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Abstract

This paper discusses the function approximation properties of the �Gelenbe� random
neural network �GNN� ��� �� 	
� We use two extensions of the basic model� the bipolar GNN
�BGNN� �

 and the clamped GNN �CGNN�� We limit the networks to being feedforward
and consider the case where the number of hidden layers does not exceed the number of
input layers� With these constraints we show that the feedforward CGNN and the BGNN
with s hidden layers �total of s� � layers� can uniformly approximate continuous functions
of s variables�

� Introduction

A novel neural network model � the GNN or �Gelenbe�s Random Neural Network� ��� �� 	

� has had signi�cant applications in various engineering areas ��� 
� ��� ��� ��� ��� ��� ��
�
using the network�s learning algorithm �	
 or its ability to act as an optimizing network� These
random neural network di�er signi�cantly from standard connexionist models in that information
travels between neurons in this model in the form of random spike trains� and network state is
represented by the probability distributions that the n neurons in the network are excited� These
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models have a mathematical structure which is signi�cantly di�erent from that of the sigmoidal
connexionist model� the Hop�eld model� or the Boltzman machine ��
� Thus the approximation
capability of these networks also needs to be established in a manner distinct from that of
previous models ��
� In particular� the �Gelenbe� random neural network model ��� �� 	
 does
not use sigmoid functions which are basic to the standard models� approximation capabilities�

In recent work ���
 we have studied the approximation of arbitrary continuous functions on
��� �
s using the GNN� We have shown that the clamped GNN and the bipolar GNN ��
 have the
universal approximation property� using a constructive method which actually exhibits networks
constructed from a polynomial approximation of the function to be approximated� However the
constructions in ���
 place no restrictions on the structure of the networks except for limiting
them to being feedforward� For instance� in ���
 we were not able to limit the size of the network
as a function of other meaningful characteristics such as the number of input variables or the
number of layers�

In this paper we will discuss the design of GNN approximators with a bounded number of
layers� In Section �� a brief introduction to the GNN and the bipolar GNN �BGNN� is given�
In Section �� we establish the technical premises for our main results� Then in Section � we
prove the universal approximation capability of the feedforward BGNN and CGNN when the
number of hidden layers does not exceed the number of input variables� The last section presents
conclusions�

� The GNN and its Extensions

Consider a GNN ��� �� 	
 with n neurons in which �positive� and �negative� signals circulate�
The i � th neuron�s state is represented at any time t by its �potential� ki�t�� which is a non�
negative integer� In the RNN �Gelenbe ��	
	�	�� ��� �
� signals in the form of spikes of unit
amplitude circulate among the neurons� Positive signals represent excitation and negative signals
represent inhibition� Each neuron�s state is a non�negative integer called its potential� which
increases when an excitation signal arrives to it� and decreases when an inhibition signal arrives�
An excitatory spike is interpreted as a ���� signal at a receiving neuron� while an inhibitory
spike is interpreted as a ���� signal� Neural potential also decreases when the neuron �res�
Thus a neuron i emitting a spike� whether it be an excitation or an inhibition� will lose potential
of one unit� going from some state whose value is ki to the state of value ki � �� In general�
this is a �recurrent network� model� i�e� a network which is allowed to have feedback loops of
arbitrary topology�

The state of the n�neuron network at time t� is represented by the vector of non�negative
integers k�t� � �k��t�� � � � � kn�t��� where ki�t� is the potential or integer state of neuron i� We
will denote by k and ki arbitrary values of the state vector and of the i�th neuron�s state� Neuron
i will ��re� �i�e� become excited and send out spikes� if its potential is positive� The spikes will
then be sent out at a rate r�i� � �� with independent� identically and exponentially distributed
inter�spike intervals� Spikes will go out to some neuron j with probability p��i� j� as excitatory
signals� or with probability p��i� j� as inhibitory signals� A neuron may also send signals out
of the network with probability d�i�� and d�i� �

Pn
j�� �p��i� j� � p��i� j�
 � �� Figure ��

shows the representation of a neuron in the RNN�

Exogenous excitatory signals arrive to neuron i in a Poisson stream of rate ��i�� Similarly
exogenous inhibitory signals arrive to neuron i in a Poisson stream of rate ��i�� These di�erent
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Poisson streams for i � �� ���� n are independent of each other� To simplify the notation� in the
sequel we will write�

���i� j� � r�i�p��i� j�� ���

���i� j� � r�i�p��i� j�� ���

The state transitions of the network are represented by Chapman�Kolmogorov equations ��

for the probability distribution�

p�k� t� � Prob�k�t� � k
� ���

where k � �k�� � � � � kn� denotes a particular value of the state vector�

Let ���i� and ���i� denote the average arrival rates of positive and negative signals to
each neuron i� The key results about the GNN developed in ��� �� 	
 are summarized below�
Theorem �� �Proposition � in the Appendix of �	
� There always exists a non�negative solution

����i� � �� ���i� � �� to the equations�

���i� � ��i� �
nX

j��

qj�
��j� i�� ���

���i� � ��i� �
nX

j��

qj�
��j� i�� ���

for i � �� ���� n where

qi �
���i�

r�i� � ���i�
� ���

The next important result concerns the stationary joint probability distribution of network
state�

p�k� � lim
t��

p�k� t�� ���

Theorem �� �Theorem � of ��
� For an n neuron GNN� let the vector of neuron potentials at

time t be k�t� � �k��t�� k��t�� ���� kn�t��� and let k � �k�� k�� ���� kn� be an n�vector of non�negative

integers� Then if the qi in ��� satisfy � � qi � �� the stationary joint probability of network state
is given by�

p�k� �
nY

i��

��� qi�q
ki
i � �
�

Note that if the conditions of Theorem � are satis�ed then the stationary probability distribution

of the state of neuron i denoted by p�ki� � lim
t��

p�ki�t� � ki�� is given by�

p�ki� � ��� qi�q
ki
i � �	�

and
qi � lim

t��
Probfki�t� � �g� ����
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��� The BGNN Model

In order to represent bipolar patterns taking values such as f�����g� and to strengthen the
associative memory capabilities of the GNN� in some early work Gelenbe� Stafylopatis and Likas
��
 extended the original model by introducing the artifact of �positive and negative� neurons�
The resulting Bipolar GNN �BGNN� can also be viewed as the coupling of two complementary
standard GNN models�

In the BGNN the two types of neurons have opposite roles� A positive neuron behaves
exactly as a neuron in the original GNN� A negative neuron has a completely symmetrical
behavior� namely only negative signals can accumulate at this neuron� and the role of positive
signals arriving to a negative neuron is to eliminate negative signals which have accumulated
in a negative neuron�s potential� A positive signal arriving to a negative neuron i cancels a
negative signal �adds �� to the neuron�s negative potential�� and has no e�ect if ki � ��

This extension is in fact mathematically equivalent to the original GNN described above�
with respect to the speci�c form taken by the stationary solution �Theorems � and ��� However
the use of both positive and negative neurons allows the BGNN to become convenient universal
approximator for continuous functions because of the possibility of using both positive and
negative valued functions of the input variables� Let P and N denote� respectively� the indeces
of the positive and negative neurons in the network� In the BGNN the state of the network is
represented by the vector k�t� � �k��t�� � � � � kn�t�� so that ki�t� � � if i � P and ki�t� � � if
i � N �

In the BGNN� the emission of signals from a positive neuron is the same as in the original
GNN� Similarly� a negative neuron may emit negative signals� A signal leaving negative neuron
i arrives to neuron j as a negative signal with probability p��i� j� and as a positive signal
with probability p��i� j�� Also� a signal departs from the network upon leaving neuron i with
probability d�i�� Other assumptions and denotations retain as in the original model�

Let us consider a BGNN with n nodes� Since negative signals account for the potential of
negative neurons� we will use negative values for ki if neuron i is negative� If we take into account
the distinction between positive and negative neurons� Theorems � and � can be summarized as
follows for the BGNN� The �ow of signals in the network is described by the following equations�

���i� � ��i� �
X

j�P

qj�
��j� i� �

X

j�N

qj�
��j� i�� ����

���i� � ��i� �
X

j�P

qj�
��j� i� �

X

j�N

qj�
��j� i�� ����

and

qi �
���i�

r�i� � ���i�
� i � P� ����

qi �
���i�

r�i� � ���i�
� i � N� ����

Using a direct extension of the results for the conventional GNN� it can be shown that a
non�negative solution f���i�� ���i�� i � �� ���� ng exists to the above equations� If the qi � ��
i � �� ���� n� then the steady�state joint probability distribution of network state is given by ��
�

p�k� �
nY

i��

��� qi�q
jkij
i � ����
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where the quantity qi is the steady�state probability that node i is �excited�� Note the jkij
exponent in the above product form� since the k�is can be positive or negative� depending on the
polarity of the i� th neuron� In the sequel we will consider how the BGNN� as well as a simpler
extension of the feedforward �i�e� non�recurrent� GNN� can be used to approximate arbitrary
continuous functions�

Another extension of the GNN � the clamped GNN �CGNN� � will be introduced in Section
����

� Approximation of Functions of One Variable by the GNN with

a Bounded Number of Layers

All feedforward models considered in this section are guaranteed to have an unique solution for
the qi�i � �� ���� n as a result of Theorems � and � of ��� 	
� Thus from now on we do not revisit
this issue�

Consider a continuous function f � ��� �
s �� R of an input vector X � �x�� ���� xs�� Since an
��� �
s �� Rw function can always be separated into a group of w distinct functions ��� �
s �� R�
we will only consider outputs in one dimension� The sequel of this paper is therefore devoted to
how a continuous function f � ��� �
s �� R can be approximated by neural networks derived from
the GNN model� To approximate f � we will construct s�input� ��output� L�layer feedforward
GNN�s� We will use the index �l� i� for the i� th neuron at the l� th layer� Furthermore� when
we need to specify this� we will denote by Ml the number of neurons in the l � th layer�

The network under consideration is organized as follows�

� In the �rst layer� i�e� the input layer� we set ���� i� � xi� ���� i� � �� r��� i� � �� so that
q��i � xi� for i � �� ���� s�

� In the l�th layer �l � �� ���� L�� ��l� i�� ��l� i�� and r�l� i� are adjustable parameters� and ql�i
is given by

ql�i �

��l� i� �
P

��h�l

P
��j�Mh

qh�j�
���h� j�� �l� i��

��l� i� � r�l� i� �
P

��h�l

P
��j�Mh

qh�j����h� j�� �l� i��
����

where the connection �weights� ����� �� and ����� �� are also adjustable parameters�

� In the L� th or output layer there is only one neuron� As suggested in ��
 we can use the
output function

AL�� �
qL��

�� qL��
����

whose physical meaning is that it is the average potential of the output neuron as the
output of the network� In this manner� we will have AL�� � ����	�� rather than just
qL�� � ��� �
�

��� Technical Premises

Before we proceed with the developments concerning GNN approximations we need some tech�
nical results� They are similar to some technical results used in ���
 concerning continuous and
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bounded functions f � ��� �
 �� R for a scalar variable x� The generalization to f � ��� �
s �� R is
direct and will be examined in Section �� The proofs are given in the Appendix�

Lemma �� For any continuous and bounded f � ��� �
 �� R and for any � � �� there exists a

polynomial

P �x� � c� � c��
�

� � x
� � ���� cm�

�

� � x
�m� � � x � �� ��
�

such that supx������ jf�x�� P �x�j � � is satis�ed�

The second technical result concerns the relationship between polynomials of the form ��
�
and the GNN�

Lemma �� Consider a term of the form

�
���x	v �

for � � x � �� and any v � �� �� � � �� There exists a feedforward GNN with a single output neuron

�v � �� �� and input x � ��� �
 such that

qv���� � �
�

� � x
�v� ��	�

The following Lemma shows how an arbitrary polynomial of the form ��
� with non�negative
coe�cients can be realized by a feedforward GNN�

Lemma �� Let P��x� be a polynomial of the form �	
� with the restriction that cv � ��
v � �� ����m� Then there exists a feedforward GNN with a single output neuron �O� such that�

qO �
P��x�

� � P��x�
� ����

so that the average potential of the output neuron is AO � P��x��

The fourth technical result will be of use in proving the approximating power of the �clamped
GNN� discussed below�

Lemma �� Consider a term of the form

x
���x	v �

for � � x � �� and any v � �� ����m� There exists a feedforward GNN with a single output

neuron �v � �� �� and input x � ��� �
 such that

qv���� � �
x

� � x
�v� ����

We state without proof another lemma� very similar to Lemma �� but which uses terms of
both forms of ���� �x�v and x��� � x�v to construct polynomials� It�s proof uses Lemma � and
�� and follows exactly the same lines as Lemma ��
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Lemma �� Let P o�x� be a polynomial of the form

P o�x� � c� �
mX

v��

�cv
�

�� � x�v
� dv

x

�� � x�v

� � � x � �� ����

with non�negative coe�cients� i�e� cv� dv � �� v � �� ����m� Then there exists a feedforward GNN

with a single output neuron �O� such that�

qO �
P o�x�

� � P o�x�
� ����

so that the average potential of the output neuron is AO � P o�x��

The next lemma is a technical premise of Lemma ��

Lemma �� For any � �
��x �

i �� � x � �� i � �� �� � � �� and for any � � �� there exists a function

P��x� � b� �
b�

x� a�
�

b�
x� a�

� � � � �
br

x� ar
� � � x � �� ����

where ak � �� k � �� ���� r� such that supx������ j�
�

��x�
i � P��x�j � � is satis�ed�

Proof	 We proceed by induction� For i � �� the conclusion obviously holds� Now assume it is
true for i � j� i�e�� for any � � �� there exists a

P �j	�x� � b
�j	
� �

b
�j	
�

x� a
�j	
�

�
b
�j	
�

x� a
�j	
�

� � � ��
b
�j	
m

x� a
�j	
m

� � � x � �� ����

where a
�j	
k � �� k � �� ����m� such that supx������ j�

�
��x�

j � P �j	�x�j � ��

Then for i � j � ��

�
�

� � x
�j�� � �

�

� � x
�j�

�

� � x
� � b

�j	
�

�

� � x
�

mX

k��

b
�j	
k

x� a
�j	
k

�

� � x
� ����

When a
�j	
k 
� ��

b
�j	
k

x� a
�j	
k

�

� � x
�

b
�j	
k

a
�j	
k � �

�
�

� � x
�

�

x� a
�j	
k

� ����

which is in the form of ����� When a
�j	
k � ��

�
�

� � x
�� � lim

���

�

��� 	 � x��� � 	 � x�
� lim

���

�

�	
�

�

�� 	 � x
�

�

� � 	 � x
� ��
�

which can be arbitrarily approximated by a function of the form �����

Therefore � �
��x�

j�� can also be approximated by a function in the form of ����� Through
mathematical induction� the conclusion holds for any i � �� �� � � �� Q�E�D�

The following lemma is the preparation for the construction of a single�hidden�layered BGNN
for the approximation of one dimensional continuous function�

Lemma 
� For any continuous function f � ��� �
 �� R and for any � � �� there exists a function

P��x� in the form of ��
� such that supx������ jf�x�� P��x�j � � is satis�ed�

Proof	 This is a direct consequence of Lemma � and Lemma �� Q�E�D�
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��� BGNN Approximation of Continuous Functions of One Variable

The technical results given above now pave the way for the use of the Bipolar GNN �BGNN�
with a bounded number of layers� Speci�cally in Theorem �� we show that a BGNN with a
single hidden layer can uniformly approximate functions of one variable� The multivariable case
is discussed in Section ��

Let us �rst recall a result from ���
 concerning the case when the number of layers is not
bounded�

Theorem �� For any continuous function f � ��� �
 �� R and any � � �� there exists a BGNN
with one positive output neuron �O���� one negative output neuron �O���� the input variable

x� and the output variable y�x� such that�

y�x� � AO�� �AO��� ��	�

AO�� �
qO��

�� qO��
� ����

AO�� �
�qO��
�� qO��

� ����

and supx������ jf�x� � y�x�j � �� We will say that the BGNN�s output uniformly approximates

f�x��

Proof� The result is a direct application of Lemmas � and �� Apply Lemma � to f and express
the approximating polynomial as P �x� � P��x� � P��x� so that the coe�cients of P��x� are
nonnegative� while the coe�cients of P��x� are negative�

P��x� �
mX

i��

maxf�� cig�
�

� � x
�i� ����

P��x� �
mX

i��

minf�� cig�
�

� � x
�i� ����

Now simply apply Lemma � to obtain the feedforward GNN with an output neuron �O��� whose
value is

qO�� �
P��x�

� � P��x�
� ����

and the average potential of the output neuron is AO�� � P��x�� Similarly� using the non�
negative polynomial jP��x�j construct a feedforward BGNN which has positive neurons through�
out� except for its output neuron� along the ideas of Lemma �� It�s output neuron �O��� however
is a negative neuron� yet all the parameter values are the same as those prescribed in Lemma �
for the output neuron� as they relate to the polynomial jP��x�j� Thus the output neuron takes
the value

qO�� �
jP��x�j

� � jP��x�j
� ����

and the average potential of the output neuron is� is AO�� � � jP��x�j� completing the proof�
Q�E�D�

The next theorem shows the approximation capability of a BGNN with a single hidden layer�

Theorem �� For any continuous function f � ��� �
 �� R and any � � �� there exists a BGNN
of three layers �only one hidden layer�� one positive output neuron �O���� one negative output






neuron �O���� the input variable x� and the output variable y�x� determined by ���� such that

supx������ jf�x�� y�x�j � ��

Proof	 The result is obtained by using Lemma �� Applying Lemma � to f we express the
approximating function as P��x� � P�

� �x� � P�
� �x� so that the coe�cients of P�

� �x� are non�
negative� while the coe�cients of P�

� �x� are negative�

P�
� �x� � maxf�� b�g�

rX

k��

maxf�� bkg
bk

x� ak
� ����

P�
� �x� � minf�� b�g�

rX

k��

minf�� bkg
bk

x� ak
� ����

Now construct a BGNN of three layers� one output layer with one positive output neuron
�O��� and one negative output neuron �O��� in it� one input layer with one input neuron ��� ��
in it� and one hidden layer with r neurons ��� ���������� r� in it� Now set�

� ���� �� � x� ���� �� � �� r��� �� � �� d��� �� � ��

� ������ ��� ��� k�� � �� ������ ��� ��� k�� � ��r�
r��� k� � ak�r� ���� k� � ak�r� ���� k� � �� for k � �� � � � � r�

� p����� k�� �O���� � p����� k�� �O���� � �maxfbk� �gr����a
�
kCMAX��

p����� k�� �O���� � p����� k�� �O���� � �jminfbk� �gjr����a
�
kCMAX��

for k � �� � � � � r� where CMAX � maxf�� jb�j�
jbkjr
a�
k

� k � �� ���� rg�

� ��O��� ���O��� � maxfb�� �g���CMAX �� r�O��� � ����CMAX ��
��O��� ���O��� � jminfb�� �gj���CMAX �� r�O��� � ����CMAX ��

It is easy to see that q��� � x� and that

q��k �
ak

ak � x
� k � �� ���� r� ��
�

qO�� �

P��x	
�CMAX

�
�CMAX

� P��x	
�CMAX

�
P��x�

� � P��x�
� ��	�

qO�� �

jP��x	j
�CMAX

�
�CMAX

� jP��x	j
�CMAX

�
jP��x�j

� � jP��x�j
� ����

Therefore� AO�� � P��x�� AO�� � � jP��x�j� and y�x� � P��x�� completing the proof�
Q�E�D�

��� CGNN Approximation of Continuous Functions of One Variable

We can also demonstrate the approximating power of a normal feedforward GNN by just adding
a �clamping constant� to the average potential of the output neuron� We call this extension

	



the �clamped GNN �CGNN�� since the additive constant c resembles the clamping level in an
electronic clamping circuit� Let us �rst see the corresponding result from our previous work ���
�

Theorem �� For any continuous function f � ��� �
 �� R and any � � �� there exists a GNN

with two output neurons �O� ��� �O� ��� and a constant c� resulting in a function y�x� � AO�� �
AO�� � c which approximates f uniformly on ��� �
 with error less than ��

Proof� Use Lemma � to construct the approximating polynomial ��
�� which we write as P �x� �
P��x� � P��x� where P��x� only has non�negative coe�cients c�v � while P

��x� only has non�
positive coe�cients c�v �

c�v � maxf�� cvg�

c�v � minf�� cvg�

Notice that

� �
���x	i

� � � �
���x	i

� � �
Pi

j��
x

���x	j
� ��

so that

P��x� �
mX

v��

jc�v j
vX

j��

x

�� � x�j
�

mX

v��

c�v � ����

Call c � c� �
Pm

v�� c
�
v and for some dv � � write�

P �x� � c�
mX

v��

�c�v
�

�� � x�v
� dv

x

�� � x�v

� ����

Let us write P �x� � c � P ��x� � P o�x� where both P ��x� and P o�x� are polynomials with
non�negative coe�cients� and

P ��x� �
mX

v��

c�v
�

�� � x�v
�

P o�x� �
mX

v��

dv
x

�� � x�v
�

Then by Lemma � there are two GNN�s whose output neurons �O� ��� �O� �� take the values�

qO�� �
P��x�

� � P��x�
�

qO�� �
P o�x�

� � P o�x�
�

Clearly� we can consider that these two GNN�s constitute one network with two output neurons�
and we have y�x� � c� P ��x� � P o�x� � P �x�� completing the proof� Q�E�D�

This result can be extended to the CGNN with only one output neuron by applying Lemma
�� However let us �rst consider the manner in which a positive �clamping constant� c � � can
be added to the average potential of an output neuron of a GNN using the ordinary structure
of the network�

��



Remark � �Adding a Positive Clamping Constant�� Consider a GNN with an output

neuron �q and an input vector x which realizes the function �q�x� � P �x�� Then there is another

GNN with output neuron Q�x� which� for real c � � realizes the function�

Q�x� �
P �x� � c

� � P �x� � c
����

and hence whose average potential is P �x� � c� More generally we can exhibit a GNN with

output neuron Q��x� whose average potential is bP �x� � c� for b � �� c � ��

Proof	 The proof is by construction� We �rst take the output of the neuron of the original
network �whose �ring rate is denoted �r�� and feed it into a new neuron with probability ��� as
an excitatory signal and with probability ��� as an inhibitory signal� We set the �ring rate of
the new neuron to r� and introduce additional exogenous inhibitory and excitatory arrivals to
the new neuron� both of rate rc� As a result we have�

Q�x� �
rP �x� � rc

r � rP �x� � rc
�

�
P �x� � c

� � P �x� � c
�

As a result� the new neuron�s average potential is�

Q�x�

��Q�x�
� P �x� � c�

and we have been thus able to obtain a new neuron with an added positive �clamping constant�
c with respect to the average potential P �x� of the original neuron� The extension to a neuron
with average potential bp�x� � c is straightforward� Let the additional neurons �ring rate be
R � � rather than r and take its exogenous excitatory and inhibitory arrival rates to be Rc� We
then obtain�

Q�x� �
rP �x� �Rc

R� rP �x� �Rc
�

�
r
RP �x� � c

� � r
RP �x� � c

�

so that if we call b � r
R this leads to an average potential of bP �x� � c� Q�E�D�

Theorem �� For any continuous function f � ��� �
 �� R and any � � �� there exists a GNN

with one output neuron �O�� and a constant c� resulting in a function y�x� � AO � c which

approximates f uniformly on ��� �
 with error less than ��

Proof	 Use Lemma � to construct the approximating polynomial of ��
�� which we write as
P �x� � P��x� � P��x� where P��x� only has non�negative coe�cients c�v � while P

��x� only
has non�positive coe�cients c�v �

c�v � maxf�� cvg�

c�v � minf�� cvg�

Notice that

� �
���x	i

� � � �
���x	i

� � �
Pi

j��
x

���x	j
� ��

��



so that

P��x� �
mX

v��

jc�v j
vX

j��

x

�� � x�j
�

mX

v��

c�v � ����

Call c � c� �
Pm

v�� c
�
v and for some dv � � write�

P �x� � c�
mX

v��

�c�v
�

�� � x�v
� dv

x

�� � x�v

� ����

Let us write P �x� � c � P o�x� where P o�x� is a polynomial with non�negative coe�cients�
Then by Lemma � there is a GNN whose output neurons �O� takes the value�

qO �
P o�x�

� � P o�x�
�

Clearly� we can consider that this GNN constituts one network with only one output neuron�
and we have y�x� � c� P o�x� � P �x�� completing the proof� Q�E�D�

The next theorem shows that a CGNN with a single hidden layer is also a universal approx�
imator to continuous functions on ��� �
� We omit the proof� which follows closely the approach
used in the proofs of Theorems � and ��

Theorem 
� For any continuous function f � ��� �
 �� R and any � � �� there exists a GNN of

three layers �only one hidden layer�� one output neuron �O�� and a constant c called the clamping

constant� resulting in a function y�x� � AO � c which approximates f uniformly on ��� �
 with
error less than ��

� Approximation of Continuous Functions of s Variables

Now that the process for approximating a one�dimensional continuous functions with the BGNN
or the CGNN having a single hidden layer is well understood� consider the case of continuous
functions of s variables� i�e� f � ��� �
s �� R� As a starting point� consider the straightforward
extension of Lemma � to the case of s�inputs such that there is a polynomial�

P �x� �
X

m��������ms���
Ps

v��
mv�m

c�m�� ����ms��
s
v��

�

�� � xv�mv
� ����

with coe�cients c�m�� ����ms� which approximates f uniformly� We now extend Lemma � to
Lemma 
 and Theorem 
 which are given below�

Lemma 
� Consider a term of the form

�
�� � xz�	mz�

��� �
�� � xzK	mzK

for � � xzj � �� positive integers mzj � � and j � �� ����K� There exists a feedforward GNN

with a single output neuron �
� �� �� and input x � ��� �
 such that

q����� �
�

�� � xz��mz�
���

�

�� � xzK�mzK
� ����

��



Proof	 Without loss of generality set mz� � mz� � ��� � mzK� The resulting network is a
cascade connection of a set of networks� The �rst network is identical in structure to the one of
Lemma �� and has mz� � � neurons numbered ��� ��� ���� ���mz� � ��� Now set�

� ���� �� � xz�� ���� �� � ��mz�� and ���� j� � � for j � �� ����mz� � ��

� ���� j� � � for all j � �� ����mz� � �� and d��� j� � � for j � �� ����mz��

� ������ ��� ��� j�� � ��mz�� and ������ ��� ��� j�� � � for j � �� ����mz� � ��

� r��� j� � ������ j�� ��� j � ��� � ��mz� for j � �� ����mz� � ��

� Finally the connection from the �rst network into the second network is made via p�����mz��
��� ��� ��� � mz��mz� � �� with d���mz� � �� � ���mz��mz���

It is easy to see that q��� � xz�� and that

q��mz��� �
�

�� � xz��mz�
� ��
�

The second network has mz� � � neurons numbered ��� ��� ���� ���mz� � ��� Now set�

� ���� �� � xz� and ���� j� � � for j � �� ����mz� � ��

� ���� j� � � for all j � �� ����mz� � �� and d��� j� � � for j � �� ����mz��

� ������ ��� ��� j�� � ��mz�� and ������ ��� ��� j�� � � for j � �� ����mz� � ��

� r��� j� � ������ j�� ��� j � ��� � ��mz� for j � �� ����mz� � ��

� The connection from the second network into the third network is made via p����� mz� �
��� ��� ��� � mz��mz
 � �� with d���mz� � �� � ���mz��mz
��

It is easy to see that q��� � xz�� and that

q��mz��� �
�

�� � xz��mz�

�

�� � xz��mz�
� ��	�

The remaining construction just pursues the same scheme� Q�E�D�

Theorem 
� For any continuous function f � ��� �
s �� R and any � � �� there exists a BGNN

with one positive output neuron �O���� one negative output neuron �O���� s input variables

X � �x�� ���� xs�� and the output variable y�X� such that�

y�X� � AO�� �AO��� ����

AO�� �
qO��

�� qO��
� ����

AO�� �
�qO��
�� qO��

� ����

and supx������ jf�X�� y�X�j � �� We will say that the BGNN�s output uniformly approximates

f�X��

��



Proof	 The proof follows the proof of Theorem �� using the polynomial of ����� Lemma �
establishes that the terms of such a polynomial can be realized by a GNN� We then construct
two polynomials� one with non�negative coe�cients only� and the other with negative coe�cients�
and show how they are realized with the BGNN� We will not go through the steps of the proof
since it is a step by step duplicate of the proof of Theorem �� Q�E�D�

We now extend Lemma � to the case of s�inputs�

Lemma �� For any continuous function f � ��� �
s �� R and for any � � �� there exists a

function of the form

Ps�x� �
rX

i��

X

��m����������ms��

b�m�� ����ms� i��
s
v��

�

�av�i � xv�mv
� ����

where av�i � �� v � �� ���� s� i � �� �� ���� such that supx������ jf�x�� Ps�x�j � � is satis�ed�

Proof	 This is simply an extension of Lemma �� Q�E�D�

As a consequence we can now establish the following general result�

Theorem �� For any continuous function f � ��� �
s �� R and any � � �� there exists a

BGNN of no more than s� � layers �s hidden layers�� one positive output neuron �O���� one
negative output neuron �O���� s input variables X � �x�� ���� xs�� and the output variable y�X�
determined by ���� such that supx������ jf�X�� y�X�j � ��

Proof	 The proof is by construction� By Lemma 	� we only need to �nd an appropriate BGNN
of the form as described in Theorem 	 to realize any function of the form ����� We construct
a BGNN with s input neurons ��� ������� ��� s�� one positive output neuron �O���� one negative
output neuron �O���� and M parallel sub�networks between the input layer and the output
layer� where

M �
rX

i��

X

��m����������ms��

��b�m�� ����ms� i� 
� ��� ����

��X� � � when X is true otherwise ��X� � �� Each sub�network is a cascade connection of
no more than s neurons� The output of the last neuron of each sub�network takes the value in
proportion to each term in function �����

Without loss of generality� we consider a term of the form

�

az� � xz�
���

�

azK � xzK
����

where az� � az� � � � � � azK � Now we want to construct a sub�network which has K neurons
and of which the last neuron�s output takes the value in proportion to the term� Number the
K neurons as ��� ��� ��� ������� �K � �� ��� and set�

� ���� i� � xi� ���� i� � �� r��� i� � �� for i � �� ���� s�

� ������ z��� ��� ��� � �� ������ z��� ��� ��� � ��M �

� r��� �� � az��M � ���� �� � az��M � ���� �� � ��

��



It is easy to see that

q��� �
az�

az� � xz�
� ����

Then set�

� p���k� ��� �k � �� ��� � azK�az�K��	� for k � �� ����K�

� ������ zk�� �k � �� ��� � �� ������ zk�� �k � �� ��� � ��M � for k � �� ���K�

� r�k � �� �� � azk�M � ��k � �� �� � �� ��k � �� �� � �� for k � �� ���K�

We will �nd
q
�� �

az�az�
�az� � xz���az� � xz��

� ����

� � � �

az� � � � azK
�az� � xz�� � � � �azK � xzK�

��
�

which is in proportion to �����

Next we connect all the last neurons of the sub�networks to �O��� or �O���� The parameter
setting follows the steps in the proof of Theorem � which connect the neurons in the hidden
layer to the output neurons� Since the sub�networks are parallel and each sub�network contains
of no more than s neurons� there are totally no more than s hidden layers in this constructed
BGNN� Thus� we complete the construction� Q�E�D�

We can now obtain Theorems �� and ��� which generalize Theorems � and �� in a similar
manner�

Theorem ��� For any continuous function f � ��� �
s �� R and any � � �� there exists a

GNN with one output neuron �O�� and a constant c called the clamping constant� resulting in a

function y�X� � AO � c which approximates f uniformly on ��� �
s with error less than ��

Theorem ��� For any continuous function f � ��� �
s �� R and any � � �� there exists a GNN

of no more than s� � layers �s hidden layers�� one output neuron �O�� and a constant c called
the clamping constant� resulting in a function y�X� � AO � c which approximates f uniformly

on ��� �
s with error less than ��

� Conclusions

The approximation of functions by neural networks is central the learning theory of neural
networks� It is also a key to many applications of neural networks such as pattern recognition�
data compression� time series prediction� adaptive control� etc��

The random neural network introduced and developped in ��� �� 	� ��
 di�ers signi�cantly
from standard connexionist models in that information travels between neurons in this model
in the form of random spike trains� and network state is represented by the joint probability
distributions that the n neurons in the network are excited� This model has a mathematical
structure which is signi�cantly di�erent from that of the connexionist model� the Hop�eld model�
or the Boltzman machine ��
� Thus the approximation capability of these networks also needs to

��



be examined in a manner distinct from that of previous models ��
� In particular� the �Gelenbe�
random neural network model ��� �� 	� ��
 does not use sigmoid functions which are basic to the
standard models� approximation capabilities�

The most basic requirement for a neural network model is that it should be a universal
function approximator� i�e� to any continuous function f on a compact set� we should be able
to �nd a speci�c network which implements a mapping close enough� in some precise sense to
f � to a given degree of accuracy� Furthermore� among all networks which satisfy this property�
we may wish to choose the one with the �smallest� size or the most simple structure�

In ���
 we showed that the BGNN and the CGNN� two simple extensions of the basic �Ge�
lenbe� Random Neural Network model� are universal approximators of continuous real�valued
functions of s real variables� However we had not previously established the speci�c �size�
constraints for the approximating networks�

In this paper we limit the networks to being feedforward and consider the case where the
number of hidden layers does not exceed the number of input variables� With these constraints
we show that the feedforward CGNN and the BGNN with s hidden layers �total of s�� layers�
can uniformly approximate continuous functions of s variables� We also extend a theorem in
���
 on universal approximation using the CGNN with two output neurons� to the CGNN with
only one output neuron�

The theoretical results we report in this paper are not only needed to justify the empirically
observed success obtained in a variety of applications of the �Gelenbe� random neural network
��� 
� ��� ��� ��� ��� ��� ��
� and to support further applied work in spiked stochastic neural
network models� We believe that these results will lead to new developments in the design of
network structures which are adapted to certain speci�c learning or approximation tasks�
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Appendix	

Proof of Technical Lemmas

Proof of Lemma �	 This is a direct consequence of Weierstrass� Theorem �see ��
� p� ���
which states that for any continuous function h � �a� b
 �� R� and some � � �� there exists a
polynomial P �u� such that supu��a�b� jh�u� � P �u�j � �� Now let u � ���� � x�� u � ����� �
 and

select x � �� � u��u with h�u� � f���uu � � f�x�� If f�x� is continuous� then so is h�u� so that
there exists an algebraic polynomial of the form

P �u� � c� � c�u� ���� cmu
m� ��� � u � �� ��	�

such that supu�������� jh�u� � P �u�j � �� Therefore P �x� is given by ��
�� and
supx������ jf�x�� P �x�j � �� Q�E�D�

Proof of Lemma �	 Construct a feedforward GNN with v�� neurons numbered ��� ��� ����v �
�� ��� Now set�

� ���� �� � x� ���� �� � ��v� and ��j� �� � � for j � �� ���� v � ��

� ��j� �� � � for all j � �� ���� v � �� and d�j� �� � � for j � �� ���� v�

� ������ ��� �j� ��� � ��v� and ������ ��� �j� ��� � � for j � �� ���� v � ��

� r�j� �� � ����j� ��� �j � �� ��� � ��v for j � �� ���� v�

� Finally d�v � �� �� � ��

It is easy to see that q��� � x� and that

qj���� � �
�

� � x
�j � ����

for j � �� ���� v so the Lemma follows� Q�E�D�

The next result exhibits a simple a construction process for algebraic expressions using the
feedforward GNN�

Remark� If there exists a feedforward GNN with a single output neuron �L� ��� and a function

g � ��� �
 �� ��� �
 such that�

qL�� � g�x�� ����

then there exists an L� � layer feedfowrward GNN with a single output neuron �Q� such that�

qO �
g�x�

� � g�x�
� ����

Proof	 The simple proof is by construction� We simply add an additional neuron �Q� the
original GNN� and leave all connections in the original GNN unchanged except for the output
connections of the neuron �L� ��� Let the �ring rate of neuron �l� �� be r�L� ��� Then�

�




� �L� �� will now be connected to the new neuron �L � �� �� by ����L� ��� Q� � r�L� �����
����L� ��� Q� � r�L� �����

� r�Q� � r�L� ���� �

This completes the proof� Q�E�D�

Proof of Lemma �	 The proof is by construction� Let CMAX be the largest of the coef�
�cients in P��x� and write P ��x� � P��x��CMAX � Let c�j � cj�CMAX � � so that now each

term c�j
�

���x	j
in P ��x� is no greater than �� j � �� ����m� We now take m networks of the form

of Lemma � with r�j� �� � �� j � �� ����m and output values

qj�� � �
�

� � x
�j � ����

and connect them to the new output neuron �O� by setting the probabilities p���j� ��� O� � c�j���
p���j� ��� O� � c�j��� Furthermore we set an external positive and negative signal arrival rate
��O� � ��O� � c���� and r�O� � ����CMAX for the output neuron� We now have�

qO �
P ��x	

�
�

�CMAX
� P ��x	

�

� ����

We now multiply the numerator and the denominator on the right hand side of the above
expression by �CMAX to obtain

qO �
P��x�

� � P��x�
� ����

so that which completes the proof of the Lemma� Q�E�D�

Proof of Lemma �	 The proof is very similar to that of Lemma �� Construct a feedforward
GNN with v � � neurons numbered ��� ��� ����v � �� ��� Now set�

� ���� �� � x� and ��j� �� � � for j � �� ���� v � ��

� ��j� �� � � for all j � �� ���� v � �� and d�j� �� � � for j � �� ���� v�

� ������ ��� ��� ��� � ���v � ��� ������ ��� �j� ��� � ���v � �� for j � �� ���� v � �� and
������ ��� �j� ��� � � for j � �� ���� v � ��

� r�j� �� � ����j� ��� �j � �� ��� � ���v � �� for j � �� ���� v�

� Finally d�v � �� �� � ��

It is easy to see that q��� � x� and that

qj���� �
x

�� � x�j
� ����

for j � �� ���� v so the Lemma follows� Q�E�D�

Finally� we state without proof another lemma� very similar to Lemma �� but which uses
terms of the form x��� � x�v to construct polynomials� It�s proof uses Lemma �� and follows
exactly the same lines as Lemma ��

�	



Lemma �� Let P o�x� be a polynomial of the form

P o�x� � c� � c�
x

� � x
� ���� cm

x

�� � x�m
� � � x � �� ����

with non�negative coe�cients� i�e� cv � �� i � �� ����m� Then there exists a feedforward GNN
with a single output neuron �O��� such that�

qO �
P o�x�

� � P o�x�
� ��
�

so that the average potential of the output neuron is AO � P o�x��

��
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