
CLIENT SIDE SIMULATION TOOL JSSim

JAROSLAV SKLENAR

Department of Statistics and Operations Research
University of Malta

Msida MSD 06, Malta
Web: http://staff.um.edu.mt/jskl1/

E-mail: jaroslav.sklenar@um.edu.mt

Abstract: JavaScript is an interpreted language where the important techniques of Object Oriented Programming
can be utilized. Some of them are not included directly, so they need additional support. For example inheritance
has to be programmed explicitly. A JavaScript programmer is thus making use of a modern language that,
together with HTML, supports creation of documents that can contain user-friendly input of validated data, any
kind of data processing, and lucid presentation of results. Solutions based on JavaScript and HTML are typically
placed on the web and made thus available literally to everybody who has a browser supporting particular
versions of these two languages. These capabilities have been applied to create various web-hosted problem-
solving tools. Such tools can contain simple and medium-scale simulation models. Several simulation models
have already been implemented and placed on the web with very encouraging response. Routines used to create
these models, including a simple event-oriented simulation engine together with a collection of classes for
general use in discrete simulation, have been collected into a tool that we call JSSim. The paper describes the
capabilities of this tool by using examples oriented to simulation of queueing systems. The tool also supports
direct links between JavaScript objects and parts of the corresponding HTML documents in order to simplify
programming as much as possible. A queueing network has been simulated to compare JSSim with ExtendTM
and ArenaTM from several points of view.

keywords: Web based simulation, JavaScript, Discrete event simulation, Queueing models.

1 INTRODUCTION

The book [Flanagan, 1998] describes the JavaScript
prototype oriented paradigm. The papers [Sklenar,
2001, 2002] explain how to use this paradigm in
order to be able to utilize all important techniques of
Object Oriented Programming (OOP) in JavaScript.
Some new techniques not available in strongly typed
compiled Object Oriented Languages (OOL) are
also introduced. In particular the programmed
inheritance described in the paper [Sklenar, 2001a]
enables creation of “subclasses” that inherit only
selected methods of the superclass. Thus we can
create simplified versions of general superclasses.
All these techniques can be used to create a reusable
code open to future expansion and modification. In
other words in an interpreted JavaScript
environment we can use the techniques typical for
classical compiled strongly typed OOLs like for
example Simula or Java together with the flexibility
and simplicity typical for interpreted languages with
loose typing. All this of course can be done at the
expense of security, but as JavaScript is not intended
as a language for large software projects, it is not
considered as a big problem. The paper [Sklenar,
2001b] deals with the implementation of a
simulation engine that was written entirely in
JavaScript and that together with appropriate HTML
documents supports user-friendly development of
web hosted tools that contain simple and medium

scale simulation models. The engine is based on the
classical event-oriented approach with two
primitives: schedule an event at a certain time and
cancel a scheduled event. These primitives are
implemented as calls to routines with appropriate
parameters. Other simulation supporting facilities
are also available, for example generation of random
numbers, working with queues, and transparent
collection and computation of statistics. All these
facilities have now been collected into a tool called
JSSim (JavaScript Simulation). The purpose of this
paper is to describe the capabilities of this tool.
Though JSSim is a general tool for event-oriented
discrete simulation, examples oriented to simulation
of queueing systems will be used.

2 SIMULATION FACILITIES OF JSSim

Facilities found in languages and tools for
programming discrete simulation models can be
classified into the following main groups:

− Time control, synchronization and

communication of processes
− Generation of random numbers
− Transparent collection of statistical data
− Statistical analysis
− Advanced data structures
− User-friendly Input and Output

Next chapters will summarize the implementation of
these facilities in JSSim.

2.1 Time Control

For time control we consider only the two
commonly used approaches. While the process-
oriented discrete simulation represents the most
advanced way of modeling the dynamics of complex
systems, the classical event-oriented approach is
simpler and easier to learn and to implement. That’s
why it has been chosen for a JavaScript based tool
that is not intended for large simulation studies.
Assuming that the reader is familiar with the event-
oriented principle, these are the basic facts: During
(re)loading of the document the engine creates two
global variables: the time and the empty sequencing
set (SQS). Events are represented by event notices
created by the user and stored in the SQS. Each
event notice has the occurence time of the event and
any other user-defined data. The engine assigns the
time when the event is scheduled. From the user’s
point of view, the SQS is a list of event notices
ordered by the time of occurence in increasing way.
After activation, the engine repeatedly removes the
first event notice from SQS, updates the model time,
and activates a user routine that is given the
reference to the event notice. Simulation ends by the
empty SQS or by any user supplied condition. These
are the engine routines that are called from the user’s
part of the simulation model:

initialize_run() is a routine that clears the

SQS (the previous experiment may have finished
with nonempty SQS) and sets the model time to
zero. It should be called at the beginning of the
model initialization.

evnotice() is the event notice constructor. It

returns an object with the time property, that is
used later by the engine and should not be
accessed by the user. The user can add any other
properties to distinguish between types of events
and to store other model dependent data.

schedule(event,t) schedules the event whose

notice is the first parameter at the time given by
the second parameter.

modeltime() is the current time of the model. So

scheduling an event e after a delay d is
performed as follows:
 schedule(e,modeltime()+d).

cancel(event) cancels a scheduled event. The

function returns a boolean value that reports
whether canceling was successful.

simulation_run(stats,length) starts the

simulation experiment. This routine should be

called after the model initialization that has to
schedule at least the first event. The two
parameters just affect the progress reporting in
the status bar. The routine ends by reaching the
empty SQS or by the user supplied terminating
condition - the user’s routine finish_run().

The above routines are common to all simulation
models. Model specific behavior is implemented by
two routines that have to be supplied together with
the code (preferably also a routine) that starts the
simulation. These are the routines (together with
examples) that represent the user’s part of the
simulation control:

finish_run() tests whether simulation should

be terminated. It is called by the engine after
updating the model time just before activating
the next user event. It can just test the time
against the experiment duration or it can
implement a more complicated terminating
condition, like for example serving a given
number of customers. The following is the
function of a model where the experiment is
finished by reaching its duration runlength:

function finish_run() {
 return (modeltime()>runlength)
};

eventroutine(event) is activated by the

engine. The routine is given the reference to the
event notice that has been removed from the
SQS. The rest is the user's responsibility.
Typically there will be some properties created
by the user used to switch between various types
of events. It might be a good idea to keep this
routine short and simple and to write routines for
various types of events similarly as they are
written in event oriented simulation languages.
The following is the function of a model with
two types of events:

function eventroutine(event) {
 // The event routine switches
 // between types of events
 switch (event.eventtype) {
 case 1: next_arrival(); break;
 case 2:
 end_of_service(event.servnum);
 break;
 default:alert(
 "Wrong eventtype: "
 + event.eventtype);};
};

The start of simulation has also to be programmed.
For example it can be a function activated by
pressing a button “Run”. This function is supposed
to perform the following activities in this order:

− Initialization of the engine by
initialize_run()

− Model specific initialization
− Starting simulation by simulation_run()
− Model specific experiment evaluation.

The following is an example of a function activated
by pressing the button “Run” and its link to HTML.
Some model specific tests have been removed.

<INPUT TYPE="button" VALUE="Run"
 onClick="simulation()">

function simulation() {
 // Tests whether simulation can
 // start (not shown here)
 initialize_run();
 // This prepares the engine
 initialization();
 // Initiates model & statistics
 var ev = new evnotice();
 // Scheduling the first arrival
 ev.eventtype = 1;
 // User defined property
 var x = arrival.generate();
 // Generation of first interval
 intstat.update(x);
 // Interval statistics update
 schedule(ev,modeltime() + x);
 // Scheduling the first event
 simulation_run(showstatus,
 runlength);
 // This starts the experiment
 evaluation();
 // Experiment evaluation };

2.2 Generation of random numbers

JSSim contains a rather complex class used to
generate instances (objects) that represent random
numbers. These can have either a theoretical
distribution (so far only few are available), but
primarily they are supposed to contain tables used to
generate values with a general (for example
experimentally obtained) distribution. Methods are
available for entering and editing such tables.
Working with empirical tables is user-friendly; table
entries can be modified, inserted and deleted. Large
tables can be saved and loaded (provided cookies are
enabled in the browser). Figure 1 shows a table
created by HTML used to enter parameters of a
random variable. The controls are self-explaining.
Figure 1 shows the situation just before confirmation
of an empirical CDF table by pressing the button
“Check & Confirm”. Inversion is used for
generation that can be either discrete or interpolated.
The technique of restricted inheritance
(simplification) mentioned earlier was used do
declare a simplified version of this class for
generation of discrete random numbers with

empirical distribution only. Its instances have been
used for example to represent random movements of
customers in queueing networks. Work with random
numbers is very simple. Instances are first created by
statements similar to the following one located
typically in the so-called head code that is
interpreted during loading of the document:

var arrival=new Distribution("a1");

The method generate() returns the random
values, so during simulation statements similar to
the next one are used:

var x = arrival.generate();

So far the standard JavaScript random generator
Math.random() is used.

Figure 1: Entering parameters of a random variable

2.3 Transparent statistics

Transparent collection of statistical data and simple
statistical analysis are implemented by the classes
Accumulator and Tally (Simscript IITM terminology
is used). They differ in time treatment. Tally ignores
the time; the statistics is based on the collection of
the assigned values only. Accumulator statistics is
based on time integrals. Basically they are both real
variables with transparent collection of statistics.
The consequence for the user is the difference in the
form of the assignment statement. The usual a = x
has to be replaced by a method call
a.updateto(x). Simscript IITM calls this
mechanism left monitoring. It is based on the idea
suggested by [McNeley, 1968] who used the name
Store Association. Both Tally and Accumulator
objects have methods that return standard statistical
figures like a.average() that are used during
experiment evaluation without any further
programming.

2.4 Advanced data structures

To implement the sequencing set that is conceptually
an ordered list of event notices the heap class has

been implemented. Heap (not to be mixed with the
dynamically allocated memory of some languages)
is a perfectly balanced binary tree stored in an array
with the following properties assuming ascending
ordering of items by a certain key:

- The root with minimum key is at the position 1
- The two children (if any) of a node at the

position i are at the positions 2i and 2i+1
- Both children have bigger (or equal) key than

the parent.

Heap supports two basic operations adding an item
and removing the first item. These operations have
the performance of O(log2n) where n is the number
of items in the heap. Heap is also intended to be
used as a priority queue. For more details see
[Sklenar, 2001b].
JSSim also contains classes that implement a linked
list and a generic statistically monitored queue
without any specific ordering. Using these two
classes as superclasses, programmed multiple
inheritance was used to define classes for FIFO and
LIFO queues. Due to the superclasses used in
multiple inheritance, the queues can have practically
unlimited length and methods are available that
return typical statistical results like average, standard
deviation, and maximum of the queue length.
Methods that perform the basic operations have the
same name. Loosly typed JavaScript is polymorphic,
so the same code is used to work with various types
of queues.

2.5 User-friendly Input and Output

Validated input is easily implemented by JavaScript
code associated with text areas in the HTML
document. JSSim contains various validation
routines to check for example that the user has
entered a syntactically correct non-negative number.
The technique is known to everyone who has filled
in any on-line form. In addition to validation it is
also possible to update model parameters
accordingly. This can simplify model initialization
when simulation is started. The following HTML
fragment together with the associated page contents
represents a validated input of a probability value.
The routine checks non-negativity and whether the
value is not bigger than 1. Note that 0 is restored in
case of wrong input.

Enter probability [p or F]:
<INPUT TYPE="text" NAME="GIpx"
SIZE=15 VALUE="0.0" ONCHANGE="if
 (!testNonnegLE1Value(GIpx.value))
 {GIpx.value = 0}">

Model parameters can be updated directly when the
user enters the values or alternatively it is possible to
link objects to HTML text fields and to write
methods that read the validated data before
simulation starts. This direct link has so far been
utilized for outputs. The idea is as follows. The link
is done by common names. So assume that a queue
instance has been created by calling its constructor:

queue = new FifoQueue("Q1");

The constructor creates and initializes the queue, the
name is stored to the property qname. The instance
has two output methods inherited from statistically
monitored queue. The first method is used to update
the contents of the host HTML document:

StatQueue.prototype.scrupdate =
function(dname) { with (this) {
 eval(dname + qname +
 "av.value = average()");
 eval(dname + qname +
 "ma.value = maxqlength");
 eval(dname + qname +
 "sd.value = stdDev()");
}};

Note that the method scrupdate() updates three
text fields (typically in a table with results) that
would contain the average length, the maximum
length, and the standard deviation of the length of
the queue. Assume that the method is called as
follows:

queue.scrupdate("document.form1.");

So for the average and with respect to the above
example the procedure eval is given and evaluates
the parameter:

document.form1.Q1av.value=average()

This updates the text field called Q1av on the
screen. The following is the HTML fragment
together with the associated page contents:

<TH> Average </TH>
<TD><INPUT TYPE="text" NAME="Q1av"
 SIZE=25></TD>

So far it is the user’s responsibility to keep the
compatibility of names. Here it is the name of the
JavaScript object Q1 that is linked to the HTML text
field called Q1av. This can be achieved by using
standard HTML templates processed by the
“Replace All” operation available in practically all

text editors. In this case a template displaying typical
queue statistics would be used. Another method
winupdate() generates an HTML fragment that
displays four lines with results:

StatQueue.prototype.winupdate =
function(stitle,w) { with (this) {
 w.writeln(stitle +
 " length statistics:" +
 "
");
 w.writeln(" Average: " +
 average());
 w.writeln(" Maximum: " +
 maxqlength);
 w.writeln(" Std Dev: " +
 stdDev() + "");
}};

The method winupdate() is used for generation
of results in textual format in a separate window.
Assuming that there is an open window resw the
method is activated as follows:

var d = resw.document; ...
queue.winupdate("Queue",d);

The generated output can then be copied and pasted
into other documents as it has been done here:

Queue length statistics:

• Average: 0.6672205803062008
• Maximum: 10
• Std Dev: 1.4089986068350546

3 EXAMPLE SIMULATION

There are several simulation models created by
using JSSim that are available on the web. One of
them is a general simulator of queuing networks
whose last version is available at: http://staff.um.edu.
mt/jskl1/simweb/net2/netmain.html. This model has
been used to compare capabilities of JSSim with two
professional simulators that both can be
characterized as Visual Interactive Modelling
Systems (VIMS) [Pidd, 1998]. Academic version of
ArenaTM (Rockwell Software Inc.) is distributed with
the book [Kelton et al., 2002]. It is a general discrete
simulation tool oriented to simulation of queueing
systems. ExtendTM (Imagine That Inc.) is a general
tool for both continuous and discrete simulation. Its
demo version can be downloaded from
http://www.imaginethatinc.com/.
The simulated system is a network made of two
generators of customers and four network stations.
Figure 2 made of self-explaining blocks is a network
created by Extend, Arena chart is similar. The
network works as follows: after generation the
customers enter randomly any of the four service
stations, all with the same probability. After being
served the customers either leave the network or

move to any of the four stations, all five options
have the same probability.

Figure 2: Example queueing network in ExtendTM

The two generators are for simplicity equal with
exponential distribution of intervals with the mean
value 10 time units (let’s assume minutes). The
service stations are also equal, all made of one FIFO
queue of unlimited capacity and one server with
exponential distribution with the mean value 2
minutes. All these assumptions can be easily
modified. Having these input data, the first task was
to create the models. In Arena and Extend it means
drawing the networks and entering parameters of
blocks. Describing all details is out of the scope of
this paper, but the work is easy and can be done with
just the basic training. In JSSim simulator there is no
drawing. The distributions are entered in tables like
the one in Figure 1. Server parameters are also
entered in tables, this model uses defaults, so
actually nothing is entered. The first criterion is the
ease of creating the model. While drawing a network
is certainly a good way for beginners and for
education, it is a real nuisance in case of routine
work with non-trivial models. Creating the model in
JSSim simulator by entering data into tables was
much faster than drawing a network like the one in
Figure 2. Moreover equal distributions are entered
only once, then saved to cookies, and loaded for
other blocks – see the “Save” and “Load” buttons in
Figure 1. JSSim simulator and Arena provide all
typical results for the generators, the queues, the
servers and the whole network as such, in particular
the average time spent by a custonmer in the
network. In Extend measuring this time has to be
incorporated in the model, that is not included in
Figure 2. The following text has been copied from a

report generated by the JSSim simulator in a
separate window. These are system results for one
particular 60000 minutes long experiment rounded
to 3 decimal places.

Number of arrivals : 11787
Number of lost customers : 0 (0%)
Number of departures : 11778
Average time in network : 19.855
Network time standard deviation : 21.367
Minimum time in network : 0.001
Maximum time in network : 234.360

The following are the results for the first service
station with the CDF table removed:

Server # 1
Exponential service duration, Mean=2
Routing of departures: (removed)
Number of channels : 1
Unlimited queue, FIFO organization
Number of arrivals : 14809
Number of not waiting arrivals : 5948 (40.16%)
Number of lost customers : 0 (0%)
Number of services : 14808
Average service duration : 1.997
Minimum service duration : 0.00007
Maximum service duration : 19.646
Average waiting time : 1.902
Waiting time standard deviation : 3.352
Average non zero waiting time : 3.178
Maximum waiting time : 35.340
Average time in server : 3.899
Time in server standard deviation : 3.890
Minimum time in server : 0.00007
Maximum time in server : 38.558
Average queue length : 0.469
Queue length standard deviation : 1.065
Maximum queue length : 13
Utilization of server(s) : 0.493

Results from Extend and Arena models are very
similar with variations given by different sequences
of random numbers. The second and the most
important criterion is the speed. Table 1 shows the
typical duration of an experiment of the length
60000 minutes for various simulators on the same
computer (PII, 350MHz, 128MB, Windows/Me) in
single task mode. JSSim engine measures the time
exactly, duration for the other two was measured by
stop watches. There is some variation, figures in
Table 1 are averages taken from several runs.
Though the precision of the measurements is not
very high, for the comparison they are sufficient. It
is no surprise that JSSim’s interpreted code is slower
than the other two compiled and optimized
simulators. The speed of the JSSim simulator in
Internet Explorer 6 is in fact a pleasant surprise. The
results show clearly that using JSSim it is possible to

create at least medium size models that run fast
enough to enable long experiments or repetitions to
reduce the variance of the results.

Table 1: Speed of queueing networks simulators
Simulator Duration [s]
Extend 4.1 32
Arena 5.0 55

JSSim (IE 6.0) 78
JSSim (NC 4.75) 135
JSSim (NC 7.02) 340

CONCLUSION

JSSim is a result of experimentation with concrete
models. Its facilities were added gradually according
to concrete problems that had to be solved. In
addition to facilities listed so far there are also
various utilities like displaying a help window, work
with cookies, etc. Its next development will be
oriented to enhancement of random numbers and
especially to the definition of more complex
standard classes like complete multichannel servers.
The simulators implemented so far are used mainly
for education, but they generated also interest from
professional organizations. Simulators are freely
available for direct use and for download at
http://staff.um.edu.mt/jskl1/simweb/.

REFERENCES

Darnell R. et al. 1998, “HTML 4 Unleashed.

Professional Reference Edition”, Sams.net
Publishing.

Eckel B. 1998, “Thinking in Java”, Prentice Hall.
Inc.

Flanagan D. 1998, “JavaScript - The Definitive
Guide”, O'Reilly & Associates, Inc.

Kelton W.D. et al. 2002, “Simulation with Arena”,
McGraw-Hill.

McNeley J.L. 1968, “Compound Declarations”. In:
Proceedings of IFIP Working Conference on
Simulation Languages, Oslo, May 1967. North
Holland, p.292-303.

Pidd J. 1998, “Computer Simulation in Management
Science”, John Wiley & Sons.

Sklenar J. 2001, “Interactive Simulators in
JavaScript”. In: Proceedings of 15th European
Simulation Multiconference ESM2001, Prague,
p.247-254.

Sklenar J. 2001, “Client Side Web Simulation
Engine”. In: Proceedings of 27th ASU
Conference Model Oriented Programming and
Simulation, Rättvik, Sweden, p.1-13.

Sklenar J. 2002, “Discrete Event Simulation in
JavaScript”. In: Proceedings of 28th ASU
Conference: The Simulation Languages, Brno,
Czech Republic, p.115-121.

	c0: Proceedings 17th European Simulation Multiconference
(c) SCS Europe BVBA, 2003 ISBN 3-936150-25-7

