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ABSTRACT

The performance of a BSP Time Warp parallel simula-
tion system on a large-scale cluster of workstations can be
severely affected due to the presence of external workload
on individual machine in the cluster. This paper describes
a new approach to managing external workload for BSP
Time Warp parallel simulation on a cluster of workstations
using the approach of time slicing. Experimental results
comparing the performance of this new approach and the
one proposed previously show that the new approach is
resilient to interruption from external workload on multiple
computing nodes in the cluster of workstations.

1 INTRODUCTION

Parallel simulation is an emerging technology that enables
the execution of large-scale simulation model in a shorter
timeframe compared to its sequential counterpart. Many of
the existing parallel simulation protocols are developed with
the assumption that the underlying parallel computing plat-
form is dedicated and thus most do not consider the factor
of variation in system load of the computing platform due to
interruption from external workload.

The increasing popularity of large-scale cluster of worksta-
tions as the execution platform for parallel simulation re-
quires a new approach in the design of parallel simulation
protocols. Very often computing resources in these clus-
ters are not dedicated and are usually shared among multiple
users. The workload on each computing node in the cluster
can fluctuate widely due to the presence of jobs from other
users.

In [6, 7], we have reported our initial effort in designing
a dynamic load-balancing (DLB) algorithm for the Bulk
Synchronous Parallel Time Warp (BSP-TW) with external
load-management capability. The external load-management
module described in [7] uses the approach of evicting simu-
lation workload from a processing node whenever the system
load of the processing node exceeds a load threshold param-
eter. The drawback of this approach is that the performance
of the system deteriorates rapidly in the presence of external
workload on multiple nodes of the cluster of workstations. It
is also difficult to determine the optimal values for the load
threshold parameter.

In this paper, we present a new approach to external work-
load management using time slicing. Our experimental re-
sults show that the new approach is able to maintain high

performance in the presence of external workload on multi-
ple nodes of the cluster of workstations without the need to
use the load threshold parameter.

The rest of this paper is organized as follows. Section 2 de-
scribes the BSP model and the BSP Time Warp optimistic
protocol. In section 3, the BSP-TW DLB ����� � algorithm pro-
posed in [7] is described. We then describe the new BSP-TW
DLB ����� � algorithm which uses a time slicing approach to ex-
ternal workload management in section 4. Section 5 presents
experimental results comparing the new DLB algorithm with
the existing one on a manufacturing simulation model. Some
related work are described in section 6. Section 7 summa-
rizes the paper and outlines future research directions.

2 BSP TIME WARP

The BSP model first proposed in [9] is designed to be a gen-
eral purpose approach to parallel computing that allows the
separation of concerns between computation, synchroniza-
tion and communication costs. It has a simple cost model for
predicting the performance of BSP algorithms on different
parallel platforms. A BSP programming model consists of

�

processors linked by an inter-connecting network and each
with its own pool of memory.

A BSP algorithm consists of a set of processors each execut-
ing a series of supersteps. Each superstep consists of three
ordered phases: 1) a local computation phase, where each
processor can perform computation using local data and issue
communication requests; 2) a global communication phase,
where data is exchanged between processors according to the
requests made during the local computation phase; and 3) a
barrier synchronization, which waits for all data transfers to
complete and makes the transferred data available to the pro-
cessors for use in the next superstep.

The BSP-TW algorithm [8] shown in Figure 1 is designed
to be an efficient realization of an optimistic synchronization
protocol ([3], [4]) on the BSP model. Each processor man-
ages a group of logical processes (LPs) in the system. In
BSP-TW, LPs are also referred to as simulation objects and
the two terms are used interchangeably in this paper. LPs
in the same processor share a common event-list. A series
of supersteps are executed by each processor as indicated by
the outer while loop and the bsp sync() statement at the
end of the loop.

The global virtual time (GVT) measures the progress of a
simulation run. An estimate of GVT is computed after every



bsp begin();
[A] Initialization;
while GVT

�
SimEndTime do

[B] Receive external events and process rollback;
[C] Compute new GVT, perform fossil collection and

compute new event limit ��� every ��� supersteps;
[D] Execute ��� events;
bsp sync();

endwhile
bsp end();

Figure 1. Algorithm for BSP Time Warp.

��� supersteps; ��� is also known as the GVT update inter-
val. The body of the loop terminates when the GVT value is
greater than the simulation end time.

The algorithm provides an automatic means of throttling the
number of events, � � , being simulated per superstep based on
statistics from fossil collected events. The BSP cost model
for a BSP-TW algorithm

	
can be expressed as

cost 
 	��� ���� � ��� 
���
�� ������ 
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where � � is the total number of supersteps; ��
�� � is the com-
putation cost for superstep � ; and

 
�� � is the maximum num-
ber of messages sent or received respectively by any proces-
sor in superstep � . The architecture dependent parameters�

and
"

represent the communication and synchronization
costs respectively.

From the BSP cost model, we can see that the performance
of a BSP-TW algorithm relies on three factors: a) computa-
tion balance; b) communication balance; and c) � � , the total
number of supersteps. Computation and communication im-
balance can result from the dynamic changing nature of the
workload of the simulation model and interruption from ex-
ternal workload. The total number of supersteps required to
complete the simulation depends on the lookaheads on the
links between LPs on different processors. Lookahead is de-
fined as the minimum simulation time interval between event
arrival, from the source to a destination LP. A dynamic load-
balancing algorithm can reduce both computation and com-
munication load-imbalance, as well as optimize lookaheads
by migrating simulation objects between processors.

3 MANAGING EXTERNAL WORKLOAD BY
EVICTING PROCESSORS

The BSP-TW DLB ����� algorithm first described in [6] has fa-
cilities to dynamically balance computation and communi-
cation load-imbalance, as well as optimize lookaheads be-
tween processors. However, the algorithm does not take into
account interruption from external workload. In [7], we pro-
posed an extension to the BSP-TW DLB ����� algorithm, re-
ferred to as BSP-TW DLB ����� � algorithm, to allow external
workload management.

bsp begin();
[A] Initialization;
while GVT

�
SimEndTime do

[B] Receive external events and process rollback;
[C] Compute new GVT, perform fossil collection and

compute new event limit ��� every ��� supersteps;
[D] After each % GVT computation:

[D0] balance extLoad();
[D1] balance computation();
[D2] balance communication();
[D3] optimize lookahead();

[E] Execute ��� events;
bsp sync();

endwhile
bsp end();

Figure 2. Algorithm for BSP-TW DLB ����� � .

3.1 BSP-TW DLB ����� � Algorithm

Figure 2 shows the pseudo-code for the BSP-TW DLB ����� �

algorithm. The BSP-TW DLB ����� � algorithm consists of four
modules and is executed at each migration point, which oc-
curs every & ��� supersteps ( &$')( ). We also refer to the & �!�
supersteps between two migration points as a migration in-
terval. The pseudo-code for the BSP-TW DLB ����� algorithm
is not shown here as it is essentially BSP-TW DLB ����� � with-
out module D0.

At each migration point, one of the four modules will be ac-
tivated based on factors such as the amount of external work-
load, computation imbalance and communication imbalance.

The computation load-balancing in module D1 is carried out
by transferring simulation objects from processors with high
computation workload to processors with low computation
workload. For module D2, communication load-balancing is
carried out by exchanging simulation objects between pro-
cessors. The module uses load exchange, rather than load
transfer to preserve the computation balance achieved in
module D1, at the same time improving the balance in com-
munication workload. The lookaheads optimization in mod-
ule D3 is carried out by merging simulation objects with
small lookaheads into the same processor. For more de-
tailed explanation of these three modules, readers are re-
ferred to [6].

The BSP-TW DLB ����� algorithm described in [6] is enhanced
with module D0 in order to handle computation and com-
munication load-imbalance due to the presence of external
workload. The pseudo-code for module D0 is shown in Fig-
ure 3.

The state variable
�

�
* +-, is used to track the average system

load of processor
�

�
. We classify the set of processors with

average load greater than the processor load threshold param-
eter, . , as heavily loaded. The average load of a processor
is obtained by a UNIX system call getloadavg(). This
system call returns the number of processes in the system run



balance extload()
foreach processor

���
do

if
���

.loadavg ��� then
migrate all(

���
);

set
���

as inactive;
else if

����� � 	 ��
� then
set
���

as active;
endif

endfor

Figure 3. Algorithm for Balancing External
Workload.

queue averaged over various periods of time. The one minute
sample returned by the system call is used in the experiments.

At each migration point, the BSP-TW DLB ����� � algorithm at-
tempts to evict all the simulation objects out of these heav-
ily loaded processors. The method migrate all(

��
) evicts

all the simulation objects in processor
�

�
to other proces-

sors with normal workload in a round-robin fashion. The
status of processor

�

�
is then set to inactive. As the dynamic

load-balancing modules D1 to D3 only consider the set of ac-
tive processors, simulation objects will not be migrated back
to the processors that are still heavily loaded with external
workload. When a previously heavily loaded processor’s av-
erage system load drops below

�� , the status of the processor
is reset to active. This causes the computation and commu-
nication load-balancing modules to detect the idle processor
and allows simulation objects to be moved back to it.

4 MANAGING EXTERNAL WORKLOAD BY TIME
SLICING

Although the BSP-TW DLB ����� � protocol does solve the
problem of external workload interruption, it sacrifices the
complete use of a processor whenever it is loaded with exter-
nal workload, regardless of the amount of external workload
in the processor. Also, the performance of BSP-TW DLB ����� �

depends largely on how . is set. If the value of . is set too
low, many processors may be evicted due to the presence of
very small external workload. If the value of . is set too high,
the BSP-TW DLB ����� � algorithm may not react effectively to
the presence of external workload.

In this section, we consider another approach to managing
external workload by considering the available time slice for
the BSP process on the heavily loaded processors, rather than
leaving the processors completely out of the parallel compu-
tation.

4.1 Example of External Workload Management using
Time Slicing

We first illustrate our approach using the example shown in
Figure 4. The figure shows the computation workload of
a superstep for eight processors. Processors P0 to P3 are
each loaded with two external workloads, indicated by the
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Figure 4. An Example of External Workload
Management using Time Slicing.

shaded boxes. The computation workload of simulation ob-
jects on all the eight processors in the superstep are the same,
as shown by the white boxes. Each white box can be consid-
ered the computation workload of a simulation object.

Due to the presence of external workload, the superstep on
processors P0 to P3 takes three times the amount of time to
complete, as compared to those on processors P4 to P7. We
can also say that the simulation workload is only given one-
third slice of the CPU processing time. If we assume that
each box (white or shaded) consumes one unit of CPU pro-
cessing time, the superstep takes 12 units of CPU processing
time.

Figure 4b shows the workload configuration using the BSP-
TW DLB ����� � algorithm. All the simulation objects are
evicted from the four loaded processors and distributed to
processors P4 to P7. The resulting configuration is such that



processors P0 to P3 each can complete the superstep with
minimum delay while processors P4 to P7 now have twice
the amount of workload to process. The CPU processing
time for this superstep is reduced to 8 time units.

Another approach to managing the workload is to consider
the fact that the BSP workload on the heavily loaded proces-
sors still have access to one-third slice of the CPU process-
ing time. We can migrate parts of the simulation objects out
of these processors so that the overall workload for all pro-
cessors (taking into account the external workload) after the
migration is still balanced.

Figure 4c shows an example of how this is done. Two simu-
lation objects are migrated out of each processor loaded with
external workload. The resulting workload configuration is
balanced across all processors. The superstep now requires
only 6 units of CPU processing time.

The reason for the improvement over that using BSP-TW
DLB ����� � is due to the use of the remaining one-third slice
of CPU processing time on those heavily loaded processors
to process part of the simulation objects’ workload. The in-
creased in workload of those processors not affected by ex-
ternal workload is reduced compared to that using BSP-TW
DLB ����� � .

4.2 BSP-TW DLB ����� � Algorithm

We now describe the BSP-TW DLB ����� � algorithm that pro-
vides an alternative solution to managing external workload
by considering the allocated CPU time slice for the computa-
tion workload in each processor in the system. The outline of
the BSP-TW DLB ����� � algorithm is essentially the same as the
BSP-TW DLB ����� algorithm. Unlike the BSP-TW DLB ����� �

algorithm which adds another module to the BSP-TW al-
gorithm, the BSP-TW DLB ����� � algorithm works within the
balance computation()module. Also, it should be noted
that the BSP-TW DLB ����� � algorithm does not require the use
of the processor load threshold parameter . .
Before we describe the modification to the module for bal-
ancing computation workload, we first need to resolve the
condition for detecting imbalance in computation workload.
For example, we would want to consider the workload con-
figuration in Figure 4a as unbalanced while the configuration
in Figure 4c as well-balanced. As the time taken to complete
a superstep in each processor is computed by summing up
the time taken for executing each event in the superstep, the
balance computation()module will instead consider the
configuration in Figure 4a as well-balanced while the config-
uration in Figure 4c as unbalanced.

To resolve this problem, we can make use of the additional
knowledge of the average system load of each processor
(
�

�
* +-, ) to work out a better approximation of the workload

on each processor. We first scale the computation workload
of each processor (

�

�
* � + ) by its corresponding average sys-

tem load as follows:

�

�
* � + �  �

�
* � +�� �

�
* +-, * (2)

balance computation()
while ������� do

let 	�
��� be the processor with the max. computation workload;
let 	 
 � � be the processor that yield the min. average workload;

when paired with 	�
���
� :=

	�
����� ������	�
����� � ����	 
 � � � ��� ��	 
 � � � � �
	�
����� � ��!"	 
 � � � � �

computation migrate( � , 	�
��� , 	 
 � � );	�
����� ��� := 	�
����� ��� - � ;	 
 � � � ��� := 	�
����� ���
compute ��� ;

endwhile
return flag;

Figure 5. Algorithm for Determining Amount
of Computation Workload to Migrate taking
into account System Workload. # is the Load-
imbalance Threshold Parameter.

Note that for those processors with average system load less
than 1.0,

�

�
* +-, will be set to 1.0.

The calculation of the computation imbalance, $&% , of the
system is shown in equation (3).

$&%  max 
 �
�
* � + �' mean 
 �

�
* � + �

mean 
 �
�
* � + � * (3)

Using this formula, the load imbalance for the superstep
shown in Figure 4a will be 0.5 while the superstep in Fig-
ure 4c will be treated as having perfectly balanced workload.

The BSP-TW DLB ����� � algorithm has exactly the same struc-
ture as that of BSP-TW DLB ����� . The difference lies in the
balance computation() module, which now needs to
take into consideration the system load of those processors
involved in the load transfer process.

Figure 5 shows the pseudo-code for the
balance computation() module. Note that the compu-
tation workload used in the module have all been scaled
by the average system load of individual processors. The
processor

�(
�
� is not taken to be the one with the lowest

computation workload, but rather the processor that will
yield the lowest average workload when selected to engage
in the load transfer process with the processor

�)(+*�,
that has

the heaviest computation workload.

Figure 6 shows an example to illustrate why the processor
that has the lowest computation workload is not chosen to
be processor

��(
�
� . The example shows three processors and

their respective computation workload for a superstep. We
see that processor P0 is loaded with one external workload
and processor P1 is loaded with four external workload. Al-
though processor P2 is free from any external workload, its
overall computation workload is still higher than processor
P1.

Suppose processor P1 is now chosen to engage in the load
transfer process with processor P0. One unit of computation
workload will be migrated from processor P0 to processor
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Figure 6. An Example to Illustrate the Selection
of Processor

�(
�
� .

P1. This results in a net decrease of two units of computa-
tion workload in P0 and a corresponding five-unit increase
in computation workload in P1. The overall improvement in
the maximum computation workload is two units.

However, if processor P2 is chosen instead, two units of com-
putation workload will be migrated from P0 to P2. This re-
sults in a net decrease of four units in computation workload
in P0 and a corresponding two-unit increase in computation
workload in P2. The overall improvement in the maximum
computation workload in this case is four units. Although
P2 is not the processor having the lowest computation work-
load, selecting it for the balancing process yields better per-
formance compared to selecting P1, which has the lowest
computation workload.

The presence of external workload on the individual proces-
sor and the scaling of computation workload for each pro-
cessor requires some modifications to the formula used to
compute the amount of workload to be transferred from pro-
cessor

�(+*�,
to

�(
�
� . The following formula computes the

amount of computation workload, A , that needs to be mi-
grated from processor

��(+*�,
to processor

��(
�
� so that the

resulting workload, B , on both processors after the migration
is equal.

A  �(+*�, * +-, 
 �(+*�, * � + ' �(
�
� * � + ��(+*�, * +-, � �(

�
� * +-, (4)

B  �(+*�, * � + ' A (5)

5 EXPERIMENTS WITH MANUFACTURING SIM-
ULATION MODEL

In this section, we describe a set of experiments to compare
the performance of BSP-TW DLB ����� , BSP-TW DLB ����� � , and
the BSP-TW DLB ����� � algorithms.

5.1 Simulation Model

The experiments are carried out using a manufacturing sim-
ulation model similar to that used in [5] to study different
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Figure 7. Layout of a Production Line and an
Assembly and Test Facility.

runtime systems for a conservative simulation protocol. The
manufacturing model consists of different entities of a typical
production line with an assembly and test facility. Figure 7
shows the layout of a production line and an assembly and
test facility. The configuration of the manufacturing model
consists of a total of seven production lines. Each production
line consists of 100 production stages. The assembly and
test facility consists of 100 assembly stations and 100 testing
stations. There are a total of 2417 simulation objects in this
model.

This manufacturing model is a challenging model for opti-
mistic simulation protocol such as BSP-TW due to the pres-
ence of many zero lookahead links on the fork and join
nodes. Lookahead is crucial to the performance of the BSP-
TW protocol since processors with many incoming commu-
nication links with small or zero lookaheads are likely to suf-
fer from high event rollback rates.

For all the experiments, the GVT computation interval ��� is
fixed at 50 supersteps. The migration interval & is set to 5. A
processor load threshold parameter of . =1.5 is used for the
runs with BSP-TW DLB ����� � . The experiments are conducted
on a cluster of eight 350MHz Sun UltraSparc workstations
connected via a 100Mbits TCP/IP network. All execution
times shown are the average of 10 runs. The simulation run
length of all experiments is (DCFE time units. A block partition
strategy is used to assign consecutive block of 25 simulation
objects onto the same processor. The experiments are car-
ried out by loading different number ( G =1, 2, 4 and 6) of
processors with different number ( H =1, 2, 3, 4) of external
workload. The external workload is introduced from the start
of the simulation and lasts through the entire simulation du-
ration.

5.2 Experimental Results

Table 1 shows the execution times using the three different
protocols on the manufacturing model. The column under
BSP-TW DLB I����� � is executed using a modified version of
BSP-TW DLB ����� � . This version uses a modified average sys-
tem load for each processor, which is shown below:

�

�
* +-, �  
 �

�
* +-, � � * (6)

The modified system load of individual processor is then ap-
plied to the scaling of the computation workload in equa-
tion (2). This modification has no effect on those processors



BSP-TW� �
DLB ����� DLB ����� � DLB ����� � DLB ������ �

1 1 602.0 489.4 551.2 520.6
2 789.8 517.8 559.3 558.0
3 844.3 566.1 617.9 569.6
4 993.3 592.2 787.8 606.1

2 1 718.9 596.8 672.9 613.5
2 1170.5 634.1 705.1 615.1
3 1318.3 635.9 732.7 651.2
4 1667.6 693.5 958.8 690.7

4 1 826.2 944.0 768.6 747.8
2 1502.5 954.7 981.9 749.0
3 1697.1 987.7 1055.7 767.6
4 2329.2 1021.6 1275.6 840.5

6 1 918.9 1462.8 934.0 867.8
2 1704.6 1736.5 1350.0 1038.4
3 2090.9 1843.2 1449.8 1124.8
4 2971.3 1870.6 1816.9 1128.7

Table 1. Execution Times (sec.) using BSP-TW
DLB ����� � with H Number of Processors Loaded
with G Number of External Workload.

with no external workload since
�

�
* +-, will still be equal to

1.0. For those processors with average system load greater
than 1.0, this change has the effect of encouraging the BSP-
TW DLB ����� � to migrate more simulation objects out of them.
Similarly, it also discourages the load-balancing algorithm
from migrating simulation objects back into them.

Table 1 shows that for the cases with H  ( , the perfor-
mance of BSP-TW DLB ����� � drops below BSP-TW DLB �����

as the number of processors loaded with external workload
is increased to six. The BSP-TW DLB ����� � algorithm is dis-
carding six out of eight processors even though each of the
six processors is only loaded with one external workload.

By not discarding completely those processors with external
workload, the BSP-TW DLB ����� � protocol is able to achieve
better performance than the BSP-TW DLB ����� � protocol for
the cases with H  ( and G 	�

and 6. For G �

, the

BSP-TW DLB ����� � algorithm outperforms BSP-TW DLB ����� �

for all values of H .

However, as the number of processors loaded with external
workload is reduced, the performance of BSP-TW DLB ����� �

drops below that of BSP-TW DLB ����� � . This drop in perfor-
mance in BSP-TW DLB ����� � can be attributed to two factors:
1) insufficient simulation objects are migrated out of those
heavily loaded processors as the number of external work-
load on these processors is increased; and 2) side effects from
the lookahead optimization module.

In order to verify the first hypothesis, we carried out the runs
with BSP-TW DLB I����� � to test if better performance can be
achieved by encouraging more simulation objects to be mi-
grated out of the heavily loaded processors. In a way, the
squaring of the average system load of individual proces-
sor in equation (6) serves to exaggerate the load situation of
those heavily loaded processors such that more simulation
objects can be migrated out of them.

Table 1 shows that this approach does significantly improve
the performance of the BSP-TW DLB ����� � algorithm. For
the cases with G ��

and 6, the performance of BSP-TW
DLB I����� � drops gradually with increasing external workload.
This shows that the dismal performance of BSP-TW DLB ����� �

is indeed due to insufficient simulation objects being mi-
grated out of those heavily loaded processors.

However, for the runs with only one processor being loaded
with external workload, the performance by either BSP-TW
DLB ����� � or BSP-TW DLB I����� � is still slightly worse than that
using BSP-TW DLB ����� � . This performance drop can be at-
tributed to the side effect of lookahead optimization.

Figure 8 shows a breakdown of the computation workload
as well as the number of simulation objects on each proces-
sor for a run executed using BSP-TW DLB I����� � . In this run,
processor P1 is loaded with one external workload. We see
that at superstep 1250, the balancing module is activated and
the number of simulation objects on processor P1 drops from
307 to 170. Correspondingly, the computation workload for
processor P1 decreases from a high level of 17.5 to 6.4.

However, at superstep 1500, an optimization of lookahead
is carried out by the BSP-TW DLB I����� � algorithm. This re-
sulted in 20 simulation objects being migrated back into pro-
cessor P1. The computation workload of processor P1 is in-
creased to 11.5 in superstep 1750. At this point, the pattern
repeats itself with the computation balancing module migrat-
ing simulation objects out of processor P1 and the lookahead
optimization module migrating simulation objects back into
processor P1. The main problem here is that the lookaheads
optimization module uses a migration threshold  =0.5 which
allows up to 50% of the simulation objects to be migrated
during each round of lookahead optimization and this tends
to disrupt the load-balance achieved in the computation bal-
ancing process.

A possible solution to resolving this issue might be to use
a value of  smaller than 0.5. While this will reduce the
amount of simulation workload that can be migrated back
into the heavily loaded processors, it will also slow down the
lookahead optimization process on other processors, causing
the performance to drop. An effective solution might require
the value of  to be set differently for different processors
with different load configurations. Further work will need to
be carried out to explore this possibility.

6 RELATED WORK

Past studies of DLB algorithm for optimistic parallel simula-
tion protocols have typically focused on which metrics to use
to measure the actual workload of the system. In this paper,
the metrics used are the computation workload together with
the average system load of the individual nodes in the cluster
of workstations.

In the study reported in [1], Carothers and Fujimoto pre-
sented an approach for background execution of Time Warp.
The scheme allows a Time Warp system to execute in back-
ground and consume unused CPU cycles across a collection
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Figure 8. Processors Computation Workload and Number of Simulation Objects using BSP-TW DLB I����� � .

of heterogeneous machines. The metric used is “Processor
Advance Time” (PAT), which reflects the amount of real time
needed to advance the virtual time of a logical process by
one unit. A personal communication service network model
is used in this study. The experimental results showed an
improvement of up to 45% in the presence of external work-
load.

Glazer and Tropper also described a metric based on time
slices [2]. They defined a time slice to be a metric propor-
tional to the ratio of the amount of computation time required
by a process over the advance of its simulation time. They
presented speedup improvement ranging from 12% to 49%
using this approach to balance simulation workload for three
different simulation models running on a simulation multi-
processor environment. However, their experiments do not
take into consideration interruption from external workload.

7 CONCLUSION

In this paper, we have described a new time slicing approach
to external workload management for the BSP-TW parallel
simulation protocol. Our experimental results comparing the
performance of the BSP-TW DLB ����� , BSP-TW DLB ����� � and
BSP-TW DLB ����� � show that BSP-TW DLB ����� � protocol is
able to achieve better performance over BSP-TW DLB ����� �

when a high proportion of processors in the BSP-TW com-
putation are burdened with external workload. However,
the performance of BSP-TW DLB ����� � drops rapidly with in-
creasing system workload on those heavily loaded proces-
sors. By amplifying the processor system workload to exag-
gerate the load-imbalance of the system, we show that the
BSP-TW DLB ����� � protocol can indeed achieve significant
performance improvement over both the BSP-TW DLB �����

and BSP-TW DLB ����� � protocols.
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