
A THEORETICAL FRAMEWORK FOR MODELLING AND
SIMULATING SECURITY PROTOCOLS

FRANTZ O. IWU and RICHARD N. ZOBEL

Department of Computer Science

University of Manchester
Oxford Road, Manchester, M13 9PL

United Kingdom
E-mail: {iwuo, rzobel}@cs.man.ac.uk

Abstract:
The aim of this paper is to present an approach to describe cryptographic protocols using agent-based simulation.
This provides a framework to understand and model protocol behaviour and interaction in a simulation
environment. Simulation techniques in the past have proven to be useful especially in areas where it is critical for
testing to be carried out. This allows the designer to determine the correctness and efficiency of a design before
the real system is constructed and deployed. Hence, an attempt to use this approach in testing the correctness of
cryptographic protocols is promising.

Keywords:
Security, Protocols, Agent-Based Simulation

1. INTRODUCTION

Cryptographic protocols are designed to provide
security services. Research has shown that a good
number of these protocol are flawed. One reason
for these failures, is primarily the lack of proper
universally accepted technique and methodology
for describing and analysing these protocols.
Several successful attacks against cryptographic
protocols, which exist in academic literatures show
that weaknesses are not due to the underlying
cryptographic algorithms but are as a result of
logical errors. To deal with these problems, several
methods have been proposed. These include
methods based on specification languages and
verification tools [Varadharajan, 1990], modal
logic, expert systems, algebraic reasoning, and
model-based approaches [Nieh, 1992; Gong, 1990;
Burrows, 1990].

In this paper an approach to reasoning about the
security of a protocol, which involves the use of
agent models to characterises how principals
interact is described. Furthermore, it describes how
messages are sent and received, what messages a
particular agent can assemble and transmit, the
actions an agent can perform at a particular time
and the use of simulation framework in modelling
the activities of these agents. These
characterisations form the bases for asking security
related questions such as: what are the possibilities,
given all possible situation and interactions, of
security compromises. First, a conceptual model of
the system needs to be designed, which describes
how agents may communicate within a simulation
environment and formalised using the Discrete
Event Simulation (DEVS) formalism [Zeigler,
2000]. DEVS describes the autonomous and

dynamic behaviour of agents and how agents react
and generate input and output events at the atomic
and coupling levels. Second, there is a need to
design a simulation model, which enables agents to
react and respond to events such as an intruder
activity. Finally, the Needham-Schroeder and DSE
protocols are considered using this approach.

2. AGENT-BASED SYSTEMS

Research and development of agent-based systems
as a solution for various problem domains are
rapidly increasing. Agents are in fact a key
contributing technology for the Internet and World
Wide Web and can be classified in several
dimensions. The concept of deliberative agents was
derived from the deliberative thinking paradigm in
which agents hold an internal reasoning model from
which it can make decisions to meet set goals.
These kinds of agents are found in the area of
artificial intelligence, psychology, cognitive
sciences where agents have been modelled with
personality traits and passion for decision-making
[Baillie, 2002; Schmidt, 2002]. Conversely,
reactionary agents do not have any internal
symbolic model but make decisions based on
stimulus or reaction from its environment. Agents
can be classified according to their attributes such
as autonomy, learning ability, interaction and
cooperation. An important attribute of an agent is
its ability to take initiatives and learn from past
experience as it reacts and/or interacts within or
outside its environment.

3. AGENT FRAMEWORK

A cryptographic protocol is considered to include a
set of agents and channels of communication.

These agents interact with each other according to
some predefined rules and processing messages
sent and received via the communication channels.
A channel is an abstraction of the communication
facility that has certain constraints. Each agent is an
autonomous and reactionary entity capable of
performing a sequence of operations (events) on
messages. The agent formalism is characterised by
the tuple modelled at the atomic level.

ΣAgent = (X, S, Y, δint, δext, λ, ta)

X ={x1, x2,.....xn}is a non empty set of input events.
S={s1, s2,.....sn}is a non empty set of allowable
states.
Y={y1,y2,.....yn}is a non empty set of output events.
δint : S → S An internal state transition function
describing the behaviour of a Finite State
Automaton.
δext : Q * X → S: An external state transition
function describing reaction of the agent to external
events, where Q = {(s , e) | s ε S, 0 ≤ e ≤ ta (s)}.

λ : S → Y: An output function which maps the
internal agent state to the output set. Output events
can only be generated at the time of internal
transition.
ta : S → Time: This represents the time the agent
stays in a particular state before transiting to the
next sequential state.

Cryptographic protocols are designed to establish
and authenticate communication between entities.
Entities in cryptographic protocols are formally
called principals and are assumed to have unique
identities. A good number of cryptographic
protocols require an authentication server or a
certification authority to provide keys and
certificates to enable secure communication
between two or more principals. These properties
and more are clearly identifiable in agents and to
describe these properties in DEVS, the formalism
for a coupled model needs to be introduced. The
coupled model describes how to integrate all three
agents as identified in the DSE protocol (discussed
in subsequent sections) forming a larger model as
shown below.

∏AgentS = (X, Y, M, ϒeic, ϒeoc, α, select)
X = {x1, x2,.....xn}is a non empty set of inputs to the
coupled model agent S.
Y = {y1, y2,.....yn}is a non empty set of outputs to
the coupled model agent S.
M = {m1, m2,.....mn} is a non empty set of unique
component references.
ϒeic ⊆ ∏AgentS.input * ΣAgent.input: An external input
coupling relation.
ϒeoc ⊆ ΣAgent.output * ∏AgentS.output: An external
output coupling relation.

α ⊆ ΣAgent.output * ΣAgent.input: An internal
coupling relation.
select : 2M → M : Tie breaking selector.

A multiple state transition is one of the problems
associated with coupling concurrent and sequential
components in discrete simulation systems. This
may lead to instability if it occurs at the same
simulation time. In order to deal with this problem
a selection criteria is defined, which determines the
component's transition that is priority. This is also
applicable to agents described in the simulation
model where select represents a tiebreak. Select
chooses a unique agent from any non-empty subset
E of M where E corresponds to the set of all agents
having simultaneous state transitions.

4. THE SIMULATION MODEL

In order to explain the development of the model
using the agent definition described above, a simple
cryptographic protocol simulation model is
presented. The model is intended to convey the
session key Kab and data, from agent A to agent B
whilst keeping it secret from other agents on the
network.

Agent A Agent B"out_1"

Agent S

"in_1"

"out_1"

"out_2"

"in_1"

"in_1"

 Figure 1: A Simple Cryptographic Protocol Model

Agent A makes contact with agent S, who provides
A with the session key Kab and a secret containing
the session key Kab but encrypted with B's key.
Agent A then sends the secret to agent B who then
decrypts the secret and stores the session key.
Figure 1 shows the input and output ports of agent
A. The input port "in_1" of agent A is for receiving
messages from agent S. The output port "out_2" is
used for sending the messages containing the
session key Kab to agent B and output port "out_1"
of agent A is for making initial contact with agent
S. A formal description of the model is specified
using the atomic DEVS as shown below.

ΣAgentA = (X, S, Y, δint, δext, λ, ta)
X ={“in_1”}
Y ={“out_1”, “out_2”}
S ={idle, sent, recvd, accpt}.
δint (idle) = (make_INI_REQ, sent)
λ (idle) = “out_1” = msg

 δext ((-,-), “in_1”) = (recv_MSG, recvd))
δint (cond ≠ False, accpt)) = (send_MSG, accpt)
λ (cond ≠ False, accpt)) = “out_2” = msg
ta(S) = time value

The notion of time cannot be effectively predicted
due to factors such as network latency, bandwidth,
encryption/decryption algorithms etc. The variable
msg is an address location used to store received
messages from agent S and cond is a conditional
variable, which indicates success or failure of
processed messages. Messages are transmitted
either as plain text or cipher text depending on the
protocol being simulated.

In figure 2, a state trajectory is given for the agent
A model. It shows that the agent made an internal
transition from idle to sent state. The agent remains
in the idle state until the time ta (idle) elapses.
When this occurs an output y1= λ(idle) is generated
and the state is transited to the sent state. The agent
remains in this autonomous mode until it receives
an external event. This event does not give rise to
an output.

State

id
le

se
nt

re
cv

d
ac

cp
t

t

Y

t

t

X

ou
t_

2
ou

t_
1

in
_1

λ

λ

(recvd)

(idle)

(idle,0)

(sent,0)

(recvd,0)

(accpt,0)

δ

δext
((-,-),"in_1")

δ

(recvd)
int

int
(idle)

 Figure 2: State Trajectory of Agent A

Once the agent A and agent B have been
developed, the coupled agent S can be specified
defining the required coupling relationship between
all the agents in the model. The agent S model is
formalised as follows.

∏AgentS = (X, Y, M, ϒeic, ϒeoc, α, select)

X = {“in_1”}
Y = {“out_1”,”out_2”}
M = {Agent A, Agent B}
ϒeic = {(Agent S.out_1, Agent A.in_1)}
ϒeoc = {Agent A.out_1, Agent S.in_1)}

α = { AgentA.out_2, AgentB.in_1}
select : (Agent A, Agent B) → Agent A

5. NEEDHAM-SCHROEDER PROTOCOL

This protocol is the basis of many existing protocol
designs today. It implements a symmetric
mechanism and shares the common problem of
key distribution. Here the client A makes the initial
contact with the server S by sending a message
consisting of its identity, the identity of client B and
a randomly generated number N. The server S
randomly generates a session key, which is shared
between clients A and B and then encrypts a
message containing the shared session key, the
identity of client A with the session key it shares
with client B.

Following from that the server encrypts another
message containing the shared session key, the
identity of client B, the random number generated
by client A and an embedded encrypted message.
The server eventually sends the encrypted message
to client A, who with the knowledge of the server’s
shared key is able to decrypt the message. Client A
subsequently sends the embedded encrypted
message to client B, who is also able to decrypt it.
Figure 3 illustrates the simulation model in the
context of agent based framework. Nb-1 in
message 5 implies that the message is from A and
not from B [Burrows et al, 1990].

message 1 A → S: A, B, Na
message 2 S → A: {Na, B, Kab, { Kab, A}Kbs} Kas
message 3 A→ B: { Kab, A}Kbs}
message 4 B → A: { Nb}Kab
message 5 A → B: { Nb -1}Kab

Agent A "out_1"

Agent S

"in_1"

"out_1"

"in_1"

"in_1"

Agent B

"out_2"

"out_1"
"in_2"

 Figure 3: Needham-Schroeder Protocol Model

∏AgentS = (X, Y, M, ϒeic, ϒeoc, α, select)

X = {“in_1”,”in_2”}
Y = {“out_1”, “out_2”}
M = {Agent A, Agent B}
ϒeic = {(Agent S.out_1, Agent A.in_1)}
ϒeoc = {Agent A.out_1, Agent S.in_1)}
α = { AgentA.out_2, AgentB.in_1}
α = { AgentB.out_1, AgentA.in_2}
select : (Agent A, Agent B) → Agent A

6. DSE PROTOCOL

The DSE protocol is based on shared and public
key cryptography and is suitable for authenticating
federates in HLA coupled distributed synthetic
environment. Any number of federates can join or
resign from the federation securely, hopefully,
affecting the performance of the scheme minimally.
The protocol is based on the plug and adaptor
concept where plugs are attached to each federate
model and the adaptor is attached to the RTI. This
provides a platform for coordinated and secure
communication between federates participating in
the federation exercise. The adaptor S serves as an
authentication server and a certificate authority
providing various services to each federate model.
Amongst other strengths, the protocol is designed
to guard against a replay attack using synchronised
clocks and randomly generated numbers.

S

A B

{R
b ,T

b ,{d} k
b, SL, H

b }k
bs

A
, {

R a,
T a,S

L ,
 H

 b
,}

k as

{T
s,

{d
} k

b}
k as

, k
-1 b

 Figure 4: The DSE Authentication Protocol Structure

The description of the protocol is given below, with
two federates attached to Plugs A and B as shown
in figure 4. Kas and Kbs represent the shared keys
for Plugs A and B, Kb

-1 and Kb represent public and
private keys for Plug B. Ra and Rb are random
numbers generated by federates A and B. Ts, Ta and
Tb are timestamps of Plugs A, B and adaptor S. SL
represents the security level and finally d is the data
in the form of updates. For the sake of clarity, the
federate attached to Plug A will be referred to as
federate A and the federate attached to Plug B as
federate B. Federate B sends an encrypted message
consisting of Rb, Ta and the object handle of the
instance whose attributes need to be updated with
the new attribute value d. If federate A subscribed
to this attribute, once it has been registered and
updated by B, it sends its identity along with an
encrypted message consisting of a randomly
generated number Ra, a timestamp Ta, and the
object handle of the instance whose attributes have
been updated to S. S confirms that the message is
timely, and Ra checked against existing random
generated numbers. S then generates a timestamp
Ts, and forwards both the encrypted attribute values
(data) and the certificate of B containing the public
key of B to A who then extracts and verifies the
public key. If the process is successful, the message

is decrypted and the data is reflected and updated as
shown in figure 4.
message 1 B → S : B,{Rb, Tb, {d}kb, SL, Hb}kbs
message 2 A → S : A, {Ra, Ta, SL, Hb}kas
message 3 S → A : {Tb, {d}kb}kas , Kb

-1

6.1 DSE Protocol Simulation Model

In this protocol agent B makes contact with agent
S, if successful data is transferred. Agent A wishes
to have access to the data transferred by agent B.
To do so agent A must make contact with agent S
passing on its identity and authentication details,
which are verified. If successful agent S responds
with the requested data encrypted with the shared
key. The input and output ports of the agents are
shown in figure 5 and the formal description given
below.

Agent A Agent B"out_1"

Agent S

"in_1"

"out_1"

"in_2""in_1"

"out_1"

Figure 5: DSE Simulation Protocol Model

ΣAgentA= (X, S, Y, δint, δext, λ, ta)

X = {in_1"}
Y = {"out_1”}
S ={idle, sent, recvd, accpt}.
δint (idle) = (make_INI_REQ, sent)
λ (idle) = “out_1” = msg
δext ((-,-), “in_1”) = (recv_MSG, recvd))
ta(S) = time value

State

id
le

se
nt

re
cv

d
ac

cp
t

t

Y

t

t

X

ou
t_

2
ou

t_
1

in
_1

λ

λ

(recvd)

(idle)

(idle,0)

(sent,0)

(recvd,0)

(accpt,0)

δ

δ ext
((-,-),"in_1")

δ

(recvd)
int

int
(idle)

 Figure 6: State Trajectory of Agent A in the DSE Model

The trajectory of agent A is shown in figure 6.
Similarly, agent B can be developed and shown
trivially. Once agent A and agent B have been

developed, the coupled model agent S can be
specified. The agent S model formalisation is
shown below.

∏AgentS = (X, Y, M, ϒeic, ϒeoc, α, select)
X = {“in_1”, “in_2”}
Y = {“out_1”}
M = {Agent A, Agent B}
ϒeic = {(Agent S.out_1, Agent A.in_1)}
ϒeoc = {Agent A.out_1, Agent S.in_1)}
α = { AgentB.out_1, AgentS.in_2}

6.2 Prototyping the Agent Model

The Simplex3 simulation system introduced by
Schmidt [Schmidt, 2001] has been used to achieve
the dynamics of the DEVS models. Each agent
comprises various parts. The name, declaration and
the dynamic part all make up the agent
composition. Firstly, agents are identified by their
names. The quantities and their properties are
defined within the declaration part and the
behaviour of the agent is described in the dynamic
part. Agent behaviour could be modelled using
differential equations, events or algebraic
equations. However, in this case the behaviour of
the agent is modelled using events.

6.3 High Level Component Agent_SIM

Three high level components have been defined,
two for the atomic DEVS and the other for the
coupled DEVS. Within the Simplex3 system,
components can be composed of subcomponents
and linked via connectors. Each agent is
represented as an independent basic component and
linked together in a high-level component
Agent_SIM and described using the Simplex3
model description language. The Agent_SIM model
describes a cycle in which agents can send and
receive messages via input and output channels. On
the start of the simulation, agent B creates and
sends a message carrying data updates to agent S
who then verifies and accepts the update.

Agent SAgent A Agent B

<Channel_1> <Channel_2>

<Channel>

Msg

LocWaitMsg LocWaitMsg

Figure 7: Relationship between Basic Agent Components

 Agent A subscribes to data by sending a message
comprising security information to agent S and if
successful the data requested is sent to agent A. The
dynamic behaviour of each agent describes the
various events which can take place during the
simulation run. Figure 7 shows the basic
component agent A, agent B and agent S all linked
together using component connections. Figure 8

shows the high level component connection
representation of the agents. Messages are modelled
using a mobile message component, as shown in
figure 9, where a number of attributes are declared.

Figure 8: High Level Component Agent_SIM

Figure 9: Mobile Component Message

7. EVALUATING THE PROTOCOL DESIGN

When examining the security of protocols, it is
assumed that the underlying cryptographic
mechanisms are secure. In evaluating the protocol
an intruder does not necessary have to attack the
underlying mechanism directly but rather attempt to
subvert the protocol’s objective by defeating the
manner in which such mechanisms are combined.
Agents could be simulated with this capability and
other known security breaches. This could provide
for an effective security assessment of the protocol
simulated.

The aim of the attack model is to provide some
form of benchmark for testing the security of a
protocol with the hope of uncovering any potential
failures in the design. It is intended that the attack
model is capable of performing a number of attack
scenarios which include, first, the cases where the
attack model is able to send messages but not read
messages that are not addressed to it. Second, the
attack model is able to send and read messages but
not block messages and the last but not the least,
the attack model could send, read and block
messages but could not replace the blocked
messages with other messages etc. Other
capabilities that could be included in the attack
model include the ability to break certain classes of
cryptosystems. The overall attack model would
provide the basis for simulating various attack
scenarios and thus could reveal the requirements for
a more secure protocol design.

7.1 Attack Model Description

In this section, an abstract simulator is considered.
It describes some of the capabilities of the attack
model for example impersonation and message
interception where the attack agent attempts to play
the role of the sender or the receiver as well as
modify message content. Attack actions could be
defined as events engaged by an attacker, which
affect messages sent and received by legitimate
participants in the protocol. Hence, an attack
capability could be defined as a set of actions an
attacker is able to perform. These actions and
events are described in the model. The simulation
starts when the model receives the SIMULATE
message shown below, and stops when tAttackagent
= ∞
when receive (SIMULATE, t)
send (START, t) to agentattack
while (tAttackagent ≠ ∞) do
"Intercept messages transmitted"
send (MSG, tAttackagent) to agentattack
"Message modification"
send (MSG, tNchild) to agentS
endWhile

The attack simulator is necessary to drive the
model. The variables tL and tN hold the time of last
time, and the time for the next transition. This
method sets the partial state to s{o} and the value
e{o} is interpreted as the time elapsed in the current
state.

when receive (START, t)
 tL ← t ← e{o}
 s ← t ← s{o}
 tN ← tL ← ta{s}
end
when receive (MSG, t)
 if t ≠ tN then return endif
 intercepted ← message t ← MSG
 s ← δ(s), s ← t ← s{o}
 tL ← t, tN ← tL ← ta{s}
end
when receive (MSG, t)
 if t ≠ tN then return endif
 message t ← MSG
 s ← δ(s), s ← t ← s{o}
 tL ← t, tN ← tL ← ta{s}
end

8. SUMMARY

A possible approach, which utilises the merits of
both agent-based and simulation technologies for
analysing cryptographic protocols has been
proposed. This approach is based on simulating an
environment appropriate for describing the DSE
protocol as well as other known protocols. The
environment allows agents to interact amongst
themselves and also react to external activities such

as an intruder attack. In addition, an attack model
was described and introduced, with a number of
attack capabilities, in the simulation environment to
provide a test bed for examining security flaws in
the protocol simulation.

9. REFERENCES
Baillie P. 2002. “An Agent with a Passion for Decision

Making.” In Proc. of Agents in Simulation
Workshop III Passau, Germany, University of
Passau, April.

Burrows M, Abadi M, and Needham R. 1990. “A Logic
for Authentication” SCR Research Report 39,
Digital Equipment Corporation, February.

Gong L, Needham R and Yaholm R. 1990. “Reasoning
About Belief in Cryptographic Protocols.” In
Proceeding of IEEE Symposium on Research in
Security and Privacy, Pages 234-248, Oakland
California.

Iwu, F.O. and Zobel R.N. 2002. “Network Attack
Profiling: Using Agents-Based Simulation to
Gather Forensic Information” In Proc. of Agents
in SimulationWorkshop III Passau, Germany,
University of Passau, Passau, April.

Nieh B and Tavares S. 1992. “Modelling and Analysing
Cryptographic Protocols using Petri Nets.” In
Proceedings of AUSCRYPT.

Schmidt B. 2002. “How to give Agents a Personality.” In
Proc. Of Agents in Simulation Workshop III
Passau, Germany, University of Passau, Passau.

Schmidt B. 2001. “The Art of Modelling and Simulation:
 Introduction to Simulation Systems Simplex3.”
 Book, SCS-European Publishing House Erlanger.
Varadharajan V and Shankaran R. 1990. “The use of

Formal Description Technique in the
Specification of Authentication Protocols.” In
Proceedings of Computer Standards and
Interfaces.

Zeigler B. and et al. 2000. “Theory of Modelling and
Simulation.” Book, Academic Press, Inc.
January.

10. BIOGRAPHY

FRANTZ IWU is a research associate at the
University of York. He obtained his MSc in
Advanced Computer Science and has recently
completed his PhD studies at Manchester
University. He is a member of the British Computer
Society.

RICHARD ZOBEL He is a former Chairman of
the United Kingdom Simulation Society (UKSim),
Former Secretary of the European Federation of
Simulation Societies (EUROSIM), and is a
European Director of SCSI, the Society for
Computer Simulation International. His current
research work concerns distributed simulation for
non-military applications, issues of verification and
validation of re-useable simulation models and
security for distributed simulation under
commercial network protocols. He is now semi
retired, but remains very active.

	c0: Proceedings 17th European Simulation Multiconference
(c) SCS Europe BVBA, 2003 ISBN 3-936150-25-7

