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Abstract: In M/G/n queues —with G a heavy-tailed distribution— the tail of G has
low probability but a dramatic impact on the performance of the system. The analytical
treatment of M/G/n queues is difficult, so many times we must use simulation to study
them. But the simulation of systems using heavy-tailed distributions presents difficulties.
We need efficient simulation methods to study those systems, and we can use M/G/1
systems as workbenches since they have some analytical results to check the simulation
results with. In this paper we try to gain some insight into the nature of those difficulties,
and propose, develop and analyze a method to speed up simulations of M/G/1 systems
when G is heavy-tailed.
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1. INTRODUCTION

M/G/n queues —where G is a heavy-tailed service
time distribution— are used to model queue systems
where a range of values of the service time, whose
probability is very low, have a drastic impact on
the overall performance of the system. The Pareto
distribution is one of these heavy-tailed distributions
and it has been proposed as the page size distribution
in Web servers or as the file size distribution in FTP
servers. The accurate analytical treatment of M/G/n
systems is very difficult and in many cases it cannot be
applied. Simulation is a possible method to study them.
But simulations with heavy-tailed random variables
present some additional difficulties, and care must be
taken when extracting conclusions from the results of
these simulations. It is necessary to have accurate and
efficient simulation methods. Efficient because we need
to generate big quantities of data for our simulation
study to be accurate enough. And their accuracy can be
checked by means of comparisons with known results
from simpler systems with analytical solution. One
of these simpler queue systems that can be studied
analytically is the M/P/1 queue. M/P/1 systems can be
used then as a workbench for more efficient simulation
methods, able to deal with the heavy-tail problematic.
The slow convergence of the simulations to the steady
state may be an important problem of the simulation
of M/P/1 queues.

Recent studies have shown the problems involved in

simulating M/P/1 queues. The reason of these problems
is the heavy-tailed condition of the Pareto: very high
values of the demanded service time appear with very
low —but not negligible— probabilities, in such a way
that their effect in the waiting time distribution is dras-
tic. The heavy-tailed condition decisively contributes
to rise the mean queue waiting time. But problems
relating to practical aspects of computer simulation like
finite machine resolution and finite and low simulation
time make the simulations underestimate the param-
eters of interest, typically the mean queue waiting
time. Gross [Gross et al, 2002] studies the impact
of finite resolution random number generation on the
mean queue waiting time estimation. It is interesting to
know how many of these problems can be avoided with
better simulation techniques and computer resources,
and how the power-tailed condition effectively limits
our efforts to speed up the simulations.

In this paper we investigate this problem, try to get
insight in the impact of the transient period in the
mean value, and propose a method to try to start
the simulation near the steady state. We compare the
proposed method with the traditional start from empty
system.

2. HEAVY-TAILED DISTRIBUTIONS

A random variable (RV) X , with cumulative distribu-
tion function (cdf) F (x), is said to be heavy-tailed if
its complementary distribution function, 1−F (x), has



an hyperbolic decaying tail:

∃α > 0

∣∣∣∣ lim
k→∞

1 − F (x)

x−α
= c ∈ (0,∞)

The Pareto cdf, clearly heavy-tailed, is given by
F (x) = 1 − (m/x)α ∀x ≥ m > 0, where m is
called the scale parameter, and α is called the shape
parameter. In [Gross et al, 2002] a Pareto distribution
with m = 1 is used in a M/P/1 queue to show the
problems that appear when simulating such system
when α is near 2. In this paper we also fix m to 1
to demonstrate the benefits of our method in the same
scenario. The Pareto probability density function (pdf)
is given by f (x) = α · mα/xα+1 x > m > 0. The
Pareto kth order moment exists if and only if α > k.
Its mean value exists if and only if α > 1 and is given
by X = α·m/(α−1). Its second order moment exists if
and only if α > 2 and is given by X2 = α ·m2/(α−2)

3. PARETO TAIL PROBLEMS

Recent research has shown that the estimation us-
ing computer simulation of the mean queue wait-
ing time of a M/P/1 queue, W , converges very
slowly to its theoretical value when α approximates
2 [Gross et al, 2002]: simulation run-lengths as long
as some million observations do not give estimations
of W close to the exact theoretical value in these cases.

The Pollaczek-Khinchin formula states that the mean
queue waiting time is directly proportional to the
second order moment of the service time in a M/G/1
queue:

W =
λ · S2

2 · (1 − ρ)

where λ is the average arrival rate of customers, S
the demanded service time random variable and ρ the
utilization factor of the queue system —ρ = λ · S—.

If we have a limited resolution random number gen-
erator we will not be able to generate the extremely
large values of S that appear occasionally in the actual
system, so the measured S2 will tend to be low, and
this will probably make the estimation of W low.
Even if we have an infinite resolution random number
generator, we can give a rough estimation of how many
observations of customer queue waiting times we need
before getting close to the real mean value. If we
have a random number generator with finite resolution
which is only able to produce numbers between 0
and K, we will loose in the simulation service times
greater than K. But the appearance in our simulation of
values beyond a certain number is not only a matter of
resolution of the random number generator, but relates
to the intrinsic probability of that value, or range of
values.

If we have a range of values whose probability is p,
the mean number of trials in order to get one value
in that range is 1

p
. The weight of the tail of a Pareto

beyond a certain limit K, i.e. the probability of getting
one value in the range (K,∞), is given by K−α , so
the probability of getting all the values smaller than K

in r trials is (1 − K−α)r.

In the Pareto case, when α is near 2, the tail has
a great influence in the value of its second order
moment. For example, we select the utilization factor
of the system ρ = 0.5. We choose a shape parameter
α = 2.1, so S = 1.909 and S2 = 21. If we generate
a sample of 1 million observations, the probability
of getting all the values smaller than K, i.e., the
probability of having a sample indistinguishable of
that from a truncated Pareto with truncation parameter
K is P = (1 − K−α)10

6

' e−
10

6

Kα . Considering the
service time RV, S, whose pdf is a Pareto, and a
service time RV St, whose pdf is a truncated Pareto
from the former, with truncation value K, we have
fSt

(x) = fS(x)
1−Pr(x<K) x < K with St = K

α
−K

Kα
−1 ·S and

S2
t = Kα

−K2

Kα
−1 · S2. If we now impose a probability of

99 percent about having obtained a truncated Pareto,
the correspondent K is 6434. and the mean value of
the associated truncated Pareto, St, is 0.999934 · S.
So intuitively the probability of getting a mean value
of 0.999934 times the theoretical value —this ratio
will represent the accuracy in the estimation— is 99
percent. This may be considered negligible —we are
correctly estimating the mean value of the Pareto RV.
But the second order moment of the truncated Pareto
is St = 0.58 · S2, what means that with a probability
of 99 percent we are underestimating the theoretical
value of the second order moment, with the estimation
being 0.58 times the theoretical value.

So we see that with a probability of 99 percent we
will also underestimate W in a factor of at least 0.58,
nearly half the theoretical, and the cause is we are
generating too few service times to be able to reach
the steady-state.

This means that the a priori high value of the run size
of the simulation is in practice a very low one when
the service time distribution is heavy-tailed. To have
more accurate results we need a much larger number
of samples. For example, if we impose an accuracy of
99 percent in the second order moment estimation —
equivalent to the accuracy in the mean queue waiting
time—, we obtain K = 1020, so with a probability of
99 percent we will need no less than 1040 samples. If
we want an accuracy of 90 percent, with a confidence
of 99 percent we will need no less than 1019 samples.
Fig. 1 details this. In it we plot the tolerance —one
minus the accuracy— versus the number of samples.

These examples show that although the M/P/1 process,
with α near 2, is ergodic in theory, the run sizes of
the simulations needed to check that ergodicity will



 1e-10

 1

 1e+10

 1e+20

 1e+30

 1e+40

 1e+50

 1e+60

 1e+70

 1e+80

 1e+90

 0.01  0.1  1

N
um

be
r o

f s
am

pl
es

 w
ith

 9
9 

pe
rc

en
t c

on
fid

en
ce

desired tolerance

alpha=2.05
alpha=2.1
alpha=2.5

Fig. 1. Number of samples required for a given tolerance in the
mean queue waiting time

probably be too high to consider the system ergodic in
practice.

So we can see that estimating W when the service
time is heavy-tailed and the shape parameter α is
slightly greater than 2 —large variance— will probably
be computationally very expensive if we start our
simulations from an empty system. Thus, traditional
simulation methods based on computating the samples
of the involved RVs —the interarrival times of the
customers and their service times—, will be too ex-
pensive due to the large amount of samples that must
be generated before obtaining a representative set of
samples of the involved processes.

4. CHOSEN INTERVAL LENGTH

We have developed a framework simulation model to
achieve a greater accuracy in the simulations of M/P/1
queues with α slightly greater than 2. Its main idea is
to try to initialize the simulation almost in steady-state.
We can take advantage of our knowledge of the arrival
process of the M/G/1 queue. When a user arrives at
a M/G/1 system, it will possibly find some users in
the queue and one in the resource. The queue waiting
time of the arriving customer will be the residual life of
the user in the resource, Sr, —i.e., the remaining time
that user will stay in the system— plus the service
times of all the customers in the queue before our
customer arrived. The distribution of the residual life
of the customer in the resource will depend on the
distribution of the service time, as it happens to the
whole service time demanded by this user, L. Its pdf
is given by [Kleinrock, 1975],

fL (x) =
x · fS (x)

S

where fS (x) is the pdf of the demanded service time.
From its definition, we can note that its mean, L, will
be S2/S = S · (1 + C2).

So if our customer arrives to the system while there
is somebody in the resource, it will arrive randomly
in an interval described by fL (x), and, in average, it
will have to wait L/2 for the client in the resource to
finish, plus some amount of time due to the users in
the queue. If we denote M the number of clients in
queue when the user in the resource entered it, and N
the number of clients who arrived between the user in
the resource began service and our user arrival, we can
say that the queue waiting time for a user that has to
wait is:

W = Sr +




M∑

i=1

Si +

N∑

j=1

Sj


 (1)

where the term between brackets represents the waiting
time due to the customers in queue when our client
arrived. So we can express the W in the system as

W = ρ

(
L

2
+ M · S + λ ·

L

2
· S

)
(2)

where we have used the fact that the waiting time will
be non-null with probability ρ, and that the number
of arrivals between the service start of the user in the
resource and our client arrival is a RV with mean λ ·

L/2. To see what is the distribution of M , we can
consider the queue of our M/P/1 system as another
M/G/1 system. Since the departing customers from a
M/G/1 system see the same distribution of the number
of users in the system as the one seen by a random
observer, the departures from the queue —to enter the
resource— see samples of the Q RV.

Finally, we can write Equation (2) as

W = ρ ·

(
L

2
+ Q · S + λ ·

L

2
· S

)

To achieve a good estimation of W , we can simulate
then a system where a user finds another customer
being served, and whose service time follows the dis-
tribution fL (x), obtainable from fS (x). The number
of users who arrive between the time the user in the
resource began being served and our client arrival will
be a Poisson RV whose mean will be known. The
queue length when the selected interval began is one
sample of the queue length distribution. If we could
calculate a good estimation of the queue length Q, the
sample of W when W > 0 would be obtained from
Eq. (1).

We can approximate the theoretical convergence ratio
of the classical simulation method (that starting from
an empty system and simulating the system along the
continuous time axis) and our proposed method using
the considerations on probabilities of appearance of
high-value samples we used in Section 3:



4.1. Classical Method

Consider the service time RV, S, whose pdf is a Pareto,
and a service time RV St, whose pdf is a truncated
Pareto from the former, with truncation value K

fSt
(x) =

fS (x)

1 − Pr (x < K)
x <= K

Its first and second moments are

St =
Kα − K

Kα − 1
· S (3)

S2
t =

Kα − K2

Kα − 1
· S2 (4)

and we see that St < S and S2
t < S2.

The probability of getting one sample value of a Pareto
less than K is 1 − K−α. If we generate a sample of
size Nt of a Pareto distribution, the probability that this
sample is indistinguishable of one of a truncated Pareto
with truncation value K, i.e., the probability of all those
samples are less than K is (1 − K−α)

Nt , so with this
probability we are getting a sample indistinguishable
of one from a truncated Pareto whose truncation value
will be K or less, so in this case an upper bound for
the second moment is given by Eq.(4).

So if we want to calculate with a given confidence P an
upper bound for the second moment with Nt samples
of our untruncated Pareto process, we do the following:

P =

(
1 −

1

Kα

)Nt

' e−
Nt

Kα ⇒ K '

(
Nt

− lnP

) 1

α

So the estimated second moment with a confidence of
P over Nt samples, Ŝ2[Nt, P], is

Ŝ2[Nt, P] =
Kα − K2

Kα − 1
· S2 '

Nt

− lnP −

(
Nt

− ln P

) 2

α

Nt

− lnP − 1
· S2

If we denote Ŵ [Nt, P] the estimated W with proba-
bility P over Nt samples, and define the accuracy in
the estimation of W as

A1[Nt, P] =
Ŵ [Nt, P]

W

it results that the estimated acccuracy in W with a
confidence of P over Nt samples, A1[Nt, P] is

A1[Nt, P] =
Ŵ [Nt, P]

W
=

Ŝ2[Nt, P]

S2
= (5)

Nt

− lnP − ( Nt

− ln P)
2

α

Nt

− ln P − 1

4.2. Proposed Method

We use the relationship

W =

(
L

2
+ λ

L

2
S + Q · S

)
· ρ (6)

where L is the distribution of the chosen interval
length. If S is a Pareto with shape parameter α, is
easy to see that L will be a Pareto with shape parameter
α2 = α−1. To calculate the estimation of L as function
of the number of samples, n, we use the same method
as above.

Considering the Pareto RV L, the estimation of the
mean of the correspondent truncated Pareto, Lt with
shape parameter α2 = α−1 and with truncation value
K is given by Eq (3)

Lt =
Kα2 − K

Kα2 − 1
· L =

Kα−1 − K

Kα−1 − 1
· L

In Equation (6) there is a term that represents the
average value of Q. We will estimate Q producing an
initial number of busy periods, randomly choosing one
point in time and calculating the Q when the selected
customer in service entered the resource. So if we
generate n samples of this initial simulation, we think
we can reasonably suppose that our estimation of Q
will tend to Q with the same speed like the one we
estimate L with. That supposition has been backed with
simulation results shown in Fig. 3, where we plot the
empirical pdf of the estimated W with 100 simulation
runs of the classical method and the proposed method,
and it can be seen that the obtained mean values are
close to those predicted by the analytic expression in
Eq. (7). Using this supposition, and if we denote A2

the accuracy in the estimation of L, L̂/L, we have

W =

(
L

2
+ λ · S ·

L

2
+ Q · S

)
· ρ

=

(
L̂

2 · A2
+ λ · S ·

L̂

2 · A2
+

Q̂ · S

A2

)
· ρ =

Ŵ

A2

A2 =
Ŵ

W
=

L̂

L
=

Kα−1 − K

Kα−1 − 1

The confidence for Nt samples being from a truncated
Pareto with shape parameter α−1 and truncation point
K or less is

P =

(
1 −

1

Kα−1

)Nt

' e−
Nt

Kα−1 ⇒ K =

(
Nt

− ln P

) 1

α−1

So an upper bound for the accuracy of the estimated
W will be, for a confidence P and Nt samples,



A2[Nt, P] =

Nt

− ln P −

(
Nt

− ln P

) 1

α−1

Nt

− ln P − 1
(7)

Fig. 2 compares the theoretical results for the upper
bounds of the convergence rates of both methods, the
classical one, given by Eq. (5), and the proposed one,
given by Eq. (7), for a probability of 99 percent. We
see that our method does not underestimate the real
mean value of the queue waiting time as much as
the traditional method. There is still a big difference
between both estimations and the real value due to the
fact mentioned in section 2: the probabilities involved
for high values of the service times are too small
for those values to appear in short simulations; but
the improvement in the estimation is appreciable. This
method can serve as basis for more improvements
using known facts from the underlying processes, and
we are working in the improvement of the simulation
algorithm.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1  100000  1e+10  1e+15  1e+20  1e+25  1e+30C
on

ve
rg

en
ce

 s
pe

ed
 fo

r q
ue

ue
 w

ai
tin

g 
tim

e 
w

ith
 0

.9
9 

co
nf

id
en

ce
. a

lp
ha

=2
.1

Number of samples

classical method
proposed method

Fig. 2. Comparison between the 99 percent confidence upper
bounds for the convergence rates of the classical and proposed
method.

5. IMPLEMENTATION
To obtain samples of W with our method, we generate
the value 0 with probability 1−ρ, and with probability
ρ a sample of the service time length found by a
typical customer that has to wait. This is a Pareto
with shape parameter α2 = α − 1, where α is the
shape parameter of the Pareto representing the service
time. Next, we choose a random point in the generated
interval which will represent the arrival instant of a
typical client. The queue length in this moment will be
the clients in queue when the selected interval began,
plus the number of clients who arrived between the
beginning of the interval and the arrival of our client.
This last number is a Poisson RV with mean λ·U , with
U = L−Sr the elapsed time since the beginning of the
interval and our client arrival. We can directly generate
samples of this RV. But the number of users in queue

when the interval began follows the distribution of Q,
which is unknown, so we will have to estimate it using
a classical simulation. The waiting time of our client
will be, then, the residual life of the interval plus the
service times of the users in queue when it arrives.

6. PERFORMANCE
To evaluate the performance of simulations using this
method, we note that it uses more samples of the
random variables involved than the classical method.
The classical method needs one interarrival time and
one service time to produce one waiting time sample.
Our method needs to generate one classical simulation
to obtain estimates of Q, the queue length. To obtain
one estimate of the waiting time, we need to estimate
one queue length sample, Qi, with a classical simula-
tion; we need to generate one sample of a Pareto with
shape parameter α − 1; one Poisson to estimate how
many customers arrive between the beginning of the
chosen interval and our arrival, N , and N +Qi service
times. Moreover, taking into account the fact that our
estimates of Q will not be independent, because we are
obtaining them from samples in one finite simulation,
to reduce that dependence we can think of choosing
a small proportion of estimates of Q from the total
number of samples of our classical simulation. This
makes the mean number of random values to generate
one sample of the waiting time in our method bigger
than that of the classical method. But that difference
is not important enough to make the proposed method
worst in performance than the classical.

If we have a M/P/1 with shape parameter α, the clas-
sical simulation will need 1 Poisson RV and 1 Pareto
RV to obtain one sample of the waiting time. In our
method, we need one sample of the queue length from
a classical simulation. To reduce dependence between
samples of it, we choose them sampling the classical
simulation with a Poisson process with mean λ/n, with
n > 1. We will need n samples of Q in the classical
simulation to select one of them, Qi, for computation,
and that means n Poisson RVs and n Pareto RVs. We
generate one more Pareto for the length of the selected
interval, one Poisson for the number of arrivals in that
interval prior to ours, N , and Qi+N Pareto RVs for the
service times of all the arrivals. If we have a Pareto
service time with α = 2.1, and ρ = 0.5, using the
Pollaczek-Khinchin formula we have Q = 1.44, and
the average length of the chosen interval is 11. If we
select in average one of every four samples of Q for
computation, in the worst case, that in which we do not
underestimate the theoretical Q —because in that case
there are more service times to generate— we will need
in average 4 Pareto + 4 Poisson + 1 Pareto + 1 Poisson
+ 1.44 Pareto + 1.44 Pareto = 7.88 Pareto RVs + 5
Poisson RVs. This implies that we need approximately
6.5 times more samples to obtain one sample of W
than in the classical method. One fact that favours the



efficiency of our method is that it always produces
samples of W with W > 0. The classical method
generates interarrival and service times to produce the
value W = 0 with probability 1 − ρ. This is, we
are wasting computer resources to generate one known
value whose probability is known a priori. Our method
only produces samples of W when W > 0, giving a
mean value WW>0. The final mean value of W will be
ρ ·WW>0. The lower is ρ, the better is our method in
terms of efficiency compared with the classical method.
So in the previous example, given that ρ = 0.5, we can
consider our method to use 6.5/2 = 3.25 times more
samples than the classical one.

If we generate some simulations of the two methods,
and represent the pdf of the estimated W = 5.5, we
obtain Figure 3, for which we run 100 simulations
of 1 million samples of W in every method. It is
clear that the proposed method has better accuracy.
If we take into account that our method uses more
samples and represent the pdf of the two methods but
this time the classical method uses four times more
samples to compensate the more samples used by our
method, we obtain Figure 4, which uses 100 runs of 1
million values of the waiting time with the proposed
method and 100 runs of 4 million values in the classical
method. The difference between the accuracies in both
methods is lower than that in Figure 3, but it is still
appreciable that the proposed method works better,
now with similar performance.
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7. CONCLUSION

The computer simulation of M/P/1 queues presents
important difficulties due to the slow decaying tail
of the Pareto distribution. This makes extremely high
values, with great influence on the statistical figures
of the system, appear with so low probabilities that
if we want to simulate the physical underlying pro-
cesses, generating demanded times and time arrivals,
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the cost in time will probably be prohibitive if we want
accurate results. This forces to use all our knowledge
of the statistics of the system inner processes, so the
simulation can noticeably speed up.
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