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Abstract: 
The aim of this paper is to present an approach to describe cryptographic protocols using agent-based simulation. 
This provides a framework to understand and model protocol behaviour and interaction in a simulation 
environment. Simulation techniques in the past have proven to be useful especially in areas where it is critical for 
testing to be carried out.  This allows the designer to determine the correctness and efficiency of a design before 
the real system is constructed and deployed. Hence, an attempt to use this approach in testing the correctness of 
cryptographic protocols is promising. 
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1. INTRODUCTION 
 
Cryptographic protocols are designed to provide 
security services. Research has shown that a good 
number of these protocol are flawed. One reason 
for these failures, is primarily the lack of proper 
universally accepted technique and  methodology 
for describing and analysing these protocols. 
Several successful attacks against cryptographic 
protocols, which exist in academic literatures show 
that weaknesses are not due to the underlying 
cryptographic algorithms but are as a result of 
logical errors. To deal with these problems, several 
methods have been proposed. These include 
methods based on specification languages and 
verification tools [Varadharajan, 1990], modal 
logic, expert systems, algebraic reasoning, and 
model-based approaches [Nieh, 1992; Gong, 1990; 
Burrows, 1990]. 
 
In this paper an approach to reasoning about the 
security of a protocol, which involves the use of 
agent models to characterises how principals 
interact is described.  Furthermore, it describes how 
messages are sent and received, what messages a 
particular agent can assemble and transmit, the 
actions an agent can perform at a particular time 
and the use of simulation framework in modelling 
the activities of these agents. These 
characterisations form the bases for asking security 
related questions such as: what are the possibilities, 
given all possible situation and interactions, of 
security compromises. First, a conceptual model of 
the system needs to be designed, which describes 
how agents may communicate within a simulation 
environment and formalised using the Discrete 
Event Simulation (DEVS) formalism [Zeigler, 
2000]. DEVS describes the autonomous and 

dynamic behaviour of agents and how agents react 
and generate input and output events at the atomic 
and coupling levels. Second, there is a need to 
design a simulation model, which enables agents to 
react and respond to events such as an intruder 
activity. Finally, the Needham-Schroeder and DSE 
protocols are considered using this approach. 
 
2. AGENT-BASED SYSTEMS 
 
Research and development of agent-based systems 
as a solution for various problem domains are 
rapidly increasing. Agents are in fact a key 
contributing technology for the Internet and World 
Wide Web and can be classified in several 
dimensions. The concept of deliberative agents was 
derived from the deliberative thinking paradigm in 
which agents hold an internal reasoning model from 
which it can make decisions to meet set goals. 
These kinds of agents are found in the area of 
artificial intelligence, psychology, cognitive 
sciences where agents have been modelled with 
personality traits and passion for decision-making 
[Baillie, 2002; Schmidt, 2002]. Conversely, 
reactionary agents do not have any internal 
symbolic model but make decisions based on 
stimulus or reaction from its environment. Agents 
can be classified according to their attributes such 
as autonomy, learning ability, interaction and 
cooperation. An important attribute of an agent is 
its ability to take initiatives and learn from past 
experience as it reacts and/or interacts within or 
outside its environment. 
 
3. AGENT FRAMEWORK 
 
A cryptographic protocol is considered to include a 
set of agents and channels of communication. 



These agents interact with each other according to 
some predefined rules and processing messages 
sent and received via the communication channels. 
A channel is an abstraction of the communication 
facility that has certain constraints. Each agent is an 
autonomous and reactionary entity capable of 
performing a sequence of operations (events) on 
messages. The agent formalism is characterised by 
the tuple modelled at the atomic level. 
 

ΣAgent = (X, S, Y, δint, δext, λ, ta)  
 
X ={x1, x2,.....xn}is a non empty set of input events. 
S={s1, s2,.....sn}is a non empty set of allowable 
states.  
Y={y1,y2,.....yn}is a non empty set of output events.  
δint : S → S An internal state transition function 
describing the behaviour of a Finite State 
Automaton.  
δext : Q * X → S:  An external state transition 
function describing reaction of the agent to external 
events, where Q = {(s , e) | s ε S, 0 ≤ e ≤ ta (s)}. 
 
λ : S → Y: An output function which maps the 
internal agent state to the output set. Output events 
can only be generated at the time of internal 
transition. 
ta : S → Time: This represents the time the agent 
stays in a particular state before transiting to the 
next sequential state. 
 
Cryptographic protocols are designed to establish 
and authenticate communication between entities. 
Entities in cryptographic protocols are formally 
called principals and are assumed to have unique 
identities. A good number of cryptographic 
protocols require an authentication server or a 
certification authority to provide keys and 
certificates to enable secure communication 
between two or more principals. These properties 
and more are clearly identifiable in agents and to 
describe these properties in DEVS, the formalism 
for a coupled model needs to be introduced. The 
coupled model describes how to integrate all three 
agents as identified in the DSE protocol (discussed 
in subsequent sections) forming a larger model as 
shown below. 
 

∏AgentS = (X, Y, M, ϒeic, ϒeoc, α, select) 
X = {x1, x2,.....xn}is a non empty set of inputs to the 
coupled model agent S. 
Y = {y1, y2,.....yn}is a non empty set of outputs to 
the coupled model agent S.  
M = {m1, m2,.....mn} is a non empty set of unique 
component references. 
ϒeic ⊆ ∏AgentS.input * ΣAgent.input: An external input 
coupling relation. 
ϒeoc ⊆ ΣAgent.output * ∏AgentS.output: An external 
output coupling relation.  
 

α ⊆ ΣAgent.output * ΣAgent.input: An internal 
coupling relation.  
select : 2M → M : Tie breaking selector. 
 
A multiple state transition is one of the problems 
associated with coupling concurrent and sequential 
components in discrete simulation systems. This 
may lead to instability if it occurs at the same 
simulation time. In order to deal with this problem 
a selection criteria is defined, which determines the 
component's transition that is priority. This is also 
applicable to agents described in the simulation 
model where select represents a tiebreak. Select 
chooses a unique agent from any non-empty subset 
E of M where E corresponds to the set of all agents 
having simultaneous state transitions. 
 
4. THE SIMULATION MODEL 
 
In order to explain the development of the model 
using the agent definition described above, a simple 
cryptographic protocol simulation model is 
presented. The model is intended to convey the 
session key Kab and data, from agent A to agent B 
whilst keeping it secret from other agents on the 
network. 
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         Figure 1: A Simple Cryptographic Protocol Model 
 
Agent A makes contact with agent S, who provides 
A with the session key Kab and a secret containing 
the session key Kab but encrypted with B's key. 
Agent A  then sends the secret to agent B who then 
decrypts the secret and stores the session key. 
Figure 1 shows the input and output ports of agent 
A. The input port "in_1" of agent A is for receiving 
messages from agent S. The output port "out_2" is 
used for sending the messages containing the 
session key Kab to agent B and output port "out_1" 
of agent A is for making initial contact with agent 
S. A formal description of the model is specified 
using the atomic DEVS as shown below. 
 

ΣAgentA = (X, S, Y, δint, δext, λ, ta)  
X ={“in_1”}  
Y ={“out_1”, “out_2”}  
S ={idle, sent, recvd, accpt}. 
δint (idle) = (make_INI_REQ, sent) 
λ (idle) = “out_1” = msg 



 δext ((-,-), “in_1”) = (recv_MSG, recvd)) 
δint (cond ≠ False, accpt)) = (send_MSG, accpt) 
λ (cond ≠ False, accpt)) = “out_2” = msg 
ta(S) = time value 
 
The notion of time cannot be effectively predicted 
due to factors such as network latency, bandwidth, 
encryption/decryption algorithms etc. The variable 
msg is an address location used to store received 
messages from agent S and cond is a conditional 
variable, which indicates success or failure of 
processed messages. Messages are transmitted 
either as plain text or cipher text depending on the 
protocol being simulated.  
 
In figure 2, a state trajectory is given for the agent 
A model. It shows that the agent made an internal 
transition from idle to sent state. The agent remains 
in the idle state until the time ta (idle) elapses. 
When this occurs an output y1= λ(idle) is generated 
and the state is transited to the sent state. The agent 
remains in this autonomous mode until it receives 
an external event. This event does not give rise to 
an output.  
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  Figure 2: State Trajectory of Agent A  
 

Once the agent A and agent B have been 
developed, the coupled agent S can be specified 
defining the required coupling relationship between 
all the agents in the model. The agent S model is 
formalised as follows.  
 

∏AgentS = (X, Y, M, ϒeic, ϒeoc, α, select) 
 
X  = {“in_1”} 
Y = {“out_1”,”out_2”}  
M = {Agent A, Agent B} 
ϒeic = {(Agent S.out_1, Agent A.in_1)}  
ϒeoc = {Agent A.out_1, Agent S.in_1)}  
 

α = { AgentA.out_2, AgentB.in_1} 
select : (Agent A, Agent B) → Agent A 
 
5. NEEDHAM-SCHROEDER PROTOCOL 
 
This protocol is the basis of many existing protocol 
designs today. It implements a symmetric 
mechanism and shares  the  common  problem of  
key distribution. Here the client A makes the initial 
contact with the server S by sending a message 
consisting of its identity, the identity of client B and 
a randomly generated number N. The server S 
randomly  generates a session key, which is shared 
between clients A and B and then encrypts a 
message containing the shared session key, the 
identity of client A with the session key it shares 
with client B.   
 
Following from that the server encrypts another 
message containing the shared session key, the 
identity of client B, the random number generated 
by client A and an embedded encrypted message. 
The server eventually sends  the encrypted message 
to client A, who with the knowledge  of the server’s 
shared key is able to decrypt the message. Client A 
subsequently sends the embedded encrypted 
message to client B, who is also able to decrypt it. 
Figure 3 illustrates the simulation model in the 
context of agent based framework. Nb-1 in 
message 5 implies that the message is from A and 
not from B [Burrows et al, 1990]. 
 
message 1 A → S:    A, B, Na 
message 2 S → A:   {Na, B, Kab, { Kab, A}Kbs} Kas 
message 3 A→ B:   { Kab, A}Kbs} 
message 4 B → A:  { Nb}Kab 
message 5 A → B:  { Nb -1}Kab  
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           Figure 3: Needham-Schroeder Protocol Model 
 

∏AgentS = (X, Y, M, ϒeic, ϒeoc, α, select) 
 
X  = {“in_1”,”in_2”} 
Y = {“out_1”, “out_2”}  
M = {Agent A, Agent B} 
ϒeic = {(Agent S.out_1, Agent A.in_1)}  
ϒeoc = {Agent A.out_1, Agent S.in_1)} 
α = { AgentA.out_2, AgentB.in_1} 
α = { AgentB.out_1, AgentA.in_2} 
select : (Agent A, Agent B) → Agent A 



6. DSE  PROTOCOL 
 
The DSE protocol is based on shared and public 
key cryptography and is suitable for authenticating 
federates in HLA coupled distributed synthetic 
environment. Any number of federates can join or 
resign from the federation securely, hopefully, 
affecting the performance of the scheme minimally. 
The protocol is based on the plug and adaptor 
concept where plugs are attached to each federate 
model and the adaptor is attached to the RTI. This 
provides a platform for coordinated and secure 
communication between federates participating in 
the federation exercise.  The adaptor S serves as an 
authentication server and a certificate authority 
providing various services to each federate model. 
Amongst other strengths, the protocol is designed 
to guard against a replay attack using synchronised 
clocks and randomly generated numbers. 
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   Figure 4: The DSE Authentication Protocol Structure 

 
The description of the protocol is given below, with 
two federates attached to Plugs A and B as shown 
in figure 4. Kas and Kbs represent the shared keys 
for Plugs A and B, Kb

-1 and Kb represent public and 
private keys for Plug B. Ra and Rb are random 
numbers generated by federates A and B. Ts, Ta and 
Tb are timestamps of Plugs A, B and adaptor S. SL 
represents the security level and finally d is the data 
in the form of updates. For the sake of clarity, the 
federate attached to Plug A will be referred to as 
federate A and the federate attached to  Plug B as 
federate B. Federate B sends an encrypted message 
consisting of Rb, Ta and the object handle of the 
instance whose attributes need to be updated with 
the new attribute value d. If federate A subscribed 
to this attribute, once it has been registered and 
updated by B, it sends its identity along with an 
encrypted message consisting of a randomly 
generated number Ra, a timestamp Ta, and the 
object handle of the instance whose attributes have 
been updated to S. S confirms that the message is 
timely, and Ra checked against existing random 
generated numbers. S then generates a timestamp 
Ts, and forwards both the encrypted attribute values 
(data) and the certificate of B containing the public 
key of B to A who then extracts and verifies the 
public key. If the process is successful, the message 

is decrypted and the data is reflected and updated as 
shown in figure 4. 
message 1 B → S : B,{Rb, Tb, {d}kb, SL, Hb}kbs 
message 2  A → S   :  A, {Ra, Ta, SL, Hb}kas 
message 3  S → A   : {Tb, {d}kb}kas , Kb

-1 

 
6.1 DSE  Protocol Simulation Model 
 
In this protocol agent B makes contact with agent 
S, if successful data is transferred. Agent A wishes 
to have access to the data transferred by agent B. 
To do so agent A must make contact with agent S 
passing on its identity and authentication details, 
which are verified. If successful agent S responds 
with the requested data encrypted with the shared 
key.  The input and output ports of the agents are 
shown in figure 5 and the formal description given 
below.    

Agent A Agent B"out_1"

Agent S

"in_1"

"out_1"

"in_2""in_1"

"out_1"

 
Figure 5:   DSE Simulation Protocol  Model 

 
ΣAgentA= (X, S, Y, δint, δext, λ, ta) 
 

X = {in_1"}  
Y = {"out_1”} 
S ={idle, sent, recvd, accpt}.  
δint (idle) = (make_INI_REQ, sent) 
λ (idle) = “out_1” = msg 
δext ((-,-), “in_1”) = (recv_MSG, recvd)) 
ta(S) = time value 
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  Figure 6: State Trajectory of Agent A in the DSE Model 
 
The trajectory of agent A is shown in figure 6. 
Similarly, agent B can be developed and shown 
trivially. Once agent A and agent B have been 



developed, the coupled model agent S can be 
specified. The agent S model formalisation is 
shown below. 

∏AgentS = (X, Y, M, ϒeic, ϒeoc, α, select) 
X  = {“in_1”, “in_2”} 
Y = {“out_1”}  
M = {Agent A, Agent B} 
ϒeic = {(Agent S.out_1, Agent A.in_1)}  
ϒeoc = {Agent A.out_1, Agent S.in_1)}  
α = { AgentB.out_1, AgentS.in_2} 
 
6.2 Prototyping the Agent Model 
 
The Simplex3 simulation system introduced by 
Schmidt [Schmidt, 2001] has been used to achieve 
the dynamics of the DEVS models. Each agent 
comprises various parts.  The name, declaration and 
the dynamic part all make up the agent 
composition. Firstly, agents are identified by their 
names. The quantities and their properties are 
defined within the declaration part and the 
behaviour of the agent is described in the dynamic 
part. Agent behaviour could be modelled using 
differential equations, events or algebraic 
equations. However, in this case the behaviour of 
the agent is modelled using events. 
 
6.3 High Level Component Agent_SIM 
 
Three high level components have been defined, 
two for the atomic DEVS and the other for the 
coupled DEVS. Within the Simplex3 system, 
components can be composed of subcomponents 
and linked via connectors.  Each agent is 
represented as an independent basic component and 
linked together in a high-level component 
Agent_SIM and described using the Simplex3 
model description language. The Agent_SIM model 
describes a cycle in which agents can send and 
receive messages via input and output channels. On 
the start of the simulation, agent B creates and 
sends a message carrying data updates to agent S 
who then verifies and accepts the update.  
 

Agent SAgent A Agent B

<Channel_1> <Channel_2>

<Channel>

Msg

LocWaitMsg LocWaitMsg

 
Figure 7: Relationship between Basic Agent Components 
 
 Agent A subscribes to data by sending a message 
comprising security information to agent S and if 
successful the data requested is sent to agent A. The 
dynamic behaviour of each agent describes the 
various events which can take place during the 
simulation run.  Figure 7 shows the basic 
component agent A, agent B and agent S all linked 
together using component connections. Figure 8 

shows the high level component connection 
representation of the agents. Messages are modelled 
using a mobile message component, as shown in 
figure 9, where a number of attributes are declared. 
 

  
Figure 8: High Level Component Agent_SIM 

 

   
Figure 9:  Mobile Component Message 
 

7. EVALUATING THE PROTOCOL DESIGN 
 
When examining the security of protocols, it is 
assumed that the underlying cryptographic 
mechanisms are secure. In evaluating the protocol 
an intruder does not necessary have to attack the 
underlying mechanism directly but rather attempt to 
subvert the protocol’s objective by defeating the 
manner in which such mechanisms are combined. 
Agents could be simulated with this capability and 
other known security breaches. This could provide 
for an effective security assessment of the protocol 
simulated.  
 
The aim of the attack model is to provide some 
form of benchmark for testing the security of a 
protocol with the hope of uncovering any potential 
failures in the design. It is intended that the attack 
model is capable of performing a number of attack 
scenarios which include, first, the cases where the 
attack model is able to send messages but not read 
messages that are not addressed to it. Second, the 
attack model is able to send and read messages but 
not block messages and the last but not the least, 
the attack model could send, read and block 
messages but could not replace the blocked 
messages with other messages etc. Other 
capabilities that could be included in the attack 
model include the ability to break certain classes of 
cryptosystems. The overall attack model would 
provide the basis for simulating various attack 
scenarios and thus could reveal the requirements for 
a more secure protocol design.  
 



7.1 Attack Model Description 
 
In this section, an abstract simulator is considered. 
It describes some of the capabilities of the attack 
model for example impersonation and message 
interception where the attack agent attempts to play 
the role of the sender or the receiver as well as 
modify message content. Attack actions could be 
defined as events engaged by an attacker, which 
affect messages sent and received by legitimate 
participants in the protocol. Hence, an attack 
capability could be defined as a set of actions an 
attacker is able to perform. These actions and 
events are described in the model. The simulation 
starts when the model receives the SIMULATE 
message shown below, and stops when tAttackagent 
= ∞ 
when receive (SIMULATE, t)  
send (START, t) to agentattack 
while (tAttackagent ≠ ∞) do  
"Intercept messages transmitted"  
send (MSG,  tAttackagent ) to agentattack 
"Message modification"  
send (MSG, tNchild) to agentS 
endWhile 
 
The attack simulator is necessary to drive the 
model. The variables tL and tN hold the time of last 
time, and the time for the next transition. This 
method sets the partial state to s{o} and the value 
e{o} is interpreted as the time elapsed in the current 
state.  
 
when receive (START, t)  
         tL ← t ← e{o} 
         s ← t ← s{o} 
          tN ← tL ← ta{s} 
end 
when receive (MSG, t)  
   if t ≠ tN then return endif 
         intercepted  ← message t ← MSG 
         s ← δ(s), s ← t ← s{o} 
         tL ← t,  tN ← tL ← ta{s} 
end 
when receive (MSG, t)  
   if t ≠ tN then return endif 
         message t ← MSG 
         s ← δ(s), s ← t ← s{o} 
         tL ← t,  tN ← tL ← ta{s} 
end 
 
8. SUMMARY 
 
A possible approach, which utilises the merits of 
both agent-based and simulation technologies for 
analysing cryptographic protocols has been 
proposed. This approach is based on simulating an 
environment appropriate for describing the DSE 
protocol as well as other known protocols. The 
environment allows agents to interact amongst 
themselves and also react to external activities such 

as an intruder attack. In addition, an attack model 
was described and introduced, with a number of 
attack capabilities, in the simulation environment to 
provide a test bed for examining security flaws in 
the protocol simulation.   
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