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Abstract

This paper shows how the delay of jobs/packets using
priority based scheduling mechanisms can be com-
puted analytically. Static priorities and different
types of time dependent priorities are considered.
This paper also shows how these results are used in
modern router design. Results for mono-processor
and multi-processor architectures are given.
Keywords: priority queuing, multi-processor systems,
quality of service

1 Introduction

In a router architecture queuing occurs when packets
are received by a device’s interface processor (input
queue), and queuing may also occur prior to transmit-
ting the packets to another interface (output queue)
on the same device. A basic router is a collection
of input processes that assemble packets as they are
received, checking the integrity of the basic packet
framing, one or more processors that determine the
destination interface to which the packet should be
passed and output processors that frame and trans-
mit the packets on their next hop.

Priority scheduling represents a class of scheduling
disciplines which can be used to provide differentiated
services in the Internet. In addition to strict prior-
ity scheduling, already implemented in several router
architectures, recent research on proportional differ-
entiated services has shown that the waiting time pri-
ority scheduler is a promising mechanism for approx-
imating the proportional delay differentiation model
[1].

The aim of this paper is to give an overview of
different priority based scheduling mechanisms and
investigate their properties analytically. Two classes
of priority based disciplines are discussed: static pri-
orities in Section 2 and time dependent priorities with
different variants in Section 3. We finally conclude in
Section 4.

2 Static Priorities

One of the first queuing variations to be widely im-
plemented was priority queuing. Here a fairly general
model based on M/G/1 is used [9], but can in some
cases be approximatively extended to the more gen-
eral case of G/G/m. The results hold only in case
of stationarity. In this queuing model we assume
that an arriving packet belongs to a priority class r
(r = 1, 2, . . . , R). The priority of a packet is constant
during its whole sojourn time in the router, that is
why we refer to this class of priorities as static priori-
ties. The next packet to be sent is the packet with the
highest priority r. Within a priority class the queuing
discipline is FCFS (First-Come-First-Served).

The mean waiting time W r of an arriving packet
Cr of the priority class r has three components [5, 6]:

1. The mean remaining service time W 0 of the
packet being served (if any).

2. The mean service time of the packets, found in
the queue by the tagged packet on arrival, and
that are served before it. These are the packets
in the queue of the same and higher priority as
the tagged packet.

3. Mean service time of packets that arrive at the
system while the tagged packet is in the queue
and are served before him. These are packets
with higher priority than the tagged packet.

Note that we consider only the case where a packet
being served is not preempted by an arriving packet
with higher priority. Preemption is not considered in
this paper because it is less relevant in the context of
packet queuing.

We define:

N ir: Mean number of packets of class i found in the
queue by the tagged packet Cr (with priority r)
and being served before it,

M ir: Mean number of packets of class i which arrive
during the waiting time of the tagged packet and
being served before it.
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Then the mean waiting time of class r packets in an
M/G/1 system can be written as the sum of three
components:

W r = W 0 +

R
∑

i=1

N ir ·
1

µi
+

R
∑

i=1

M ir ·
1

µi
. (1)

where µi is the service rate of the packets of class
i1. For a multi-procesor system with m processors
M/G/m (m > 1):

W r = W 0 +
R

∑

i=1

N ir

m

1

µi
+

R
∑

i=1

M ir

m
·

1

µi
, (2)

where N ir and M ir are given by:

N ir = 0 i < r ,
M ir = 0 i ≤ r ,

(3)

and, with Little’s theorem resp. the formula for the
mean number of jobs of class i which arrive during
the mean waiting time W r:

N ir = λiW i i ≥ r ,
M ir = λiW r i > r,

(4)

where λi denotes the arrival rate of class-i packets.
Considering the utilization factor ρr in class r as

ρr =
λr

µr
(5)

equations (1) and (2) can be solved to obtain:

W r =
W 0

(1 − σr)(1 − σr+1)
, (6)

where:

σr =

R
∑

i=r

ρi . (7)

Obviously the sum of utilization factors in all classes
has to fulfill the condition (stability condition):

R
∑

i=1

< 1, (8)

otherwise the system is unstable and the queue
lengths become infinite.

Mean Remaining Service Time W 0: The mean
remaining service time W 0 for poisson arrival [8] is
given by:

W 0 = P (server is busy)·R+P (server is idle)·0 , (9)

with the main remaining service time R of a busy
server (the remaining service time of an idle server is
obviously zero). When a packet arrives, the packet in

1throughout this paper we use the same notation as in Bolch
et.al. [6]

service needs R time units on the average to be fin-
ished. This quantity is also called the mean residual
life [6] and is given by:2

R =
T 2

B

2TB

=
TB

2
(1 + c2

B). (10)

For an M/M/1 system (c2
B = 1), we obtain:

RM/M/1 = TB =
1

µ
,

which is related to the memoryless property of the
exponential distribution. For multi-processor system
with m processors we refer to the approximation in
[6]:

R ≈
T 2

B

2mTB

(11)

The probability that the link server is busy is for
the mono-processor case given by the utilization ρ.
For a muti-processor server with m processors, the
probability Pm that all m processors are busy can be
calculated as follows: Let pk be the probability that
k packets are being actually in the system

pk =











p0
(mρ)k

k! if k ≤ m

p0
mmρk

m! if k ≥ m

(12)

p0 =

(( m−1
∑

k=0

(mρ)k

k!

)

+
(mρ)m

m!(1 − ρ)

)

−1

(13)

For a system with m processors:

Pm =

∞
∑

k=0

pk =
(mρ)m

m!(1 − ρ)
p0 (14)

The exact solution is only valid for exponentially
distributed service times, e.g. M/M/m-systems. For
M/G/m-systems several approximations have been
given in [5]:

1. Pm = 1−e−mp
∑m−1

k=0
(mρ)k

k! for a utilization ρ ≤
0.3

2. Pm = ρm+1/2 for 0.3 ≤ ρ ≤ 0.7

3. Pm = ρ+ρm

2 for a utilization higher than 0.7

4. Pm = Pm(M/M/m) for all utilization values

We conclude this section by giving the mean re-
maining service time for different queuing systems
[6]3:

W 0,M/M/1 =

R
∑

i=1

ρi
1

µi
(15)

2T B is the mean service time and c2B is the coefficient of
variation

3please note that the presented results and the results in
the following sections have been validated using simulations in
[10, 11]



W 0,M/G/1 =

R
∑

i=1

ρi ·
1 + c2Bi

2µi
(16)

W 0,GI/G/1,AC ≈

R
∑

i=1

ρi ·
c2Ai

+ c2Bi

2µi
(17)

W 0,GI/G/1,KLB ≈

R
∑

i=1

ρi ·
c2Ai

+ c2Bi

2µi
· GKLB (18)

W 0,GI/G/1,KUL ≈

R
∑

i=1

ρi · (19)

c
f(cAi

,cBi
,ρi)

Ai
+ c2Bi

2µi
(20)

W 0,M/M/m =
Pm

mρ

R
∑

i=1

ρi ·
1

µi
(21)

W 0,M/G/m ≈
Pm

2mρ
·

R
∑

i=1

ρi ·
1 + c2Bi

µi
(22)

W 0,GI/G/m,AC ≈
Pm

2mρ
·

R
∑

i=1

ρi ·
c2Ai

+ c2Bi

µi
(23)

W 0,GI/G/m,KLB ≈
Pm

2mρ

R
∑

i=1

ρi · (24)

c2Ai
+ c2Bi

µi
GKLB (25)

W 0,GI/G/m,KUL ≈
Pm

2mρ

R
∑

i=1

ρi · (26)

c
f(cAi

,cBi
,ρi)

Ai
+ c2Bi

µi
. (27)

For f(cAi
, cBi

, ρi),

f(cA, cB , ρ) =







































1, cA ∈ {0, 1},

+

[

ρ(14.1cA − 5.9) + (−13.7cA + 4.1)

]

c2B

+

[

ρ(−59.7cA + 21.1) + (54.9cA − 16.3)

]

cB

+

[

ρ(cA − 4.5) + (−1.5cA + 6.55)

]

,

0 ≤ cA ≤ 1,
− 0.75ρ + 2.775 , cA > 1,

(28)
for GKLB,GI/G/1

GKLB =







exp

(

− 2
3
· 1−ρ

ρ
·

(1−c2
A

)2

c2
A

+c2
B

)

, 0 ≤ cA ≤ 1 ,

exp

(

−(1 − ρ)
c2

A
−1

c2
A

+4c2
B

)

, cA > 1 .

(29)
and for GKLB,GI/G/m

GKLB =







exp

(

− 2
3

1−ρ
Pm

(1−c2
A

)2

c2
A

+c2
B

)

, 0 ≤ cA ≤ 1,

exp

(

−(1 − ρ)
c2

A
−1

c2
A

+4c2
B

)

, cA > 1,
(30)

3 Time Dependent Priorities

Static priorities are simple to implement in sofware
and hardware because, to a make a scheduling deci-
sion, the scheduler needs only to determine the high-
est priority nonempty queue. On the other hand, a

static priority scheme allows a misbehaving connec-
tion at highest priority to increase the delay and de-
crease the available bandwidth of connections at all
lower priority levels. This leads in extreme cases to
starvation of lower priority classes.

In many cases it is advantageous for a packet pri-
ority to increase with the time. This possibility can
be considered if we use a priority function:

qr(t) = Priority of class r at time t .

Such systems are more flexible but need more expense
for the administration. In this section, we investigate
different types of time dependent priorities.

3.1 Class Dependent Increasing Rate

We refer to the same queuing model and assign each
priority class a parameter br, which can be inter-
preted according to the the priority function

qr(t) = (t − t0)br (31)

as the increasing rate (slope) of the priority in the
class r, where 0 ≤ b1 ≤ b2 ≤ . . . ≤ bR. This means
that the priority of a higher class increases faster that
the priority of a lower class. A packet enters the
system at time t0 and then increases its priority at
the rate br.

In order to determine the mean waiting time of a
packet Cr which arrives to the system at time t0, we
follow the same approach as for static priorities (Eqn.
1). We have to determine the mean number of pack-
ets N ir of class i found in the queues by the tagged
packet (belonging to the priority class r) upon its ar-
rival and being served before it, and the mean number
of packets M ir of class i which arrive during the wait-
ing time of the tagged packet and being served before
it. For the mean remaining service times we can use
the same formulae as for static priorities.

The set Nir: We first consider the packets of lower
priority classes (i < r), which arrive to the queuing
system before the tagged packet Cr (before t0) and
which are served before it. These packets are charac-
terized by the following (see Figure 1):

• these packets arrived to the system at some point
−t1

• waiting time: wi(t1) with t1 < wi(t1) < t1 + t2

• have at time t2 the same priority as Cr, which
means brt2 = (t1 + t2)bi.

Now we compute t1 + t2, which is the period where
the lower priority packets in Nir in are served before
Cr:

t1 + t2 =
brt1

br − bi
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q
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Figure 1: Priority functions with constant slopes (for
the sets N ir)

N ir can be written as:
∫

∞

0

λiP{t < wi(t) ≤
br

br − bi
t1}dt (32)

Eqn. (32) can be simplified using the substitution:

y =
br

br − bi
t

and the fact

Wi = E[wi] =

∫

∞

0

1 − P (wi ≤ x)dx

We finally get:

N ir = λi

∫

∞

0

1 − P (wi ≤ t)dt

−λi

∫

∞

0

1 − P (wi ≤ y)dy(1 −
bi

br
) (33)

hence

N ir = λiWi
bi

br
for all i < r (34)

N ir is according to Little’s theorem for all i ≥ r

N ir = λiWi (35)

The set Mir: Considering the tagged packet Cr

(arrived at t0), it is obvious that

M ir = 0 for all i ≤ r (36)

because no packet of these lower priority classes will
be served before Cr. For classes with higher priorities
we have to consider all packets which arrive to the
system after Cr, but which are served before it. These
are according to Figure 2 all packets which arrive in
the interval [0, Ti). The crucial time Ti is determined
by:

brWr = bi(Wr − Ti)

hence:

Ti = Wr

(

1 −
br

bi

)

and:

M ir = λiTi = λiW r

(

1 −
br

bi

)

for all i > r (37)

W
r
b
r


priority


t
t
0
=0
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r
T
i


Figure 2: Priority functions with constant slope (for
the sets M ir)

The mean waiting time Wr: After substituting
the previous results (34), (35), (36) and (37) in (1)
we get:

W r =

W 0 +
r−1
∑

i=1

ρiW i
bi

br
+

R
∑

i=r

ρiW i

1 −
R
∑

i=r+1

ρi(1 − br

bi
)

(38)

We use the conservation law [6]:

R
∑

i=r

ρiW i = ρWFIFO (39)

and get a recursive formula for the mean waiting
times:

W r =

WFIFO −
r−1
∑

i=1

ρiW i

(

1 − bi

br

)

1 −
R
∑

i=r+1

ρi(1 − br

bi
)

(40)

Relationship between W0 and WFIFO: In Sec-
tion 2 the mean remaining service time W 0 for a va-
riety of queuing systems were given. The relationship
between W 0 and WFIFO is given by:

WFIFO =
W 0

1 − ρ
(41)

Proof:
The mean waiting time of packet in a FIFO system
has two components:

1. the mean remaining service time W 0 of the
packet in service (if any),

2. the sum of the mean service times of the packets
in the queue.

This sum can be written as:

W = W 0 + Q · TB (42)

According to Little’s theorem, the mean number of
packets in the queue is:

Q = λ · W



From Eqn. (42) we obtain:

W = W 0 + λ · W · TB = W 0 + ρ · W

and finally Eqn. (41). q.e.d.

3.2 Variants of the Priority Function

The first variant of the priority function in Eqn. 31
consists in assigning an exponent rs (i.e. 2) to the
slope br. The resulting priority function is then:

qrs
r (t) = (t − t0)b

rs
r (43)

The mean waiting time of a packet of the class r is:

W r =

WFIFO −
r−1
∑

i=1

ρiW i

(

1 −

(

bi

br

)rs
)

1 −
R
∑

i=r+1

ρi

(

1 −

(

br

bi

)rs
) (44)

The use of the exponent rs leads to a better separa-
tion of the different priority classes and it is possible
to theoretically cover the whole spectrum of queue-
ing mechanisms: from a strict differentiation of the
priority classes as done with static priorities to no
differentiation as it is the case with FIFO.

The second variant is the priority function:

qn
r (t) = (t − t0)

nbr (45)

we get for the mean waiting time:

W r =

WFIFO −
r−1
∑

i=1

ρiW i

(

1 −

(

bi

br

)1/n)

1 −
R
∑

i=r+1

ρi

(

1 −

(

br

bi

)1/n)

(46)

The exponent n is used to weight the waiting time
in the system, which also leads to a fine differentia-
tion of the classes. For the limits n → ∞ and n → 0,
the system tend to static priorities and FIFO respec-
tively. The combination of rs and n, which does not
cause any mathematical problems, allows more vari-
ation possibilities in the specified spectrum.

3.3 Class Dependent Starting Priori-

ties

A possibility to reduce the waiting time of certain
packets is to assign to each packet a class dependent
starting priority rr. With a slope 1 for the priority
functions of all classes and with

0 ≤ r1 ≤ r2 ≤ . . . ≤ rR

we get the following form for the priority functions:

qr(t) = rr + t − t0 (47)

In this case again, the mean waiting time W r is de-
pendent on the mean remaining service time W 0 and
the sets M ip and N ip, which have to be determined.

r
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Figure 3: Determination of N ir for class dependent
starting priorities

The set Nir: A packet Cr, which arrives to the
system at time t0 with the starting priority rr cannot
be served before the packets already buffered in the
queues of the same or higher classes, that’s why:

N ir = λiW i for all i ≥ r (48)

For lower priority classes, the packets (indexed with
i) already buffered in the queues at time t0 and which
will be served before Cr are characterized by (see Fig-
ure 3):

• arrival time: −t1

• starting priority: ri

• priority at time t0: qi(t0 = 0) = ri + t1

• waiting time: wi(t1) with t1 < wi(t1) < ∞

• qi(t0 = 0) ≥ rr, because they are served before
Cr

These packets will get served before Cr, that’s why:

t1 ≥ rr − ri

Hence for (i < r) we get:

N ir =

∫

∞

rr−ri

λiP{t < wi(t) ≤ ∞}dt (49)

After substitution and using:

Wi = E[wi] =

∫

∞

0

1 − P (wi ≤ t)dt (50)

we finally get:

N ir = λiWi − λi

∫ rr−ri

0

P (wi > t)dt for all (i < r)

(51)
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Figure 4: Determination of M ip for class dependent
starting priorities

The set Mir: Considering the tagged packet Cr

(arrived at t0), it is obvious that

M ir = 0 for all i ≤ r (52)

because no packet of these lower priority classes will
be served before Cr.

For classes with higher priorities we have to con-
sider all packets which arrive to the system after Cr,
but which are served before it. These are according
to Figure 4 all packets which arrive in the interval
[0, Ti), because:

qi(tr) ≥ qr(tr) = rr + tr

We use

ri + Wr − Ti = rr + Wr

to calculate Ti and get:

Ti = ri − rr

Hence:

M ir = λi

∫ ri−rr

0

P (wr > t)dt for all (i > r) (53)

Substituting (48), (48) and (53) in (1) and using
the conservation law (39) gives:

W r = WFIFO −

r−1
∑

i=1

ρi

∫ rr−ri

0

P (wi > t)dt+

R
∑

i=r+1

ρi

∫ ri−rr

0

P (wr > t)dt (54)

To determine the waiting probabilities P (wk < t)
(k = i, r), which cannot be calculated exactly, we
refer here to two approximations proposed in [7] for
M/G/1-systems:

Approximation 1: is a heavy traffic approxima-
tion of the mean waiting time is given by:

W r = WFIFO − Pm

R
∑

i=1

ρi(rr − ri) ρ → 1 (55)

Approximation 2: This approximation of the
mean waiting time is valid for 0 ≤ ρ < 1

W r(1 −

R
∑

i=r+1

ρi(1 − ePm(rr−ri)/W r )) =

WFIFO −

r−1
∑

i=1

ρiW i(1 − ePm(ri−rr)/W i) (56)

Given W 1 all other mean waiting times can be de-
termined recursively, where for each i the solution of
the equation (56) has to be computed numerically.

3.4 Starting Priorities rp with Inde-

pendent Increasing Rates bq

We extend here the considered system, where not
only a starting priority rp for each class is defined,
but also a class dependent increasing rate. If both
parameters are dependent on each other, that means
a class with a high starting priority also has a rela-
tively high increasing rate, we then define the priority
functions as:

qr(t) = rr + (t − t0)br (57)

These functions don’t have any important differences
if compared to the priority functions (31) and (47)
[5]. If the two parameters are independent of each
other, so we will characterize each class with the two
parameters: p for the starting priority and q for the
increasing rate, with

0 ≤ r1 ≤ r2 ≤ . . . ≤ rP and

0 ≤ b1 ≤ b2 ≤ . . . ≤ bQ

A combination of a high starting priority and a low
increasing rate (and vice versa) is here possible. This
system is the most general one and covers all cases
between FIFO- and static priority systems. The pri-
ority function is defined by:

qpq = rp + (t − t0)bq (58)

All parameters like Cp, ρp and λp have now to ex-
tended to Cpq, ρpq, λpq etc. Furthermore we define
N ij,pq and M ij,pq as:

N ij,pq mean number of packets with starting prior-
ity ri and increasing rate bj , which are already
buffered in the queues and are will be served be-
fore the packet Cpq, with starting priority rp and
increasing rate bq,



M ij,pq mean number of packets with starting prior-
ity ri and increasing rate bj , which arrive dur-
ing the waiting time of Cpq and which are to be
served before the packet Cpq.

The mean waiting time of the packet Cpq is given by:

W pq = W 0 +

P
∑

i=1

Q
∑

j=1

Nij,pq + Mij,pq

m
TBij

(59)

For N ij,pq we have to consider four cases:

• a) i ≥ p and j ≥ q

N ij,pq = λijW ij (60)

• b) i ≥ p and j < q (see Figure 5):
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Figure 5: Determination of Nij,pq for i ≥ p, j < q

The unit of time in which packets Cij are served
before Cpq can be determined using:

rp + b2t2 = ri + bj(t1 + t2)

Then:

N ij,pq =

∫

∞

0

λijP{1 < wij(t)

≤
ri − rp

bq − bj
+

bq

bq − bj
t1}dt

After substitution and using:

W ij = E[wij ] =

∫

∞

0

1 − P (wij ≤ x)dx

we get:

N ij,pq = λijW ij
bj

bq
for all i ≥ p, j < q (61)

• c) i < p and j ≥ q (see Figure 6):

It holds for the relevant packets at t = 0:

qij(t = 0) = ri + t1bj ≥ rp
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Figure 6: Determination of Nij,pq for i < p, j ≥ q

with the crucial time point

t1 ≥
rp − ri

bj

so that:

N ij,pq = λijW ij − λij

∫

rp−ri
bj

0

P (wij > t)dt

for all i < p, j ≥ q (62)

• d) i < p and j < q (see Figure 7):
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Figure 7: Determination of Nij,pq for i < p, j < q

It holds for the packets which are served before
Cpq:

rp + bqt2 = ri + bj(t1 + t2)

With

t1 + t2 =
ri − rp

bq − bj
+

bq

bq − bj
t1

we get with a similar way as in b):

N ij,pq = λijW ij
bj

bq
for all i < p, j < q (63)

In order to determine the sets M ij,pq we make here
the difference between four cases whereas:

M ij,pq = 0 for all i ≤ p, j ≤ q



All other cases can be treated similarly because the
crucial time point tij is determined by

ri + (Wpq − tij)bj > rp − Wpqbq

hence

tij <
ri − rp

bj
+ Wpq

(

1 −
bq

bj

)

The mean number of packets, which arrive in the time
interval [0, tij) and which are served before Cpq is
then:

M ij,pq = λij

∫ tij

0

P (wpq > t)dt

for all i > p and for all i ≤ p, j > q (64)

The determined sets N ij,pq and M ij,pq can now be
substituted in (59) together with the conservation law
to get the following form for the mean waiting time:

W pq = WFIFO −
∑P

i=1

∑q−1
j=1 ρijW ij

(

1 −
bj

bq

)

−
∑p−1

i=1

∑Q
j=q ρij

∫

rp−ri
bj

0 P (wij > t)dt

+
∑P

i=p+1

∑Q
j=1 ρij

∫ tij

0
P (wpq > t)dt

+
∑P

i=1

∑Q
j=q+1 ρij

∫ tij

0
P (wpq > t)dt (65)

The unknown probabilities have to be substituted by
the proposed approximations to get a recursive equa-
tion system, that can be solved numerically.

3.5 Dynamic Priorities with Class De-

pendent Deadlines

Another strategy for scheduling packets is based on
deadlines which are assigned to each packet4. R
packet classes are defined with a parameter Gi for
each class, with:

G1 > G2 > . . . > GR

The parameters Gi define the time period, which may
maximally be elapsed to serve a packet “in time”.
Packets with the lowest deadlines have the highest
priority and vice versa. According to the priority
function:

qr(t) =

{

(t − t0)/(Gr − t + t0) if t0 < t ≤ Gr + t0
∞ if Gr + t0 ≤ t < ∞

the priorities increase faster, whenever the deadline of
a packet nears. If the deadline is reached, the packet
gets an infinite priority, which forces the system to
serve the packet (see Figure 8). Packets with a posi-
tive infinite priority are served in a FIFO order.

The approach to calculate the mean waiting times
is not very different from the methods used for the
other strategies. To determine the set N ir we divide
the packets into two categories, which are considered
separately:

4this strategy is also known as Earliest Deadline First
(EDF)
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Figure 8: Class dependent deadlines

1. packets, which get an infinite priority after the
considered packet Cr does. If −t1 is their arrival
time, so

Gi − t1 > Gr

2. packets which get an infinite priority at the latest
until Gr (at t0 = 0, arrival of Cr), which means

Gi − t1 ≤ Gr

Using the priority functions we can deduce the sets
N ir(1) and N ir(2). M ip can also be determined ac-
cording to the known methods we used for the other
strategies. Substituting these sets in Eq. (1) and us-
ing the conservation law gives:

W r = WFIFO +

R
∑

i=r+1

ρi

∫ Ti

0

1 − P (wr ≥ Gr)dt

−

r−1
∑

i=1

ρi
Gi − Gr

Gi

∫ Gi−Gr

0

P (wi > x)dx (66)

with

Ti = W r
Gr − Gi

Gr
(67)

For the unknown probabilities we may again use one
of the two proposed approximations.

4 Conclusion

In this paper we investigated two classes of priority
based scheduling mechanisms: static priorities and
time dependent priorities. In all cases we showed
how the mean waiting times of packets of different
classes can be computed analytically. We presented
results for different arrival and service time distribu-
tions. Mono- and multi-processor routers were con-
sidered. These results have been successfully applied



for the characterization and analysis of proportional
differentiated services [12, 13].
It is still important to investigate how the scheduler
parameters have to be chosen, if quality of service
profiles for the different traffic classes are given (de-
sign problem). It is also interesting to investigate the
behavior of the priority based schedulers, when self
similar traffic and correlated inter-arrival times are
considered.
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