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Abstract  Exponential computational complexity  of  digital systems formal verification  algorithms  excludes  any 
possibilities of  full-automatic  verification  of complex digital systems. On the other hand, the informal design 
simulation is also impractical time-consuming.  Probably, the possible outcome is to form a verification strategy 
which, on one hand would combine both approaches, and on the other hand would include a guide to issue 
verifications algorithms-and-tools appropriate  for a given design. It implies a characterization of both verification 
algorithms and design process.   In fact, it means a structurization of various models of design, which are used both 
explicitly and implicitly during design verification activity.    
This paper, relying on the previous experience in testability design planning [1] as well as corrent publications in 
formal verification areas   considers  some possibilities of planning  of digital systems  verification activity to 
achieve high degree of functional verification.  
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1. INTRODUCTION 
 
Designers of complex digital systems (ASIC, 
application-specific/general-purpose microprocessors 
(MP)), etc.) need validation methods and tools to 
guarantee a perfect design before a process of its 
manufacturing is started. Errors detected after start of 
fabrication lead both to added production costs and 
delay the product. This delay may be very critical 
issue of market control. For example, some data in [2] 
shows that loss due to late marketing for 10-15 weeks 
may be up to half million USD. 
 
This validation is performed mostly as a 
“verification”, checking  if a system design is correct 
with respect to a specification (which is understood 
here as an initial description of aimed design  on a 
given represenation level (e.g., finite –state machine, 
register-transfer (RTL), or gate level).    
 
The traditional and the most common method of the 
verification is verification via simulation. The 
alternative is so-called “formal verification” [3]. 
However, both these approaches have some 
drawbacks of high computational requirements. 
Thereby, the complexity of simulation-based methods 
is due to the large number of test vectors needed to 
manifest all functional issues, and the complexity of 

the formal verification of large designs is due to very 
large state spaces, which cannot be handled even by 
such techniques as implicit state space traversal.  
For example, in sequential circuits verification  a 
central problem is the reachability analysis. In this 
activity, the properties to be checked by an automatic 
verification have to be reachable from the start state. 
Reachability analysis is the task of finding this set. If 
a system is represented as a finite-state machine 
(FSM), reachability analysis corresponds to a 
traversal of the state transition graph of an FSM, that 
as it is well-known may contain billions of nodes [3]. 
 
Strictly speaking, the same situation from the point of 
view of automatic (synthesis-directed) and simulation 
methods interaction takes place in other areas of  
Electronic CAD activities, first of all in test pattern 
generation (TPG). In this area a test designer also has 
to consider a trade-off between the exponential 
complexity of automatic test pattern generation 
(ATPG) (true synthesis) and the necessity to use 
various simulation tools (a “synthesis through 
analysis”) to check if  an input test vector  (“candidate 
to test”) provides detection of a fault considered. In 
fact, this methodology changing  means the change of  
design specification model. While the design 
specification for  ATPG consists merely  of  the 



circuit description, the simulation-based TPG requere 
also explicit input vector  set description.       
In other words, the reasonability of using either 
design methodologies depends on the suitable test 
design cost, which depends on  labor force cost, 
equipment cost, time-to-market etc. A choice of ways 
of the design goal achieving can be considered as a 
design strategy planning. Various design testability 
measures may be used as the cost function  during the 
strategy planning [1].  As it has been shown in this 
work, any relevant design cost function should be in 
monotony dependence on any testability measure, 
thereby, any fault coverage measure is a functional of 
the testability ones (with given TPG methods).  Also 
note, that ATPG  practicability depends greatly on the 
used fault model. Definition of  well-known stuck-at-
fault model in sixties [4]  has led to ATPG 
performance increase dramatically. This is because of 
the considerable decreasing of the considered faults 
set. So, such issue should be studied for  formal 
verification (FV) activity, namely what kind of bugs 
detecting model  could be more reasonable.    
 
In  this paper we consider  some factors of design 
functional verification cost together with various 
aspects of  verification models and  design features.     
 
Let us emphasize that one should distinguish between 
the verification algorithms development activity and 
design functional verification activity  on the whole.   
In the first case the computational complexity of 
verification algorithm will serve as an indicator of 
practicability,  while (besides  the algorithm 
complexity) a complex cost function ( labor cost, 
equipment cost, design tools cost, time-to-market) is a 
reasonable indicator in the second case. Thereby, a 
verification algorithm properties are  only part of  
factors of design verification cost.    
 
So, let us consider  what kind of means may a 
designer use to control mentioned above factors 
planning his design verification activity.  
 
For this aim, in Section 2 all principle components of 
this activity  will be outlined.  Section 3  describes 
some well-known tools from the point of view of 
design specification impact on overall verification 
cost. Sections 4-5 describe some design properties 
and possible design decomposition techniques. 
 

       2.   ABOUT VERIFICATION PROCESS AND 
ITS COMPLEXITY 

 
Design verification (Model checking [3], in 
particular) activity in industry uses the following 
methodology: A verification engineer reads the 

specification, sets up a work environment and then 
proceeds to present the model checker with a 
sequence of properties in order to verify the design 
correctness  A design can be quite large nowadays. 
As a result the set of properties written and verified 
becomes large as well, to the point that the engineer 
loses control over it.   
 
One of  the basic questions is: "Have I described 
enough  properties?" [5]. The current solutions consist 
in manually reviewing of the  property set.   It is 
important that the decision if it is possible to verify 
the correctness (both functional and timing) of  a 
given design  depends on many organizational issues. 
In fact, these issues  are determined by the cost  
(either in money or  in labor time terms) of the result 
obtaining, and, in the end, depend on the verification 
process planning and organization. Obviously, to 
provide the verification scenario planning we have to 
consider and  define all features of  target system  
having an impact on the verification algorithm 
complexity and, correspondingly, on the choice of  
preferable verification algorithm, some characteristic 
of design process to guide a verification process,  
supposing, first of all, that a cost model of design 
verification process is available. 
  
In general, we  can represent  amount  cost  CV  of a 
design verification  as : 
   
             CH

M + CE
M + Cad 

 
  where  index M= {fv, s} reflects one of  verification 
method, namely, either  formal verification (fv)  or 
via simulation (s),  
CH

M
   means   a “human” cost factor, which  is the cost 

of various verification models development and 
manual input data preparing (and, maybe, a software 
supporting and modification),  CE

M  is  an equipment 
cost including, for example, amortization cost,   the 
“machine time” spent up to verification result, a 
software  acquisition cost,  power resources costs etc.,  
Cad is any additional expenses. These partial costs 
depend on the way of verification.   
 
As we try to deal  merely with formal methods, the 
human  (or manual) component of the above expenses 
correspond to  a model development and description 
(ideally, using merely some hardware description 
language, e.g. VHDL, and  design properties ( e.g., in 
terms of  some temporal logic [3]) , and, maybe, to 
some programming  activity.  This work requires very 
high qualification of a verification engineer who has 
to know all modern logical-mathematical techniques 
(computational tree logic (CTL),  model checking, 
etc.). Time of a verification  algorithms execution   



depends both on the algorithm and  size of the circuit  
designed. Obviously, CE  is  a monotone-increasing 
function of the time. Formally, the model checking  
algorithms are linear with respect to number of  
states, but, the number of the states increase  
exponentially  with number of   terms of logical 
formulas  describing the verification conditions.  Thus 
the “machine” cost of formal verification  is CE 

fv  ~ fp 
(N), where fp(N) is a power function (exponential, in 
particular) of number of variables, describing the 
verification problem. Note, that even dealing with 
some components of entire systems  e.g., with some 
buffers of a microprocessors [Biesse01] we encounter 
with thousands of variables, that leads to huge 
numbers of states. Correspondingly,  several days 
may be required to check simple properties of such 
designs even using rather power platforms, e.g. 700 
MHz 64-bit Alpha [6]. 
 
As for design bugs finding via simulation, then CH

M    

= CH
R  +  CH

F, where CH
R  stands  for random testing 

(simulation our design under  random- generated tests  
to observe  the design bugs)),  CH

F   corresponds  to 
cost of so-called “focused” testing, which are some 
hand-generated tests to cover specific areas of design, 
not covered by the random tests.  Obviously, this 
activity supposes some involving of the design 
developers. For example, the  tests may be focused to 
detect some bugs of caching mechanisms, ALU, etc.   
 
However, it should be taken into account that such  
activity may require to involve many technicians in 
the simulation process to run hundreds focused tests 
variants! Although, in general, the computational of 
computational complexity of simulation is a quadratic 
relatively to variables number,  CE

S  should not be 
considered as such function, because the simulation 
of various parts of the design usually is very 
redundant from the point of view of  design bug 
checked. So, although for separate design components 
as a rule CH

s< CE
fv,  it may be not true for the design 

as a  whole.  So, the way out should be based on 
trade-off between using of simulation and formal 
verification approach. The table 1 shows a  typical 
example  (verification of a memory bus adapter 
design ) of this compromise [7]. 
 
Table 1 Design bugs detected with various 
techniques 

Verification techniques Bugs founds   (%) 
separate unit simulation    41 
formal verification 24 
visual design analysis  20 
entire chip simulation 15 

However, from the point of view of  labor cost,  an 
increase of formal verification weight would be very 
attractively.  
Note that besides the computation complexity, 
simulation-based  methods are no longer adequate for 
complex hardware (HW) designs.  Although 
simulation can catch many design error, part of bugs 
are frequently sleeping through. Detecting by 
simulation of every bug resulting from the complex 
interaction of concurrent event may be very time-
consuming task. In particular, in the considered 
instance, about 40% of bugs that had been found with 
formal verification, it turned out  impractically   to 
find with any simulation tools [7].    
 
Let us consider some possibility of  formal 
verification ( FV ) cost reducing.  
For this aim we must  define and fix, on one  hand,  
various properties of FV algorithms/tools, and on the 
other hand,  various design features affecting the FV 
cost.  
 
Since this is a combinatorial problem,  and as it is 
well known,   combinatorial algorithms may mostly 
be realized  only by the  problem description   
decomposition, we need also to have a characteristics 
of decomposition ability.   
 
3. VERIFICATION TOOLS AND DESIGN 
SPECIFICATION ACTIVITY 
 
Since effectiveness of design  verification depends on 
adequacy of  logical functions verified representation,  
it is important that a design tools  selected for FV 
activity would allow the using of various Boolean 
function representation techniques. Thereby, this 
representation may depend on both design and  
requirements specification manner (model). 
For example, in  [8]   the  highest level description of 
a microprocessor is given as an instruction-set 
specification.  At  this level the verification may be 
performed either from  actual pipeline design 
description or  representing the stream of executed 
instructions with a table [8],  which describes the 
effect of individual instructions.  
 
However, there are many properties of the pipelined 
machine and instructions that can be more easily 
expressed and reasoned about with help of  some 
tables [8 ]. For example, a Read After Write 
dependency  between instructions is much easier to 
represent using our instruction table instead of lifting 
the necessary information from design. 
 
The basic structure of the design specification for 
formal verification is Computational Tree Logic 



(CTL) [ 3].For example, well- known VIS package 
[The release 1.4. of VIS: http://vlsi.colorado.edu/~vis 
] uses a Verilog front-end and supports fair model 
CTL checking, language emptiness checking, 
combinational and sequential equivalence checking, 
cycle-based simulation, and hierarchical synthesis.  
 
In  a program called EMC (Extended Model Checker 
[9] ) the model checking is solved using efficient 
graph-traversal techniques. Thereby, if the model is 
represented as a state transition graph, the complexity 
of the algorithm is linear in the size of the graph and 
in the length of the formula. However, an explosion 
in the size of the model may occur when the state 
transition graph is extracted from a finite state 
concurrent system that has many processes or 
components  (e.g. dealing with  simultaneously-
performed six instructions in Alpha  processor [10]. 
 
The CUDD package provides functions to manipulate 
Binary Decision Diagrams (BDDs) 
[http://vlsi.colorado.edu/~fabio/CUDD/cuddIntro.htm
l], and Zero-suppressed Binary Decision Diagrams 
(ZDDs represent switching functions like BDDs, 
however, they are much more efficient than BDDs 
when the functions to be represented are characteristic 
functions of cube sets, or in general, when the ON-set 
of the function to be represented is very sparse. But 
they are inferior to BDDs in other cases.). The CUDD 
package can be used in three ways:  
 
- As a black box . In this case, the application 
program that needs to manipulate decision diagrams 
only uses the exported functions of the package. The 
rich set of functions included in the CUDD package 
allows many applications to be written in this way.  
 
- As a clear box . When writing a sophisticated 
application based on decision diagrams, efficiency 
often dictates that some functions should be 
implemented as direct recursive manipulation of the 
diagrams, instead of being written in terms of existing 
primitive functions. - Through an interface. Object-
oriented languages like C++ and Perl5 can free the 
programmer from the burden of memory 
management.  
 
In the package Almana, (developed at the LaBRI 
(Universitґ e Bordeaux-1))  a Heuristic methods 
based on analysis of the original boolean formula 
abound is used, and can be subdivided into static 
techniques, that inspect the formula off-line. 
Being very popular, these dynamic methods present 
many problems. The first is that they require that we 
have already constructed the BDD or some part of it 
in memory, which is impossible for large systems. A 

more troublesome problem is that existing techniques 
are based on sifting, which exchanges adjacent 
variables. Unfortunately, in real systems variables 
come in blocks of related variables, that need to be 
kept together in the final order or the size explodes.  
Note, that the best known  BDD-based algorithm for 
finding an optimal order is of complexity  O(n3) , 
where n is a number of variables.  
 
In  tools which are based on Bounded Model 
Checking [3] accept a subset of the SMV (Symbolic 
Model Verification )language in which the user can 
specify a finite state machine and a temporal 
specification. 
 
Given a bound k, BMC outputs a propositional 
formula which is satisfiable iff there is a 
counterexample of length k. An efficient 
implementation of the Davis-Putnum technique [11]  
and PROVER [12] are based on Stalmarck’s method 
to decide propositional satisfiability. 
 
Note, that  a lot of  modern tools are based on a  
philosophy     of “Satisfability solvers” (SAT)-base 
model checking, which sometime  is considered as  an 
alternative to BDD approach (although, as remarked 
[13] SAT may be considered as “an interesting 
complement to model checking with BDDs”).  In 
general, SAT algorithms mission is to decide whether 
there exists a satisfying assignment for the 
corresponding formula. Thereby, in spite of  
mentioned above remark on relationship of  BDD and 
SAT techniques, in [6] was  shown that the SAT 
method for bounded model checking can reduce the 
verification runtime from days to minutes on real, 
deep, microprocessor bugs when compared to a state-
of-the-art BDD-based model checker.   
 
So, basic features of algorithms underlining various 
verification tools are  good basis for their comparison 
in the framework of  a verification procedure 
planning. 
  
 4. SOME EXAMPLES OF TARGET DESIGN 
PROPERTIES IMPACT 
 
Intuitively, the complexity of the BDD is a function 
of how much information must be remembered as one 
passes from one level of the BDD to the next (i.e., 
from one variable to the next). For example, in [14]   
a pipeline examples  which were verified had 
approximately 5 *1020 , states, which puts it far 
outside the range of model checkers like the one 
reported in [3]. It required a BDD with 42000 nodes 
to represent the transition relation. These data are 
concerned  very simple pipelines that perform three-



address logical and arithmetic operations on a register 
file. The complete state of the register file and pipe 
registers are modeled. The pipelines in this design 
had three stages. On the first stage, the operands are 
read from the register file, on the second stage an 
ALU operation is performed, and on the third stage 
the result is written back to the register file. ALU has 
a register bypass path, which allows the result of an 
ALU operation to be used immediately as an operand 
on the next clock cycle, as is typical in RISC 
instruction pipelines. The inputs to the circuits are an 
instruction code, containing the register addresses of 
the source and destination operands, and a STALL 
signal, which indicates that the instruction stream is 
stalled.  
 
However, what kind of the circuit’s properties 
enabled such impressive results?   
 
The point is that the information stored from one “bit 
slice" of the data path to the next was rather small; it 
amounts to the state of the control bits plus at most 
the value of the ALU  “carry" bit. In particular, this 
amount of information is not increased as one 
increases the number of bits, so the BDD becomes 
deeper, but no “wider".   
Although these research [14] are concerned the 
timing verification, these conclusions are true also for 
functional verification as in both cases verification  
algorithms use a Boolean encoding of the elements of 
the model domain, and represents relations with 
Boolean decision diagrams.  
 
So, in case the information quantity stored from one 
“bit slice" of the data path to the next  is a system 
designed characteristics affected the BDD using 
effectiveness. 
 
5. ABOUT DECOMPOSITION POSSIBILITIES 
 
Let’s consider what current state-of-the-art in formal 
verification may suggest us to decompose design as a   
way of verification cost reduction.     
 
Mostly a design description decomposition is trying 
to avoid the state explosion problem .The goal is to 
verify properties of individual components, infer that 
these hold in the complete system, and use them to 
deduce additional properties of the system. It  may 
also be necessary to make assumptions about the 
environment (that is both other components of the 
system  and various external signals). This approach 
may be exemplified by Pnueli's assume-guarantee 
paradigm [ 15]. A formula is true if whenever M is a 
part of  system satisfying', the system must also 
satisfy .  

Since we consider this problem from the point of 
view of  design tool using, let us consider what kind 
of requirements  the model checking should meet to.   
 
First of all,  it must be able to check that a property is 
true for all systems which can be built using a given 
component. More generally, it must be able to restrict 
to a given class of environments when doing this 
check. It must also provide facilities for performing 
temporal reasoning. Most existing model checkers 
were not designed to provide these facilities. Instead, 
they typically assume that they are given complete 
systems. A way to obtain a system with the above 
properties is to provide a preorder on the finite state 
models that captures the notion of  “more behaviors" 
and to use a logic whose semantics relate to the 
preorder [16, 17].  
 
Note, that along with design  decomposition it can be 
used  also various types of circuit’s  reduction. For  
example, the merge buffer, an important component 
of the Alpha MBox for a  next-generation Alpha chip 
has been considered in [6].The function of the merge 
buffer is to receive requests to write into memory, and 
to reduce the trajectory on the memory bus by 
merging stores to the same physical address. The 
merge buffer is essentially a large buffer with a very 
complex policy for reading in entries, merging stores, 
and writing out stores to the memory. It has about 14 
400 latches, 400 primary inputs, and 15 pipeline 
stages. The pipeline has complex feedback that 
prevents us from retiming away latches. The original 
RTL description of the circuit is used  as design input.  
 
First of all, the authors tried to reduce the size of the 
model for verification using standard model checking 
technology. The idea is to remove portions of the 
state in the circuit in ways that do not alter the circuit 
behavior with respect to the properties of interest. 
After the reductions, the merge buffer has about 40 
primary inputs. When the merge buffer is in use, 
these inputs will be connected to the four subboxes 
with which the merge buffer communicates. . The 
final model has about 600 state nodes in the cone of 
most properties. However, before sending the model 
to a tool input, it is needed to write down the  
property of interest in a format that the tool we want 
to use accepts. Given the model and the property, the 
verification tool then either produces a failure trace, 
or tells us that the property is true.  
  
6. DISCUSSION AND CONCLUSION  
 
Full-automatic formal verification of complex 
processors design is a dream of all system designers. 
Unfortunately, its exponential complexity   is well 



known, that, it seems, excludes this dream realization, 
at least for   large designs  with  very large state 
spaces, which cannot be handled even by techniques 
such as implicit state space traversal.  Obviously,  the 
result of such activity has to be obtained even if 
system description is so large (either in terms of state 
space or formulas clauses number) that no formal 
verification algorithm which could allow to do it   
Very obvious way to achieve it is a combination of 
formal and informal (simulation) verification models. 
Since complex microprocessors systems design 
verification activity deals, in general, with many 
optional variants, it should be useful to have a 
characterization of both verification algorithms and 
verification process on a whole, which includes the 
decomposition issues, dividing possible (potential) 
design bugs classes between formal verification and 
simulation, final quality analysis etc.   
 
Obviously, we  need a  guide to provide  this 
hybridization. Following well showed itself  
conception  of coverage analysis, use widely in test 
pattern generation practice, it would be very 
attractively to have  also similar one for  the design 
formal  verification.   Some steps towards  this notion 
development are just in progress [ Hoscotte99,  
Chochler01   ]. As for formal verification, the notion 
of coverage in functional verification is to cover the 
entire functionality specification required from the 
implementation. This notion involves two questions: 
 
-whether we can provide (to take into account) 
(explicitly or implicitly) all possible input sequence, 
 
- whether the specification contains a sufficient set of 
properties. 
 
So, the coverage analysis is a search of some 
dissimilarity between the implementation and 
specification, which  points out a possibility to reduce 
target design  description to enhance the verification 
possibilities.     
 
Along with  coverage characteristic,  it is important, 
not resolved problem is to characterize both formal 
verification and simulation tools that could be chosen 
for design verification.  They may be characterized by 
a rate characteristic,  e.g. as as number of states per 
second for formulas. Thereby, on one hand, this rate 
depends on a way, in which  design specification is 
described, and on the other hand, specification 
language may determine qualification requirement of 
personal, affecting the verification cost (e.g., time 
consuming).  
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