
VERIFICATION MODEL STRUCTURES FOR DIGITAL
SYSTEMS DESIGN

SERGEY L. FRENKEL

The Institute of Informatics Problems,

Russian Academy of Sciences,
Vavilova 44,2, 117333, Moscow, Russia.

E-mail: slf-ipiran@mtu-net.ru

Abstract Exponential computational complexity of digital systems formal verification algorithms excludes any
possibilities of full-automatic verification of complex digital systems. On the other hand, the informal design
simulation is also impractical time-consuming. Probably, the possible outcome is to form a verification strategy
which, on one hand would combine both approaches, and on the other hand would include a guide to issue
verifications algorithms-and-tools appropriate for a given design. It implies a characterization of both verification
algorithms and design process. In fact, it means a structurization of various models of design, which are used both
explicitly and implicitly during design verification activity.
This paper, relying on the previous experience in testability design planning [1] as well as corrent publications in
formal verification areas considers some possibilities of planning of digital systems verification activity to
achieve high degree of functional verification.

Key words: formal verification, design verification, digital circuits simulation.

1. INTRODUCTION

Designers of complex digital systems (ASIC,
application-specific/general-purpose microprocessors
(MP)), etc.) need validation methods and tools to
guarantee a perfect design before a process of its
manufacturing is started. Errors detected after start of
fabrication lead both to added production costs and
delay the product. This delay may be very critical
issue of market control. For example, some data in [2]
shows that loss due to late marketing for 10-15 weeks
may be up to half million USD.

This validation is performed mostly as a
“verification”, checking if a system design is correct
with respect to a specification (which is understood
here as an initial description of aimed design on a
given represenation level (e.g., finite –state machine,
register-transfer (RTL), or gate level).

The traditional and the most common method of the
verification is verification via simulation. The
alternative is so-called “formal verification” [3].
However, both these approaches have some
drawbacks of high computational requirements.
Thereby, the complexity of simulation-based methods
is due to the large number of test vectors needed to
manifest all functional issues, and the complexity of

the formal verification of large designs is due to very
large state spaces, which cannot be handled even by
such techniques as implicit state space traversal.
For example, in sequential circuits verification a
central problem is the reachability analysis. In this
activity, the properties to be checked by an automatic
verification have to be reachable from the start state.
Reachability analysis is the task of finding this set. If
a system is represented as a finite-state machine
(FSM), reachability analysis corresponds to a
traversal of the state transition graph of an FSM, that
as it is well-known may contain billions of nodes [3].

Strictly speaking, the same situation from the point of
view of automatic (synthesis-directed) and simulation
methods interaction takes place in other areas of
Electronic CAD activities, first of all in test pattern
generation (TPG). In this area a test designer also has
to consider a trade-off between the exponential
complexity of automatic test pattern generation
(ATPG) (true synthesis) and the necessity to use
various simulation tools (a “synthesis through
analysis”) to check if an input test vector (“candidate
to test”) provides detection of a fault considered. In
fact, this methodology changing means the change of
design specification model. While the design
specification for ATPG consists merely of the

circuit description, the simulation-based TPG requere
also explicit input vector set description.
In other words, the reasonability of using either
design methodologies depends on the suitable test
design cost, which depends on labor force cost,
equipment cost, time-to-market etc. A choice of ways
of the design goal achieving can be considered as a
design strategy planning. Various design testability
measures may be used as the cost function during the
strategy planning [1]. As it has been shown in this
work, any relevant design cost function should be in
monotony dependence on any testability measure,
thereby, any fault coverage measure is a functional of
the testability ones (with given TPG methods). Also
note, that ATPG practicability depends greatly on the
used fault model. Definition of well-known stuck-at-
fault model in sixties [4] has led to ATPG
performance increase dramatically. This is because of
the considerable decreasing of the considered faults
set. So, such issue should be studied for formal
verification (FV) activity, namely what kind of bugs
detecting model could be more reasonable.

In this paper we consider some factors of design
functional verification cost together with various
aspects of verification models and design features.

Let us emphasize that one should distinguish between
the verification algorithms development activity and
design functional verification activity on the whole.
In the first case the computational complexity of
verification algorithm will serve as an indicator of
practicability, while (besides the algorithm
complexity) a complex cost function (labor cost,
equipment cost, design tools cost, time-to-market) is a
reasonable indicator in the second case. Thereby, a
verification algorithm properties are only part of
factors of design verification cost.

So, let us consider what kind of means may a
designer use to control mentioned above factors
planning his design verification activity.

For this aim, in Section 2 all principle components of
this activity will be outlined. Section 3 describes
some well-known tools from the point of view of
design specification impact on overall verification
cost. Sections 4-5 describe some design properties
and possible design decomposition techniques.

 2. ABOUT VERIFICATION PROCESS AND
ITS COMPLEXITY

Design verification (Model checking [3], in
particular) activity in industry uses the following
methodology: A verification engineer reads the

specification, sets up a work environment and then
proceeds to present the model checker with a
sequence of properties in order to verify the design
correctness A design can be quite large nowadays.
As a result the set of properties written and verified
becomes large as well, to the point that the engineer
loses control over it.

One of the basic questions is: "Have I described
enough properties?" [5]. The current solutions consist
in manually reviewing of the property set. It is
important that the decision if it is possible to verify
the correctness (both functional and timing) of a
given design depends on many organizational issues.
In fact, these issues are determined by the cost
(either in money or in labor time terms) of the result
obtaining, and, in the end, depend on the verification
process planning and organization. Obviously, to
provide the verification scenario planning we have to
consider and define all features of target system
having an impact on the verification algorithm
complexity and, correspondingly, on the choice of
preferable verification algorithm, some characteristic
of design process to guide a verification process,
supposing, first of all, that a cost model of design
verification process is available.

In general, we can represent amount cost CV of a
design verification as :

 CH

M + CE
M + Cad

 where index M= {fv, s} reflects one of verification
method, namely, either formal verification (fv) or
via simulation (s),
CH

M
 means a “human” cost factor, which is the cost

of various verification models development and
manual input data preparing (and, maybe, a software
supporting and modification), CE

M is an equipment
cost including, for example, amortization cost, the
“machine time” spent up to verification result, a
software acquisition cost, power resources costs etc.,
Cad is any additional expenses. These partial costs
depend on the way of verification.

As we try to deal merely with formal methods, the
human (or manual) component of the above expenses
correspond to a model development and description
(ideally, using merely some hardware description
language, e.g. VHDL, and design properties (e.g., in
terms of some temporal logic [3]) , and, maybe, to
some programming activity. This work requires very
high qualification of a verification engineer who has
to know all modern logical-mathematical techniques
(computational tree logic (CTL), model checking,
etc.). Time of a verification algorithms execution

depends both on the algorithm and size of the circuit
designed. Obviously, CE is a monotone-increasing
function of the time. Formally, the model checking
algorithms are linear with respect to number of
states, but, the number of the states increase
exponentially with number of terms of logical
formulas describing the verification conditions. Thus
the “machine” cost of formal verification is CE

fv ~ fp
(N), where fp(N) is a power function (exponential, in
particular) of number of variables, describing the
verification problem. Note, that even dealing with
some components of entire systems e.g., with some
buffers of a microprocessors [Biesse01] we encounter
with thousands of variables, that leads to huge
numbers of states. Correspondingly, several days
may be required to check simple properties of such
designs even using rather power platforms, e.g. 700
MHz 64-bit Alpha [6].

As for design bugs finding via simulation, then CH

M

= CH
R + CH

F, where CH
R stands for random testing

(simulation our design under random- generated tests
to observe the design bugs)), CH

F corresponds to
cost of so-called “focused” testing, which are some
hand-generated tests to cover specific areas of design,
not covered by the random tests. Obviously, this
activity supposes some involving of the design
developers. For example, the tests may be focused to
detect some bugs of caching mechanisms, ALU, etc.

However, it should be taken into account that such
activity may require to involve many technicians in
the simulation process to run hundreds focused tests
variants! Although, in general, the computational of
computational complexity of simulation is a quadratic
relatively to variables number, CE

S should not be
considered as such function, because the simulation
of various parts of the design usually is very
redundant from the point of view of design bug
checked. So, although for separate design components
as a rule CH

s< CE
fv, it may be not true for the design

as a whole. So, the way out should be based on
trade-off between using of simulation and formal
verification approach. The table 1 shows a typical
example (verification of a memory bus adapter
design) of this compromise [7].

Table 1 Design bugs detected with various
techniques

Verification techniques Bugs founds (%)
separate unit simulation 41
formal verification 24
visual design analysis 20
entire chip simulation 15

However, from the point of view of labor cost, an
increase of formal verification weight would be very
attractively.
Note that besides the computation complexity,
simulation-based methods are no longer adequate for
complex hardware (HW) designs. Although
simulation can catch many design error, part of bugs
are frequently sleeping through. Detecting by
simulation of every bug resulting from the complex
interaction of concurrent event may be very time-
consuming task. In particular, in the considered
instance, about 40% of bugs that had been found with
formal verification, it turned out impractically to
find with any simulation tools [7].

Let us consider some possibility of formal
verification (FV) cost reducing.
For this aim we must define and fix, on one hand,
various properties of FV algorithms/tools, and on the
other hand, various design features affecting the FV
cost.

Since this is a combinatorial problem, and as it is
well known, combinatorial algorithms may mostly
be realized only by the problem description
decomposition, we need also to have a characteristics
of decomposition ability.

3. VERIFICATION TOOLS AND DESIGN
SPECIFICATION ACTIVITY

Since effectiveness of design verification depends on
adequacy of logical functions verified representation,
it is important that a design tools selected for FV
activity would allow the using of various Boolean
function representation techniques. Thereby, this
representation may depend on both design and
requirements specification manner (model).
For example, in [8] the highest level description of
a microprocessor is given as an instruction-set
specification. At this level the verification may be
performed either from actual pipeline design
description or representing the stream of executed
instructions with a table [8], which describes the
effect of individual instructions.

However, there are many properties of the pipelined
machine and instructions that can be more easily
expressed and reasoned about with help of some
tables [8]. For example, a Read After Write
dependency between instructions is much easier to
represent using our instruction table instead of lifting
the necessary information from design.

The basic structure of the design specification for
formal verification is Computational Tree Logic

(CTL) [3].For example, well- known VIS package
[The release 1.4. of VIS: http://vlsi.colorado.edu/~vis
] uses a Verilog front-end and supports fair model
CTL checking, language emptiness checking,
combinational and sequential equivalence checking,
cycle-based simulation, and hierarchical synthesis.

In a program called EMC (Extended Model Checker
[9]) the model checking is solved using efficient
graph-traversal techniques. Thereby, if the model is
represented as a state transition graph, the complexity
of the algorithm is linear in the size of the graph and
in the length of the formula. However, an explosion
in the size of the model may occur when the state
transition graph is extracted from a finite state
concurrent system that has many processes or
components (e.g. dealing with simultaneously-
performed six instructions in Alpha processor [10].

The CUDD package provides functions to manipulate
Binary Decision Diagrams (BDDs)
[http://vlsi.colorado.edu/~fabio/CUDD/cuddIntro.htm
l], and Zero-suppressed Binary Decision Diagrams
(ZDDs represent switching functions like BDDs,
however, they are much more efficient than BDDs
when the functions to be represented are characteristic
functions of cube sets, or in general, when the ON-set
of the function to be represented is very sparse. But
they are inferior to BDDs in other cases.). The CUDD
package can be used in three ways:

- As a black box . In this case, the application
program that needs to manipulate decision diagrams
only uses the exported functions of the package. The
rich set of functions included in the CUDD package
allows many applications to be written in this way.

- As a clear box . When writing a sophisticated
application based on decision diagrams, efficiency
often dictates that some functions should be
implemented as direct recursive manipulation of the
diagrams, instead of being written in terms of existing
primitive functions. - Through an interface. Object-
oriented languages like C++ and Perl5 can free the
programmer from the burden of memory
management.

In the package Almana, (developed at the LaBRI
(Universitґ e Bordeaux-1)) a Heuristic methods
based on analysis of the original boolean formula
abound is used, and can be subdivided into static
techniques, that inspect the formula off-line.
Being very popular, these dynamic methods present
many problems. The first is that they require that we
have already constructed the BDD or some part of it
in memory, which is impossible for large systems. A

more troublesome problem is that existing techniques
are based on sifting, which exchanges adjacent
variables. Unfortunately, in real systems variables
come in blocks of related variables, that need to be
kept together in the final order or the size explodes.
Note, that the best known BDD-based algorithm for
finding an optimal order is of complexity O(n3) ,
where n is a number of variables.

In tools which are based on Bounded Model
Checking [3] accept a subset of the SMV (Symbolic
Model Verification)language in which the user can
specify a finite state machine and a temporal
specification.

Given a bound k, BMC outputs a propositional
formula which is satisfiable iff there is a
counterexample of length k. An efficient
implementation of the Davis-Putnum technique [11]
and PROVER [12] are based on Stalmarck’s method
to decide propositional satisfiability.

Note, that a lot of modern tools are based on a
philosophy of “Satisfability solvers” (SAT)-base
model checking, which sometime is considered as an
alternative to BDD approach (although, as remarked
[13] SAT may be considered as “an interesting
complement to model checking with BDDs”). In
general, SAT algorithms mission is to decide whether
there exists a satisfying assignment for the
corresponding formula. Thereby, in spite of
mentioned above remark on relationship of BDD and
SAT techniques, in [6] was shown that the SAT
method for bounded model checking can reduce the
verification runtime from days to minutes on real,
deep, microprocessor bugs when compared to a state-
of-the-art BDD-based model checker.

So, basic features of algorithms underlining various
verification tools are good basis for their comparison
in the framework of a verification procedure
planning.

 4. SOME EXAMPLES OF TARGET DESIGN
PROPERTIES IMPACT

Intuitively, the complexity of the BDD is a function
of how much information must be remembered as one
passes from one level of the BDD to the next (i.e.,
from one variable to the next). For example, in [14]
a pipeline examples which were verified had
approximately 5 *1020 , states, which puts it far
outside the range of model checkers like the one
reported in [3]. It required a BDD with 42000 nodes
to represent the transition relation. These data are
concerned very simple pipelines that perform three-

address logical and arithmetic operations on a register
file. The complete state of the register file and pipe
registers are modeled. The pipelines in this design
had three stages. On the first stage, the operands are
read from the register file, on the second stage an
ALU operation is performed, and on the third stage
the result is written back to the register file. ALU has
a register bypass path, which allows the result of an
ALU operation to be used immediately as an operand
on the next clock cycle, as is typical in RISC
instruction pipelines. The inputs to the circuits are an
instruction code, containing the register addresses of
the source and destination operands, and a STALL
signal, which indicates that the instruction stream is
stalled.

However, what kind of the circuit’s properties
enabled such impressive results?

The point is that the information stored from one “bit
slice" of the data path to the next was rather small; it
amounts to the state of the control bits plus at most
the value of the ALU “carry" bit. In particular, this
amount of information is not increased as one
increases the number of bits, so the BDD becomes
deeper, but no “wider".
Although these research [14] are concerned the
timing verification, these conclusions are true also for
functional verification as in both cases verification
algorithms use a Boolean encoding of the elements of
the model domain, and represents relations with
Boolean decision diagrams.

So, in case the information quantity stored from one
“bit slice" of the data path to the next is a system
designed characteristics affected the BDD using
effectiveness.

5. ABOUT DECOMPOSITION POSSIBILITIES

Let’s consider what current state-of-the-art in formal
verification may suggest us to decompose design as a
way of verification cost reduction.

Mostly a design description decomposition is trying
to avoid the state explosion problem .The goal is to
verify properties of individual components, infer that
these hold in the complete system, and use them to
deduce additional properties of the system. It may
also be necessary to make assumptions about the
environment (that is both other components of the
system and various external signals). This approach
may be exemplified by Pnueli's assume-guarantee
paradigm [15]. A formula is true if whenever M is a
part of system satisfying', the system must also
satisfy .

Since we consider this problem from the point of
view of design tool using, let us consider what kind
of requirements the model checking should meet to.

First of all, it must be able to check that a property is
true for all systems which can be built using a given
component. More generally, it must be able to restrict
to a given class of environments when doing this
check. It must also provide facilities for performing
temporal reasoning. Most existing model checkers
were not designed to provide these facilities. Instead,
they typically assume that they are given complete
systems. A way to obtain a system with the above
properties is to provide a preorder on the finite state
models that captures the notion of “more behaviors"
and to use a logic whose semantics relate to the
preorder [16, 17].

Note, that along with design decomposition it can be
used also various types of circuit’s reduction. For
example, the merge buffer, an important component
of the Alpha MBox for a next-generation Alpha chip
has been considered in [6].The function of the merge
buffer is to receive requests to write into memory, and
to reduce the trajectory on the memory bus by
merging stores to the same physical address. The
merge buffer is essentially a large buffer with a very
complex policy for reading in entries, merging stores,
and writing out stores to the memory. It has about 14
400 latches, 400 primary inputs, and 15 pipeline
stages. The pipeline has complex feedback that
prevents us from retiming away latches. The original
RTL description of the circuit is used as design input.

First of all, the authors tried to reduce the size of the
model for verification using standard model checking
technology. The idea is to remove portions of the
state in the circuit in ways that do not alter the circuit
behavior with respect to the properties of interest.
After the reductions, the merge buffer has about 40
primary inputs. When the merge buffer is in use,
these inputs will be connected to the four subboxes
with which the merge buffer communicates. . The
final model has about 600 state nodes in the cone of
most properties. However, before sending the model
to a tool input, it is needed to write down the
property of interest in a format that the tool we want
to use accepts. Given the model and the property, the
verification tool then either produces a failure trace,
or tells us that the property is true.

6. DISCUSSION AND CONCLUSION

Full-automatic formal verification of complex
processors design is a dream of all system designers.
Unfortunately, its exponential complexity is well

known, that, it seems, excludes this dream realization,
at least for large designs with very large state
spaces, which cannot be handled even by techniques
such as implicit state space traversal. Obviously, the
result of such activity has to be obtained even if
system description is so large (either in terms of state
space or formulas clauses number) that no formal
verification algorithm which could allow to do it
Very obvious way to achieve it is a combination of
formal and informal (simulation) verification models.
Since complex microprocessors systems design
verification activity deals, in general, with many
optional variants, it should be useful to have a
characterization of both verification algorithms and
verification process on a whole, which includes the
decomposition issues, dividing possible (potential)
design bugs classes between formal verification and
simulation, final quality analysis etc.

Obviously, we need a guide to provide this
hybridization. Following well showed itself
conception of coverage analysis, use widely in test
pattern generation practice, it would be very
attractively to have also similar one for the design
formal verification. Some steps towards this notion
development are just in progress [Hoscotte99,
Chochler01]. As for formal verification, the notion
of coverage in functional verification is to cover the
entire functionality specification required from the
implementation. This notion involves two questions:

-whether we can provide (to take into account)
(explicitly or implicitly) all possible input sequence,

- whether the specification contains a sufficient set of
properties.

So, the coverage analysis is a search of some
dissimilarity between the implementation and
specification, which points out a possibility to reduce
target design description to enhance the verification
possibilities.

Along with coverage characteristic, it is important,
not resolved problem is to characterize both formal
verification and simulation tools that could be chosen
for design verification. They may be characterized by
a rate characteristic, e.g. as as number of states per
second for formulas. Thereby, on one hand, this rate
depends on a way, in which design specification is
described, and on the other hand, specification
language may determine qualification requirement of
personal, affecting the verification cost (e.g., time
consuming).

REFERENCES

1. S. Frenkel, Testability Measure as a Test Pattern
Generation Cost Function, in Proc. of 7th
 IEEE North-Atlantic Workshop (NATW'98), West
Greenwich, RI, USA, 1998, pp.42-50,
2. W.Rosenstiel, Rapid Prototyping, Emulation and
Hardware/Software Co-debugging, in
 “SYSTEM-LEVEL SYNTHESIS” ed. by A.
A..Jerraya and J.Mermet, NATO Science
 Series, Kluwer Academic Publisher, 1998, pp.219-
262,
3. E. Clarke 1 , O. Grumberg , and D. Long, “Model
Checking”, in Springer-Verlag Nato ASI
 Series F, Volume 152, 1996,
4. R.G. Bennets, Design of Testable Logic Circuits,
Addison-Wesley Pub. Company, 1984
5. S. Katz, D. Geist, and O. Grumberg. “Have I
written enough properties ?” a method
 of comparison between specification and
implementation. In 10th CHARME, LNCS
 1703, pp. 280–297, 1999,
6. Per Bjesse, Tim Leonard , and Abdel Mokkedem,
Finding Bugs in an Alpha Microprocessor
 Using Satisfability Solvers, in Proceedings of
13th International Conference, CAV 2001,
 Paris, France, July 18-22, 2001, LNCS 2102, p.
454,
7. T.Shlipf et al, Formal verification made easy, in
IBM Journal of Research and Development,
 vol. 41, No 4/5, 1997,
8. Jun Sawada Design Verification of Advanced
Pipelined Machines, Doctoral Dissertation,
 University of Texas at Austin, Computer Science
Dept, 1996,
9. M.Clarke, O.Grumberg, D.E.Long: ”Model
Checking and Abstarction'', ACM-TOPLAS, Vol.
 No. 5, pp.1512- , September 1994.
10.Alpha 21264 Microprocessor Hardware Reference
Manual, Compaq Computer Corporation
 2000,
11.E.Dantsin et al, Algorithms for SAT and Upper
Bounds on Their Complexity, Electronic
 Colloquium on Computational Complexity,
Report No. 12 (2001),
12. M. Sheeran, S. Singh, and G. Stalmarck,
Checking safety properties using induction and a
 SAT-solver. In Formal Methods in Computer
Aided Design, 2000,
13. Per Bjesse and Koen Claessen, SAT-based
Verification without State Space Traversal 2000,
 Journal of Global Optimization, , 1{36)
14. J. R. Burch, E. M. Clarke, K. L. McMillan, and
D. L. Dill, \Symbolic Model Checking:10 20

 States and Beyond," Information and
Computation, vol. 98, no. 2, pp. 142-170, 1992.
15. A. Pnueli. In transition for global to modular
temporal reasoning about programs. In K. R.
 Apt, editor, Logics and Models of Concurrent
Systems, volume 13 of NATO ASI series.
 Series F, Computer and system sciences.
Springer-Verlag, 1984.]
16. Yatin Hoskote, Timothy Kam, Pei-Hsin Ho,
Xudong Zhao, Coverage Estimation for
 Symbolic Model Checking, DAC’99, p.300
17. Hana Chockler et al, A Practical Approach to
Coverage in Model Checking, in Proceedings of
 13th International Conference, CAV 2001, Paris,
France, July 18-22, 2001, LNCS 2102,
 p. 66.

	c0: Proceedings 17th European Simulation Multiconference
(c) SCS Europe BVBA, 2003 ISBN 3-936150-25-7

