamically change spe-
cific control parameters to influence the degree of throttling
[7, 14, 18, 16].

The algorithms aiming for direct control do not actively deal
with the possibility of a processor poorly managing its al-
loted memory space; such concerns, however, are the pri-
mary consideration of the indirect control algorithms.

An adaptive protocol for a shared-memory machine based
on the Cancelback mechanism is presented in [5]. This pro-
tocol manages the pool of shared memory for the entire sim-
ulation and adjusts the amount of memory provided to the
parallel simulator to maximize performance. An adaptive
flow control mechanism is proposed in [12], also intended
for a shared-memory environment. This mechanism limits
the number of uncommited events generated by a processor,
thus preventing overly-optimistic execution. A window of
events is used to set an upper bound on the number of un-
commited events to be scheduled in a time period; the fossil
collection commits events and thus serves as acknowledg-
ments.



In the indirect control category, Choe and Tropper [4] pre-
sented an algorithm targeted towards a distributed-memory
environment which uses flow control to improve the sta-
bility and performance of Time Warp. This flow con-
trol algorithm attempts to maintain the standard deviation
of the load of the processors participating in the simula-
tion below a small bound by continuously regulating the
flow of events between processors. The authors have pre-
sented results from an implementation of this algorithm on
a shared-memory multiprocessor; message passing routines
were used for inter-processor communication and direct use
of shared memory was avoided. This paper discusses the re-
sults of the implementation of the flow control algorithm on
a Beowulf cluster. To our knowledge, this is the first time an
indirect optimism control algorithm has been implemented
in a distributed memory environment.

The remainder of this paper is structured as follows: section
2 describes the flow control algorithm, section 3 analyses
the results of its implementation on a Beowulf cluster and
section 4 presents a modification to the flow control algo-
rithm and its results. In section 5 we discuss a set of alter-
native approaches to learning for the flow control algorithm,
and in section 6 we consider the effects of memory-based
optimism limiting schemes in distributed-memory environ-
ments.

2 The Flow Control Algorithm

2.1 Motivation

It is well known that optimistic simulations can consume a
large amount of memory. The large demands on memory
stem from the information maintained to allow rollbacks:
checkpointing the state, storing an antievent for each out-
put event, and sending input events that are later canceled.
Choe [3] provides experimental results that indicate the cor-
relation between the rate of memory usage and the rate of
increase in local virtual time for each processor during the
simulation of a shuffle-ring network. The results in [3] im-
ply that rapid progress of a processor ahead of the GVT re-
sults in larger consumption of memory and a larger num-
ber of rollbacks and antievents compared to the processors
whose time advance is closer to GVT. In this case larger than
average memory consumption is more than just a threat to
the completion of the simulation: it is also a sign of instabil-
ity. The goal of the flow control algorithm is to increase the
stability and improve the performance of the simulation by
ensuring that memory utilization, and by extension simula-
tion progress, is approximately the same for all processors
and that no processor runs out of memory.

Respecting these conditions requires that local load infor-

mation is frequently disseminated and shared among pro-
cesses.

2.2 Description of the Algorithm

The flow control algorithm proceeds as follows: each pro-
cessor is first assigned a number of permits (called tokens)
by means of a stochastic learning automaton (SLA). The to-
kens are allocated in individual pools for each outgoing link
(see also [8]). Every event sent to a neighbouring proces-
sor consumes a token from the pool allocated to that neigh-
bour. The token pool size varies dynamically throughout the
course of the simulation as a function of the differences in
load (memory utilization and/or virtual time progress) be-
tween processors. A uni-directional link between a lightly
loaded sending processor and a heavily loaded receiving
processor is assigned less tokens in an attempt to reduce
the load on the receiver; in contrast, a link between a heav-
ily loaded sender and a lightly loaded receiver is assigned
more tokens to increase the load of the receiver and reduce
the load of the sender. When a processor runs out of tokens
for a particular neighbour, that neighbour is considered to
be fully loaded, i.e. far in memory consumption and simu-
lation time. In this case the processor slows down the out-
going event flow to the loaded neighbour while learning the
appropriate number of tokens to assign to that link in the
future.

2.2.1 Control Mechanism

The control model of the flow control algorithm consists of
a collection of automata such that each automaton resides
within a processor and cooperates with the remaining au-
tomata to control the flow of events. The stochastic learning
automaton residing at each processor regulates the outgo-
ing flow towards the rest of the processors with the express
purpose of keeping the processors close in memory usage
and local virtual time. To achieve this goal, the principle of
conservation of memory is used to relate the memory uti-
lization at a processor to the memory space occupied as a
result of the incoming event flow. The principle of conser-
vation of memory states that the number of memory buffers
occupied during a time interval is equal to the number of
memory buffers occupied at the start of the interval together
with the amount of memory buffers occupied by the events
received during this interval, minus the number of buffers
released by the events sent during this interval.

The stochastic learning automaton at each processor takes
as inputs the load of all processors in the simulation and
outputs an outgoing flow regulation factor�. This flow reg-
ulation factor, multiplied by the number of events sent dur-
ing the previous update interval, determines the number of



1: variables for processor �
2: �����: integer init 0�current processor load�
3: ��������: integer init 0�previous processor load�
4: ���	��: integer init 500�number of available tokens�
5: ����
����� 
 
 
� � ��: integer init 0�list of space-time

products of all N processors�

6: if sending event� ��� � then
7: compute ��������
8: ����������� ����������������������������

� exponential smoothing with� 0.15�
9: ����������� �� � �������� ��

10: piggyback ������� � �� onto a basic event:�
���� ����� �

11: if ���	���� � � then
12: send � ���� ����� � to the receiving processor�
13: ���	���� � ���	���� � �
14: else
15: update action probabilities
16: compute token number
17: send � ���� ����� � to the receiving processor�
18: ���	���� � ���	���� � �
19: end if
20: else if receiving event� ���� ����� � then
21: ����
������� �����
22: if updating intervalthen
23: update action probabilities
24: compute token number
25: end if
26: process � ��� �

27: end if

Algorithm 1: Flow Control at Processor�
events to be sent during the next interval. Note that the au-
tomaton computes a number of tokens individually for every
outgoing link of a processor.

2.2.2 Load Metrics

A key element of the flow control algorithm is its defini-
tion of load. Occupied memory is the most obvious way
of defining load, as the outgoing flow regulation at a pro-
cessor depends on the principle of conservation of memory.
In Time Warp, memory is consumed by state saving and
the event queues, so the space metric measures the memory
space occupied by events and states.

The metric employed in [3] is the space-time product, de-
fined as the product between the occupied memory and the
minimum logical virtual time of the processor at the time
of calculation. The intuition behind the use of this metric
is keeping the processors close in both memory consump-
tion and simulated time. The space-time product is the load
metric used in our description of the learning scheme of the

automaton.

In our experiments we also tested the effects of using time
as a metric, as increases in memory consumption are pos-
tulated to mirror increases in simulated time. Time is mea-
sured as the minimum logical virtual time of the processor
at the time of calculation.

Processors piggyback the local load information onto the
events sent to neighbouring processors. Since every proces-
sor does not necessarily send an event to every other proces-
sor, load information is also collected from the processors in
the course of the GVT calculation and broadcast to all pro-
cessors together with the new GVT value.

2.2.3 Update Interval

The action probabilities of the stochastic learning automa-
ton are periodically updated to reflect the current load of the
processors involved in the simulation. Updating the proba-
bilities frequently provides the finest control since the learn-
ing automaton keeps track of the smallest variations in the
memory utilization and local virtual time, but each update
takes time thus slowing down the simulation. The action
probabilities are updated and the tokens are recalculated
when a fixed number of events is received by a processor
or whenever the processor runs out of tokens for one of its
outgoing links. Currently an estimate of the best updating
interval is experimentally obtained.

3 Performance Analysis

3.1 Experimental Setup

The flow control algorithm was tested on two types of ap-
plications: a queuing network application and a Personal
Communication Services (PCS) network application. This
section describes the behaviour of these applications.

The queuing network application simulates the behaviour
of a set of computer servers connected by a network. The
network is configured as a torus which has many cycles and
hence induces a large amount of instability into the system.

A fixed number of messages randomly circulates through
the network. Each network node spends some simulation
time processing messages and generating for each input
message an output message which is sent to one of the
neighbouring network nodes. The outgoing link is selected
using a uniformly distributed random variable. The service
time for each node is constant; in our tests the service time
is 3 simulation time units.

Our second application is a Personal Communication Ser-
vices (PCS) network, a wireless communication network



that provides services to mobile phone users. We are us-
ing a call-initiated model as described in [2], where the ob-
jects traveling through the system are calls, each represent-
ing an active phone conversation. The channel allocation
strategy is fixed: the number of channels per cell is constant.
The cells are in the shape of a hexagon and are grouped in
a hexagonal mesh. We use Lin and Mak’s strategy [9] to
eliminate the disappearance of calls at the mesh boundary:
if a call crosses outside the simulated area, it appears at the
boundary edge in the opposite direction. The PCS simula-
tion is self-initiating: each cell generates its own incoming
calls. One new call is generated every time a call is started.

In our simulation, the cell diameter is 1 km and has 500
channels. A call can have 6 directions: east, south-east,
south-west, west, north-west and north-east corresponding
to the neighbors of each cell. The velocity and direction
are determined by a uniform distribution, the call comple-
tion time is determined by an exponential distribution with
a mean time of 300 seconds and the call move time is de-
termined by an exponential distribution with a mean time of
120 seconds. Calls are generated at each cell following an
exponential distribution with a mean time of 10 seconds.

The simulations were run on a 16-node Beowulf cluster.
Each computer has a dual processor Intel PIII 700MHz CPU
on Asus PII-BD motherboards with 384MB RAM. The net-
work hub for the cluster is a Cisco 100Mb/s switch. The
computers are running the Linux RedHat operating system.
The PVM library is used for interprocessor message pass-
ing. The flow control algorithm was implemented on top of
Time Warp using the TWSIM Time Warp simulator devel-
oped by our laboratory.

3.2 Experimental Results

To compare the behaviour of Time Warp with the behaviour
of Time Warp with flow control, we used the following
performance measures: (1) simulation time, (2) memory
used, (3) number of rollbacks and (4) number of antievents.
Graphs present the effect on each performance measure us-
ing three different load metrics: space, time and space-time
product. Each graph also has data points labeled “Data
Pass” to indicate the overhead incurred by calculating and
transmitting the necessary metrics for the flow control al-
gorithm on top of the regular Time Warp computation but
without employing the flow control mechanism. The results
presented are an average over ten consecutive runs of the
program. The starting number of tokens is 500 and the up-
dating interval is set to 100 received events.

Figure 1 presents the performance results for a queuing net-
work simulation on a 12-node torus with 75 starting events
per queuing network node. The total of good events pro-
cessed in 500,000 units of simulated time is 28,085,587.

The simulation shows a better performance on some num-
bers of processors than on others. This phenomenon is
caused by cycles of the torus network and exacerbated by
the logical process partitioning and the communication de-
lays. Figure 2 shows the performance results for the PCS
simulation on a hexagonal wrap-around mesh of side 80.
Each cell initiates two calls at the start of the simulation,
resulting in a total of 31,325,453 good events processed in
2,000 units of simulated time. In some of the figures, no-
tably the ones showing time progress, the Space, Time, and
Space-Time data points are very close to each other and of-
ten coincide.

The graphs show that the flow control algorithm does re-
duce the number of rollbacks and antievents if it is large; the
memory usage is also reduced, the reductions being more
significant as the number of processors increases. However,
this decrease in memory usage occurs at the expense of the
simulation time, showing yet again the space-time trade-off
in distributed simulation. None of the metrics tried appears
to perform better than the others.

3.3 Analysis of Results

A close look at the particulars of the flow control algorithm
shows that the observed results are not a consequence of
learning. The learning mechanism is not engaged because
recalculating the tokens for all outgoing links as soon as one
link runs out of tokens causes the number of assigned tokens
to decrease to 1 (our lower bound) after only a few token re-
computation steps. According to the control mechanism,
the maximum number of tokens allowed to depart from pro-
cessor�� to processor�� in the time interval��� � � �� is
����������������, where��������� is the number a events
sent during the previous time interval�� � �� �� and� ������
is the regulation factor as computed by the learning automa-
ton. If the tokens for all links are recalculated when the
tokens for one link are consumed, then the time interval
��� �� �� does not have the same length as the time interval
��� �� ��, and the number of tokens used in the time interval
��� �� �� is not representative for the next time interval.

To illustrate, assume that processor�� has two outgoing
links to processors�� and��, with the link to�� receiving
10 tokens and the link to�� receiving 5 tokens for the next
time interval. Furthermore, assume that at the beginning of
the interval more events are sent to�� and fewer events are
sent to�� than expected; at the time when the tokens for the
link to �� are exhausted, only one of the tokens for the link
to�� has been used. If the regulation factor for�� as deter-
mined by the learning automaton using the load information
is less than 1, then the link to�� will be assigned only one
token during the next interval (since 1 is the lowest bound
on the the number of tokens). This single token will be used
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Figure 1: Performance of the flow control algorithm for a queuing network model on a torus-shaped network.

very fast, prompting�� to also decrease the tokens for its
link to ��. In just a few iterations the tokens on all outgoing
links of all processors decrease to 1.

The result of assigning only one token per outgoing link
is that the token recalculation occurs very frequently, ap-
proximately once for every two events sent. As such, its
only effect is to increase the granularity of the event com-
putation. Since the simulations applications used have very
small event granularity, the token recomputation time is sig-
nificant in comparison. In the PCS simulation, the aver-
age event processing time on our system is 0.38 millisec-
onds, while the average token computation time is 0.16
milliseconds. The average rollback time is 0.39 millisec-
onds. Therefore, increasing the granularity by such a small
amount results in these circumstances in a partial ordering
of the events during the simulation and a reduced number of
rollbacks and antievents.

3.4 Consistency Check

The performance results of the flow control algorithm on
a shared-memory machine presented by Choe and Trop-
per [4] are consistent with these findings. The authors did
obtain a small reduction in the simulation time (3 to 10
percent) as compared with the Time Warp simulation with
no flow control. This reduction is expected to be caused
by the more significant contribution of rollbacks to the to-
tal simulation time in a shared-memory environment; in a
distributed-memory environment, the communication costs
dilute the effect a considerable reduction in the number of
rollbacks and antievents can have on the execution time of
the simulation. The biggest reduction in the simulation time
was obtained in the case of a stress test which directed a
large percentage of the messages sent by each processor to
one designated processor during a fixed time interval (15%
to 28%). Since the number of uncontrolled rollbacks is very
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Figure 2: Performance of the flow control algorithm for a PCS model on a hexagonal mesh network.

high in this case, any technique that will reduce the number
of rollbacks by a significant percentage is likely to obtain
very good results in terms of execution time. Our graphs
show that for the queuing network simulation a very large
reduction in the number of rollbacks for 14 processors re-
sulted in a much smaller increase in the simulation time.

In addition, it is probable that the performance in Choe and
Tropper’s case was further improved by his implementation
of the GVT algorithm. He uses an election mechanism to se-
lect the GVT initiator based on the simulation load: the pro-
cessor with the highest memory consumption starts the new
GVT round. Since computing the GVT is a time intensive
process, through this election process the busiest processor
is slowed down to the advantage of the rest of the simula-
tion. Our current implementation of the GVT algorithm dis-
penses with the election process and assigns a single GVT
initiator at the beginning of the simulation.

Another factor that suggests that the results presented by
Choe and Tropper are not a consequence of learning is the
very small reduction obtained in the variability of the space-
time product: the flow control scheme generated a reduction
of 4.4% in the mean of the space-time product and a reduc-
tion of 9% in the standard deviation of the space-time prod-
uct. This small reduction is likely to be the effect and not the
cause of the decreased number of rollbacks and antievents.

4 Modifications to the Flow Control Algo-
rithm

The assigned tokens act as a window indicating the num-
ber of events that can be sent to the neighbouring proces-
sors without delay between updates, and the total number
of events sent between updates (with or without delay) is



used to compute the number of tokens for the next interval.
For this computation to be meaningful, the time interval be-
tween updates has to be approximately the same from one
interval to the next; hence, the tokens should be recalcu-
lated only everyupdating interval and not every time a link
runs out of tokens. A possible implementation of the algo-
rithm taking this issue into consideration would be as fol-
lows: only learning (probability recalculation) occurs when
a link runs out of tokens (deleting line 16 of algorithm 1)
and no token counter is decremented as the tokens have al-
ready reached 0 (deleting line 18). A sent event counter
is incremented for every outgoing event, and this sent event
counter is used to compute the number of tokens for the next
interval. The probability recalculation when the tokens for
the current interval have been exhausted would then serve
the double purpose of accelerating learning and providing
a respite for the receiving processor via a delay in sending
the outgoing event. We studied the effect this modification
of the flow control algorithm had on the performance of the
simulation.

Figures 3 and 4 present the performance of the modified
flow control algorithm for the queuing network simulation
and the PCS simulation with the same parameters as in the
previous section1. The algorithm did not improve the per-
formance of the simulation; on the contrary, it increased the
execution time together with the number of rollbacks and
antievents. It is interesting to note that in the case of the
queueing network simulation on 14 processors the modi-
fied flow control algorithm did reduce the execution time,
the memory consumed and the number of rollbacks and
antievents, illustrating that when communication delays and
cycles induce an ever-increasing number of rollbacks any
technique that slows down the simulation is likely to im-
prove the simulation performance.

Since the probability recalculation when the tokens for the
current interval have been exhausted serves as a delay for
the outgoing events, it seemed possible that the time spent
in calculations is not significant compared with the commu-
nication time. Experiments have been done to determine
whether increasing the delay preceding the sent event when
all the tokens have been used has an effect on the perfor-
mance of the flow control algorithm. However, the addi-
tional time spent waiting worsens the performance of the
simulation.

It is worth noting that for small queuing network simula-

1Figure 3 shows the performance results for a queuing network simula-
tion on a 12-node torus with 75 starting events per queuing network node.
The total of good events processed in 500,000 units of simulated time is
28,085,587. Figure 4 shows the performance results for the PCS simula-
tion on a hexagonal wrap-around mesh of side 80. Each cell initiates two
calls at the start of the simulation, resulting in a total of 31,325,453 good
events processed in 2,000 units of simulated time. The starting number of
tokens is 500 and the updating interval is set to 100 received events.
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Figure 3: Performance of the modified flow control algo-
rithm for a queuing network model on a torus-shaped net-
work.
tions in which only one logical process is assigned per pro-
cessor the additional delay does decrease the number of
rollbacks and antievents despite increasing the simulation
time. We conjecture that this effect occurs because in a
distributed-memory environment the speed of propagation
of events within a processor is much faster than the speed of
propagation of events between processors. Since only the
flow of inter-processor events is controlled, the bad compu-
tation among logical processes located on the same proces-
sor is allowed to proceed unimpeded, and a rollback caused
by an outside event has far-reaching effects. However, if no
new events are generated and no inter-processor rollbacks
can occur, as in the case of small queuing network simu-
lations, an increased delay gives the antievents an oppor-
tunity to catch up with the original events before they are
processed.

Furthermore, we observed experimentally that varying the
length of the update interval made no difference to the per-
formance of the modified flow control algorithm. The in-
sensitivity of the algorithm to the interval length, combined
with its bad performance, suggests that no learning actually
takes place.



4 6 8 10 12 14

150

200

250

300

350

400

450

500

550

600
PCS Simulation: Time

Number of Processors

S
im

ul
at

io
n 

T
im

e 
(s

ec
)

>: Pure TW 

x: Space 
+: Data Pass 

o: Time 
*: SpaceTime 

(a)

4 6 8 10 12 14
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6
x 10

7 PCS Simulation: Memory

Number of Processors

M
em

or
y 

(b
yt

es
)

>: Pure TW 

x: Space 
+: Data Pass 

o: Time 
*: SpaceTime 

(b)

4 6 8 10 12 14
0.5

1

1.5

2

2.5

3
x 10

5 PCS Simulation: Rollbacks

Number of Processors

N
um

be
r 

of
 R

ol
lb

ac
ks

>: Pure TW 

x: Space 
+: Data Pass 

o: Time 
*: SpaceTime 

(c)

4 6 8 10 12 14
1

2

3

4

5

6

7

8
x 10

5 PCS Simulation: Antievents

Number of Processors

N
um

be
r 

of
 A

nt
ie

ve
nt

s

>: Pure TW 

x: Space 
+: Data Pass 

o: Time 
*: SpaceTime 

(d)

Figure 4: Performance of the modified flow control algo-
rithm for a PCS model on a hexagonal mesh network.
5 Alternative Approaches to Learning and

Flow Control

The stated goal of the flow control algorithm is to keep in
close proximity the memory utilization of the processors in-
volved in the simulation, and by extension keep in close
proximity their virtual time as well. This goal is intended
to be achieved by managing the flow of memory buffers
between processors, delaying events whose processing is
likely to cause rollbacks and allowing unimpeded passage
to events that are likely to be on the critical path of the sim-
ulation. These concepts have been successfully exploited
in other optimism-limiting algorithms. Panesar and Fuji-
moto [12] proposed a memory-based flow control mecha-
nism which improved Time Warp performance in a shared-
memory environment by throttling over-optimistic event ex-
ecution. Tay et al. [17] demonstrated that bringing the
sender and receiver logical processes closer in virtual time
resulted in reduced number of rollbacks, as no logical pro-
cess is allowed to dramatically increase its simulation time
and flood the simulation with events that will soon be rolled
back. The algorithm of Srinivasan and Reynolds [14] con-
trolled optimism by delaying executions of events according
to their error potential computed from global information.
Therefore, it seems probable that an algorithm can be built
along the outlines of Choe and Tropper’s flow control algo-

rithm which could control Time Warp optimism.

The succeeding sections examine several aspects of the flow
control algorithm and discuss the changes and issues to con-
sider in order to effectively harness the power of the learning
automata and increase simulation stability.

5.1 Token Computation

Stochastic learning is a theoretically simple technique
which is difficult to implement efficiently. A learning au-
tomaton must be fed information in a timely manner in
order for its control to be effective. For this reason, the
amount of instability in the system can have a large impact
on the learning techniques employed. Simulations run on
distributed-memory systems are inherently more unstable
than those on shared-memory systems; for example, Choe
and Tropper obtained 3,449 rollbacks in 330 seconds for his
pure Time Warp simulation on 6 processors for a PCS ap-
plication with a wrapped hexagonal mesh network of side
80. In contrast, our pure Time Warp simulation of a simi-
lar application over 6 processors produced 85,435 rollbacks
in 206 seconds, a sizable difference. Next we examine the
challenges posed by an unstable environment and propose
ways in which the learning scheme can be modified to cope
with them.

A particularly unstable simulation (for example, one using
a configuration with many cycles on a distributed system
with large communication costs) can enter into a phase of
cascading rollbacks very soon after start-up, preventing the
automaton from acquiring any notion of stable behaviour.
Even when the simulation achieves some stability of its own
after the initial chaotic starting phase, the automaton must
not give too much importance to what it learned during this
phase. Hence, either the automaton should delay learning
until the system stabilizes to some extent, or it should keep
the maximum gain low enough not to give too much cre-
dence to the initial data; the flow control algorithm, with its
maximum gain of 1, does not follow either course. As well,
the flow control algorithm bases the token calculation for
the next interval on the number of sent events of the previ-
ous intervalonly. However, if in the previous interval the
outgoing traffic had an uncharacteristic pattern (for exam-
ple, a large number of new events have been injected into
the simulation), the number of tokens for the next interval
will be calculated based on non-representative information
and the automaton control will not be efficient. A better
course of action would be to obtain an estimate of a repre-
sentative number of sent events over several past intervals,
giving the most recent interval the largest weight.

The accuracy of the information the automaton uses to up-
date its probabilities is also called into question. The most
recent information about the load of the other processors



is obtained from data piggybacked on the incoming events;
otherwise, a processor is guaranteed new data only every
GVT calculation. If the one-directional traffic between two
processors is intermittent – or nonexistent – the automa-
ton uses old information and loses efficiency. The problem
of obtaining accurate and timely global data has no easy
answer; one possibility could be the reduction model for
computing near-perfect state information presented in [13],
which has been implemented on a network of workstations
connected by a Myrinet switch and shown to be feasible for
simulations with medium to large event granularity.

5.2 Token Utilization

However, no matter how accurately the learning automata
estimate the number of tokens required for the next interval,
these tokens must be used in an efficient manner in order to
control the simulation. The flow control algorithm attempts
to keep all processors close in terms of memory usage and
virtual time by starving the processors with large mem-
ory consumptions. This starving process is accomplished
by delaying the exit of events from the lightly loaded pro-
cessors to the heavier loaded ones through a waiting loop,
with the effect that the lightly loaded processors are slowed
down themselves. This method could potentially restrain
the spread of bad computation from the highly loaded pro-
cessors, giving the loaded processors an opportunity to roll-
back and send out antievents before the original events have
gone too far. On the other hand, the same method could slow
the spread of antievents as well, since the flow control algo-
rithm deals with memory buffers only and does not consider
the type of event to be delayed. Moreover, the optimal size
of these delays is platform and application dependent, since
they must be significant compared to the event granularity
and the inter-processor communication time.

The disruptive effect of delays could be minimized by al-
lowing the lightly loaded processor to continue activity
while delaying the exit of events lacking tokens. The event
delay could be measured in terms of a specific number of
processed events or a fixed time period. The events can
also be held hostage until the next updating period when
more tokens are assigned. This approach of delaying out-
going events presumed to be bad reduces risk; alternatively,
aggressiveness can be reduced as in the case of the Adap-
tive Flow Control algorithm [12] by suspending event ex-
ecution and communication until the next token updating
period. Aggressive blocking has also the potential to reduce
the spread of bad computation within a processor as well as
the length of rollbacks caused by out-of-processor events,
making it a more suitable strategy for distributed-memory
environments.

An implementation of the risk-reducing version described

above, where events lacking tokens are held until the next
updating interval, shows that such an approach leads to
deadlocks if the simulation is lightly populated and to
stalling if the simulation is densely populated. The stalling
occurs because the event with the smallest timestamp gets
caught in one waiting queue after another, and the same
happens to the antievents. When the tokens are recalcu-
lated at the end of the update interval and the events are
released from the waiting queues, a large majority of the
events processed during the last GVT interval are rolled
back and the GVT cannot advance. The introduction of a
cancellation mechanism between events and their respec-
tive antievents in the waiting queue did not have any effect.
The aggressiveness-reducing version can also deadlock, and
it is not obvious how to break the deadlock and resume the
simulation in the context of the learning automata with min-
imal time expenditure without voiding the learning that has
occurred up to that point.

An alternative approach could be to change the placement
of the learning automata. If the automata reside at the des-
tination and not the source processors, the processing de-
lays consisting of waiting loops happen at the heavily loaded
processors, which seems a more desirable course of action
than delaying the lightly loaded processors. However, there
are serious implementation complications with this tech-
nique as well. If the events are allowed to queue at the
heavily loaded processor until they get enough tokens to be
processed, that processor will have an even higher memory
consumption, contrary to the goal of lightening the load. A
sendback mechanism might alleviate this concern, but this
approach would also provide additional work for the lightly
loaded processors who would have to deal with the events
sent back.

5.3 Space-Time Correlation

The correlation between the rate of memory usage and the
rate of increase in local virtual time for each processor dur-
ing the simulation of a shuffle-ring network is indicated
by experimental results presented by Choe [3]. As a con-
sequence of these results, the case was made that over-
consumption of memory is a sign of instability indicating a
disproportionate progress in virtual time compared to other
processors. However, this conjecture has not been formally
proven; a negative proof may have implications for the flow
control algorithm. Intuitively, if processor�� is ahead of
processor�� in memory consumption, then�� should with-
hold events from�� to not increase��’s memory consump-
tion; as well,�� should be free to send events to lower its
memory usage. In contrast, if processor�� is ahead of pro-
cessor�� in simulated time, a better course of action for
�� would be to send events to�� to roll it back as soon



as possible. In this case, allowing�� to send an unlimited
number of events risks flooding the simulation with com-
putation that would need to be rolled back. The correlation
between memory usage and virtual time progress requires
further analysis, especially as related to the principle of con-
servation of memory used by the flow control algorithm.

Our experiments were not conclusive with regard as to
which load metric shows the best promise for future re-
search. However, it appears that the space-time product as it
is currently calculated mirrors in behaviour the space met-
ric. The reason is that the memory size used to calculate the
product is measured in bytes. If the virtual time advances
very slowly compared to the increase of memory usage, the
space-time product is heavily weighed in the favor of mem-
ory and might not offer any new information.

6 Memory-Based Optimism Limiting
Schemes and Distributed Memory

Memory-based optimism limiting schemes have been suc-
cessfully implemented up to now on shared-memory mul-
tiprocessors. In shared-memory environments controlling
memory consumption serves a dual purpose: first, cache
performance is improved by increasing locality and decreas-
ing false sharing of virtual memory pages, and second,
harmful optimism is eliminated through the equivalent of a
simulated time window. To our knowledge no experiments
have been done to determine which of these two factors re-
sults in the biggest performance improvement.

However, the negative consequences of loss of spatial lo-
cality and false sharing of memory pages for optimistic
simulation have been extensively documented and found to
be significant [8, 5, 6]. The effects of poor cache perfor-
mance are exacerbated by the increasing gap between the
memory and CPU speed [11]. Furthermore, experiments
have shown that in shared-memory environments simula-
tion performance for a memory-intensive application is con-
siderably affected by the dense bus traffic. In contrast, the
same simulation in a distributed memory environment, lack-
ing the bus overcrowding, outperformed its shared-memory
counterpart by approximately 50% [1].

In the light of these results, it seems likely that simulations
executed in shared-memory environments will benefit more
from memory-based approaches to reducing Time Warp in-
stability than simulations in distributed-memory environ-
ments. Before extensive research is undertaken to design
a memory-based optimism limiting algorithm targeted to-
wards a distributed-memory environment, it would be useful
to ascertain the degree of performance improvements that
can be expected from such an algorithm. The implemen-

tation in a distributed-memory environment of a memory-
based algorithm which has been proven successful at lim-
iting optimism in shared-memory environments would pro-
vide valuable information in this regard.

7 Final Remarks

There are many options to be explored regarding the best
way to implement the learning automata and use their re-
sults, and each one has its own advantages and drawbacks.
Clearly more experimentation is necessary before an effec-
tive version of the flow control algorithm can be imple-
mented on a network of workstations. But before this work
can be undertaken it has to be established the extent to which
controlling the memory consumption in optimistic simula-
tion can improve stability and performance in a distributed
memory environment. It is possible that in such an envi-
ronment methods that directly limit optimism have the best
chance of success.
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