
CGI CONTROL OF REMOTE TELECOMMUNICATION
EQUIPMENT

J.C. SIMNER*, S. BECK**, M. WUWER**, T. OSMAN*** and D. AL-DABASS***

* Siemens Communications
Technology Drive, Beeston,

Nottingham, NG9 1LA.
john.simner@siemens.com

** Siemens Communications
Munich

Germany.

*** School of Computing & Mathematics
The Nottingham Trent University

Nottingham, NG1 4BU.
taha.osman@ntu.ac.uk

Abstract: Cordless handsets allow a user to make and receive calls anywhere within the range of the base
stations. The base stations provide the low power cellular radio communications to the cordless handsets. The
performance of the cordless equipment should be monitored to ensure that calls are not being lost. Users may be
aware of some lost calls because they were talking at the time the call failed. They would not be aware of any
incoming calls that fail to ring their handsets. Any lost calls could result in loss of business. This paper
highlights the limitations of local monitoring. It explores some examples of remote monitoring connected with
network management and rail transportation to see whether the technologies used can enhance the collection of
cordless statistics on Hicom. It successfully combines technologies from the different examples to control the
collection of cordless statistics on the remote telecommunication equipment. It uses a well-established client-
server technology in a new way. It does not use it in the normal way to return information in a web page.
Instead, it uses it to control the starting and stopping of the statistics collection.

Keywords: network management, remote monitoring

1. INTRODUCTION

Siemens Information and Communication
Networks designs, develops, manufactures, and
markets telecommunication equipment (termed
“switch”) that supports cordless equipment. Figure
1 shows a typical Hicom switch with private
cordless equipment, telephones, and a local
administration and service terminal connected to
the Public Network.

Cordless handsets allow a user to make and receive
calls anywhere within the range of the base stations.
The base stations provide the low power cellular
radio communications to the cordless handsets.
The performance of the cordless equipment should
be monitored to ensure that calls are not being lost.
Users may be aware of some lost calls because they
were talking at the time the call failed. They would
not be aware of any incoming calls that fail to ring
their handsets. Any lost calls could result in loss of
business.

The goal of this paper is to investigate alternative
monitoring scenarios and subsequently, produce a
control mechanism that starts and stops the
monitoring, which can be applied to a commercial
product.

Section 2 highlights the limitations of local
monitoring and investigates remote monitoring as
an alternative to local monitoring. It explores two
examples of remote monitoring (network

management and rail transportation) to see whether
the technologies used can be applied to cordless.

Section 3 proposes remote collection of the
statistics using a well-established client-server
technology. It focuses on the control aspects of the
remote collection system and shows how the
chosen technology can be used to convey the user’s
requests between different parts of the system. To
protect customers’ investment, the chosen
technology must run on both old and new Hicom
switches. This limits the choice to those
technologies that are supported on old switches.

Section 4 surveys different variants of the client-
server technology and considers how appropriate
they are to the proposed solution.

Figure 1 - Typical Private Cordless

Telecommunication Equipment

Section 5 outlines tests performed and tools used to
gauge how successful the chosen client-server
technology is in meeting its requirements. It
identifies security issues with the chosen
technology and proposes using a more secure form
for telecommunication equipment.

2. LIMITATIONS OF LOCAL MONITORING

Section 1 highlighted the importance of monitoring
the cordless equipment to ensure that it provides the
best service and that cordless calls are not lost.

The switch can measure and record many different
aspects of cordless calls. It records the number of
times a particular aspect has occurred since the
switch was last reset. This provides an absolute
measurement rather than a historical record over
time.

The recorded information is accessed using a
proprietary management interface. An engineer can
generate historical information by manually
invoking the collection commands on a periodic
basis, collecting their output, extrapolating the
current values, and comparing them with the
previous values. Even on a small switch, the
collection commands can generate hundreds or
thousands of lines of textual output.

There are two ways of accessing the management
interface; locally or remotely through a modem.
The main problem with the remote connection is
the speed of the modem link especially with the
amount of textual output generated. Sometimes,
the periodic period is increased because of the time
it takes to receive the generated output. This could
affect the worth of the historical data.

Hence, when monitoring produces a large amount
of data, the most efficient way to collect it is to
send an engineer to site with a laptop to locally
collect the statistics. This process is very expensive
in time and manpower.

The statistics are collected in blocks of 15 minutes.
Whilst, the statistics are being collected, the
engineer must remain on site. A typical site visit to
collect the statistics is 3 hours plus travel time.

However, when monitoring produces a small
amount of data, it can be remotely collected
through a modem.

ALTERNATIVE MONITORING APPROACH

The previous section highlighted the cost of local
monitoring. This section investigates remote
monitoring as an alternative to local monitoring.
There are many published examples of remote

monitoring. This section considers two examples;
network management and rail transportation.
Remote Monitoring Example - Network
Management

Network Management Systems are a typical
example of remote monitoring. Typically, a central
network manager polls the nodes, collects data from
them, processes it, and presents it in a visual form
to a human operator.

Kooijman (1995) and Gavalas et al. (2000) propose
using agents to reduce the amount of data passed
between the nodes and the server and the amount of
processing done by the server.

The current cordless monitoring approach is
inefficient because it transfers so much data.

Network management and agent technology have
not been explored further because agent technology
is not supported on old switches.

Remote Monitoring Example – Rail
Transportation

Nieva, Fabri, and Wegmann (2001) and Fabri,
Nieva, and Umiliacchi (1999) developed “ a web-
based monitoring tool for trains … [that] allow[ed]
maintenance staff to supervise railway equipment
from anywhere at anytime.” (Nieva, Fabri, and
Wegmann 2001, p1)

They identified the significant benefits including;
reduced development, installation, and maintenance
personal travel costs. These cost savings are just as
pertinent for a service organisation.

They developed and compared three prototypes
based upon different technologies; HTTP with CGI,
Java RMI, and HTTP with XML. The prototypes
were used to monitor a single device on a train, all
devices on a single train, and all devices on a fleet
of trains, respectively.

They found that the CGI approach was a “fast-to-
develop and elegant [solution]” (Fabri, Nieva, and
Umiliacchi 1999, p12) that suffered from using a
proprietary protocol between the client and the
server.

The Java RMI approach pushed the data from the
server whilst both HTTP approaches pulled it.
Nieva, Fabri, and Wegmann found firewall security
problems with pushing the data. The main
advantage of pushing over pulling is the reduction
in communication overhead because the data is
only sent when it changes.

The XML approach enabled the data and its
meaning to be sent to the client. This allows the
data to be interpreted by the client.

Nieva, Fabri, and Wegmann compared the
performance of the three prototypes for one and ten

updates. They found that the HTTP approach is
slower than the Java RMI approach, and “the
difference between the performances of Java RMI
against HTTP will increase as we increase the
number of updates.” (Nieva, Fabri, and Wegmann
2001, p5).

The two HTTP approaches, HTTP with CGI and
HTTP with XML, could both be used to collect the
cordless statistics. The CGI approach is quicker to
develop than the XML approach but the XML
approach would allow for future enhancements as
the data and its meaning are both collected.
However, the CGI approach operates faster than the
XML approach as less data is being transferred
between the switch and the control centre.

The Java RMI approach is not appropriate to
cordless because it uses Java technology on both
the client and the server. The Java technology
could be added to new switches but is not supported
on old switches.

3. THEORY OF NEW IDEA

The previous sections highlighted limitations with
local monitoring and investigated remote
monitoring as an alternative. This section proposes
a remote collection system for Hicom using a
client-server technology.

There are a number of aspects to the remote
collection system; controlling the starting and
stopping of the collection process, running the
collection commands, processing and transferring
the collected data. Section 3.1 describes the remote
cordless collection scenario that the new idea must
work within.

The remainder of this paper focuses on the control
aspect between the Manager and the Hicom switch
using a client-server technology. It does not
address the collection process, which uses an
established mechanism.

3.1 Remote Cordless Collection Scenario

Figure 2 shows the remote cordless collection
scenario. There are three areas; the Administration
and Service (A&S) Client, the A&S Platform on an
Intel-based Server (termed “the Manager”), and the
A&S Platform on a proprietary card (ADP)
installed within the Hicom switch (termed “the
Assistant”). The Manager can remotely access one
or more Assistants.

A user logs onto the Manager to control and view
the statistics on the Hicom switch. When the user
starts or stops the data collection, the request is
conveyed through the Manager to the Assistant.
The Assistant periodically collects the data from the
Hicom switch by invoking the collection commands

and analysing their output. Subsequently, the
Manager remotely collects the processed data from
the Assistant.

Figure 2 - Remote Cordless Collection Scenario

Overview of Control using Client-Server
Technology

The control aspects of the remote collection system
are the passing of the user’s requests (i.e. start
collection and stop collection) from the Manager to
the Assistant. To protect customers’ investment,
the chosen client-server technology must run on
both old and new Hicom switches. This limits the
choice to those technologies that are supported on
old switches. This means that it must be a well-
established technology rather than one developed in
the last few years.

The Apache web server and Common Gateway
Interface (CGI) were chosen. They are freely
available, UNIX-based, non-proprietary and widely
used.

CGI is used to convey the user’s requests to the
Assistant. Normally, CGI is used to return a web
page to the client but the remote cordless collection
system uses it to control the collections. The
alternative CGI invocations that can be used to
convey these requests are described later.

Using CGI allows remote access through the
Internet, Intranet, or any other open network to the
telecommunication equipment. There is concern
that such access will allow the telecommunication
equipment to be more open to attack. As it is
impossible to eliminate these attacks, their effects
must be minimised.

Whilst, the CGI script is being invoked, there is
very limited feedback. It does not return success or
failure. This minimises the information returned to
a potential hacker. In addition, a barrier is required
between the CGI script interface and the rest of the
collection process. The barrier must utilise

minimum resources; memory and processor. A
natural barrier is the creation and deletion of a
control file. To ensure that the barrier is effective,
the CGI script interface must not allow; any user
input to be executed by the system or the user to
interrupt it and take control.

Figure 3 shows an overview of the remote
collection system focusing on the control aspects.

Figure 3 - Remote Collection Overview –
Control Aspects

CGI Invocations

CGI is used to convey the user’s request from the
Manager to the Assistant. Figure 4 shows two
alternative invocations.

Figure 4 - Alternative CGI Invocations

The simplest CGI invocation is the GET method.
The user’s request is appended to the URL. The
GET method is very insecure. The URL and the
user’s request can appear in the browser location
bar and be logged by any system the request travels
through. With no GUI, there is no browser location
bar so the only concern is the logging by other
systems.

An alternative CGI invocation is the POST method.
The user’s request is transmitted immediately after
the URL. One advantage of this method is the
unseen data. The Manager requires unseen data to
hide the security measures.

Kargl, Maier, and Weber (2001) identify that a
system can be attacked at different levels. This
section focuses on the user’s request protocol
between the Manager and the Assistant. Eronen
(2001) and Moore, Voelker, and Savage (2001)
identify the difficulties in detecting and tracing
flood attacks, which consume CPU and memory
resources. Eronen and Meadows (2000) identify
countermeasures to distinguish the valid requests
from the rogue requests.

As the GET and POST invocations have no
protection against denial of service attacks, security
measures or a commercial product (e.g. Password
Hurler Protection) are required to reduce the effect
of flood attacks.

The security measures enable the Assistant to
validate the user request with minimum processing
and memory utilisation. It can check IP address of
the visitor, the content length, and key value pairs.
If the request is invalid, it is immediately ignored
and nothing is returned. This behaviour is loosely
based on Gong and Syverson’s (1995) fail-stop
protocol.

Gong and Syverson state that “A fail-stop protocol
automatically halts when there is any derivation
from the designed protocol execution path.” (Gong
and Syverson 1995, p2). The user’s request
protocol conforms to Gong and Syverson’s
Definition 1 (Fail-Stop Protocol) (Gong and
Syverson 1995, p3) because it returns nothing if the
request is invalid. However, this is the only
conformance because it uses weak not strong
authentication.

Eronen and Moore, Voelker, and Savage report that
attackers will often forge or “spoof” the source IP
address so that they can not be traced. Therefore,
the source IP address must be checked.

Three different levels of checks can be performed:

1. Does the source IP address exist in the HTTP
request? Some surfers forcibly remove their
address from their request. As the user’s request
protocol always sends the address, any HTTP
request received without an address must be an
attack.

2. Is the IP address valid? It is very difficult for
the recipient to check the validity of an IP address.
It can check it is in the right range but it can not
check that it equates to a valid location. The
attacker probably selected the address at random.
The location may not exist or it may be the address

of an innocent third party. Hence, this check is
fallible and should not be used.

3. Is the IP address trusted? The Assistant could
hold a list of the Manager IP addresses. Whenever,
it received an HTTP request, it could validate the
source IP address received against the list of
Manager IP addresses. If there was no match, the
HTTP request must be an attack. Unfortunately, it
could also mean that a valid request was received
from a Manager but the list has not been updated
yet. The validity checks consume time, CPU, and
memory resources. The amount of resources used
depends on the number of Managers and the
position of the received address in the list.
Therefore, this check should be used as a last resort.

Meadows and Eronen identify that alternative
techniques are required “to prevent attacks which
employ IP spoofing.” (Eronen 2001, p4). Meadows
proposes authentication whilst Eronen proposes
cookies.

The HTTP request could contain an additional key
value pair, which is authenticated by the Assistant.
If the Assistant detected an invalid key value pair,
the request must be an attack. This approach is not
appropriate to the GET method because the security
measure could be logged and sent in subsequent
attack requests.

The website for the Password Hurler Protection
(www.passwordhurlerprotection.com) states that
“[it] stops brute force attacks on your web site…
[it] works by logging the IP address of all failed
logins (401 Errors) and then it blocks users based
upon the number of failed logins within a specific
period of time.”

This level of protection is valid for many
commercial web sites and may be appropriate for
telecommunication equipment. In the case of the
Assistant, the alternative approach of validating
known Manager IP addresses and blocking all other
addresses should consume fewer resources than
logging and blocking failed logins especially if the
failed logins are mounting a distributed denial of
service attack.

4. DEVELOPMENT OF CGI SCRIPT
INTERFACE

There are a number of alternative CGI approaches.
This section provides a comparative survey of the
different approaches and considers how appropriate
they are to the proposed solution.

Shah and Darugar (1998), Venkitachalam and
Chiueh (1999), Wu, Wang, and Wilkins (2000) and
Dumitrescu (1998) all identify that CGI has an
inherent performance problem because separate
processes are created to handle each client request.

They all highlight the overheads incurred in forking
a new process.

New approaches have been developed to overcome
the performance problems. Some are proprietary
Server APIs (e.g., mod_perl) whilst others are
modifications to the CGI execution architecture
(e.g., FastCGI, LibCGI, and VEP).

Mod_perl (http://perl.apache.org/guide) brings
together the PERL application and the Apache web
server into one process.

FastCGI is described by Venkitachalam and Chiueh
and on the FastCGI web site
(http://www.fastcgi.com, Brown 1996a, Brown
1996b & Open Market 1996). It runs as a persistent
process thereby eliminating the overheads of
creating a new process.

Venkitachalam and Chiueh advocate a high-
performance CGI architecture, LibCGI. The CGI
script is compiled into a shared library that executes
in the web server’s address space. It avoids the
overhead of executing the forked process.

Shah and Darugar cite a high performance
architecture using Binary Evolution’s VelociGen™
interface (see Shah and Darugar 1998, p2). They
describe VelociGenforPerl™ (VEP) which
“combines the performance associated with server
APIs with the benefits of CGI.” (Shah and Darygar
1998, p2).

Table 1 shows a comparative summary analysis of
the five approaches. The information has been
extracted from the referenced papers.

Table 1 - Comparative Summary Analysis of
CGI Approaches

Two of the important attributes in the above table
which significantly effect performance and security
are separate isolated process and persistent process.

With a separate isolated process, a CGI based
application crash will not bring down the entire web
server. If they shared the same process space, the
application can corrupt, crash, or compromise the
web server. The application could even access the
session keys for the encryption. Venkitachalam and
Chiueh describe LibCGIs solution to sharing the
same process space so that the application does not
corrupt, crash, or compromise the web server.

Persistent processes do not die when they have
finished handling a request. Instead, they wait
around for a new request.

Venkitachalam and Chiueh compare LibCGI with
two alternative solutions, FastCGI, and mod_perl.
They conclude “LibCGI improves the CGI script
execution throughput over FastCGI by a factor of
2.3, and over conventional CGI model by a factor
of 3.9 to 4.6.” They compared performance at the
machine level and across the network.

Kothari and Claypool (1999) also measured and
analysed the performance of CGI and FastCGI for
input data size, output data size, disk read, disk
write, and computation. They found that “CGI and
Fast CGI perform effectively the same under most
low-level benchmarks.”

A Technical White Paper on FastCGI (Open
Market 1996) compared FastCGI with CGI and
concluded that FastCGI was 5 times faster than
CGI.

Shah and Darugar compared VEP with CGI and
concluded that VEP was up to 20 times faster than
CGI.

In contrast, Wu, Wang, and Wilkins conclude that
“CGI solutions are appropriate for small
applications with a limited amount of client access
… with the trade-off being the performance
penalty.” (Wu, Wang, and Wilkins 2000, p10)

This implies that CGI can be used to control remote
monitoring (i.e. starting and stopping) because the
requests occur very infrequently. Typically, there
will be one request to start the monitoring and
another some time later to stop it.

The High Performance Common Gateway Interface
Invocation paper by Venkitachalam and Chiueh
covering CGI performance problems, LibCGI,
FastCGI, and mod_perl were evaluated.

The conclusions were;

• There are recognised performance problems
with CGI,

• New approaches have been developed that
overcome these problems,

• The new approaches are not appropriate to the
control of remote collection of cordless statistics.
As there are minimal requests between the Manager
and the Assistant, any performance problems with
CGI are not seen as an issue.

• Therefore, CGI will be used to convey the
user’s request from the Manager to the Assistant.

The CGI script interface only runs on the ADP (see
Figure 2). The operating system on the ADP is
UnixWare. The UnixWare operating system
provides a comprehensive environment with many
shells, commands, functions, and tools.

The environment influences the form (e.g.
executable or shell script) and choice of the
programming language (e.g. C, C++, or Perl) for
the CGI program.

An important aspect of the control using client-
server technology proposal is the barrier between
the CGI script interface and the rest of the remote
collection system. The barrier is achieved through
the creation and deletion of a control file.

Two Bourne shell scripts are used; one to create the
control file and the other to delete it. The Bourne
shell scripts were used in preference to an
executable because when they are called, a new
process is not created so there are no additional
overheads.

This leaves the choice of the programming
language for the CGI program.

Gundavaram states that “Perl is by far the most
widely used language for CGI programming!”
(1996, p11). He cites one of the advantages of Perl
as “It makes calling shell commands very easy, and
provides some useful equivalents of certain UNIX
system functions.” (1996, p11).

With this recommendation and the two Bourne
shell scripts already developed, Perl was the
obvious choice for the CGI program especially as
Gundavaram (1996, p65) has a standard CGI PERL
script that can be used. The only additions required
are the recognition of the key-value pairs and the
calling of the Bourne shell scripts.

5. RESULTS AND DISCUSSION

With the controlling of the remote collection
system, two separate functional tests are required to
test the CGI script interface; one to start the
collection and the other to stop it. In both cases, the
URL is invoked and the correct operation was
tested and checked. The start request created the
control file whilst, the stop request deleted it.

The tests were successful. They clearly
demonstrated that the cordless collection could be
remotely started and stopped across the Siemens

network. The switch was located in the lab and the
testing was carried out from a PC in the office.

The CGI invocations using the GET method were
easily tested using the Internet Explorer browser to
invoke the URLs from the address line. As this
approach does not work for the POST method,
alternative approaches were investigated. A free
command line tool, cURL (http://curl.haxx.se), was
found which can transfer files with URL syntax. It
supports many different aspects of client-server
technology. It was successfully used to test the
normal and error behaviour of the CGI script
interface.

Although the tests were successful, they did
identify security issues with the simple CGI script
interface. It minimised attacks but did not prevent
unauthorised access. Hence, a more secure CGI
invocation is required for telecommunication
equipment.

The following paragraphs outline the principles of
secure CGI within the context of conveying user’s
requests from the Manager to the Assistant.

First, all communication between the Manager and
the Assistant uses HTTPS (HTTP over SSL) rather
than the standard HTTP. Therefore, all information
exchanged between the Manager and the Assistant
is encrypted. This includes the header, URL,
posted data, and any cookies. The name of the
server is not encrypted because it is used to route
the request. Encryption does not stop any system
the request travels through from seeing the
information; it just makes it difficult for them to
decode. With HTTPS and no GUI, the security
measures can be placed in the URL and/or the
posted data.

Secondly, authentication and/or cookies are
required to distinguish the authorised accesses from
the unauthorised ones.

With secure CGI invocation, the user is expected to
login before the URL is invoked. If the user
attempts to invoke a URL before they have logged
in, they are automatically redirected to a login page.
When they have successfully logged in, the original
URL is automatically invoked. Therefore, the
Assistant must be able to determine if the user is
already logged in.

There are two possibilities; the user name is sent in
every request and the server checks that the
particular user has already logged in, or a cookie is
sent in every request after the user has logged in.
As the initial request has no cookie, the automatic
redirection to the login page occurs. When the user
has successfully logged in, the server puts a cookie
onto the client, which is returned in subsequent
requests.

As the cookie is a simpler and more efficient
approach than searching for logged on user names,
they are used in this invocation.

Unfortunately, with the user’s requests, there is no
browser or logged on user, there is only an
executable running on the Manager invoking a
URL on the Assistant. The executable could detect
the login page and login but the user name and
password would have to be hard coded or easily
available. This presents a number of security
problems.

For example, hard coded passwords can be easily
detected and difficult to change. As the password
should be changed on a regular basis to avoid
misuse, hard coded passwords should not be used.

Therefore, an alternative approach to user name and
password is required.

The Photuris Specification (RFC 2522) outlines
some basic requirements for cookie generation.
They include:

 “1. The cookie MUST depend on the specific
parties …

2. It MUST NOT be possible for anyone other
than the issuing entity to generate cookies that will
be accepted by that entity. This implies that the
issuing entity will use local secret information in
the generation and subsequent verification of a
cookie. …

 3. The cookie generation and verification
methods MUST be fast to thwart attacks … ” (Karn
and Simpson 1999, p19).

These requirements can be adapted to allow a
Manager to open a session to the Assistant. Figure
5 shows a secure CGI invocation between the
Manager and the Assistant.

Figure 5 - Secure CGI Invocation between

Manager and Assistant

The initial request can include a cookie, which
identifies the Manager, the Assistant, and type of
request. The Assistant can use these details to
verify that the request has come from a Manager.
Subsequently, the Assistant can return a cookie,

which is sent in subsequent requests from the
Manager.

Therefore, Managers and Assistants can easily
distinguish between valid requests and responses,
and can determine unauthorised access and
potential attacks by the existence or not of valid
cookies. If an invalid cookie is detected, it must be
an unauthorised access or attack and the request is
simply ignored.

The tests were successfully repeated using the
secure CGI invocations. The Manager detected and
ignored unauthorised accesses.

6. CONCLUSIONS

This paper highlighted limitations with local
monitoring and found that remote monitoring was a
viable alternative.

This paper explored two examples of remote
monitoring; network management and rail
transportation. These examples were chosen
because they are monitoring real time systems,
which have similar characteristics to
telecommunication equipment. The examples
identified a number of underlying technologies that
could be used for the collection of cordless
statistics; agents, HTTP with CGI, Java RMI, and
HTTP with XML.

To protect customers’ investment, the remote
collection solution had to work on both old and new
Hicom switches. Some technologies (e.g. agents
and Java RMI) had to be discarded because they
were not available on old switches. Other
technologies (e.g., HTTP with XML) were not
suitable because of large memory footprints or
performance problems.

The chosen underlying technology was HTTP with
CGI. The remote collection solution did not use
CGI in the normal way to return the collected
statistics in a web page. Instead, it used it to
control the starting and stopping of the cordless
statistics. No feedback was given in order to
confuse any potential hackers.

This paper investigated the performance problems
of CGI including surveying alternative CGI. It
concluded that any performance problems were not
an issue because there are minimal CGI requests
when CGI is used to control.

This paper recognised that CGI is not a secure
technology. It investigated alternative CGI
invocations with different security measures that
included verifying the source IP address, using
HTTPS, adding key value pairs and cookies to
distinguish between valid and invalid requests
between Managers and Assistants.

Finally, the goals of this paper were met as the
proposed solution was adopted in the Siemens
HiPath 4000 Administration and Service Product to
control the collection of the cordless statistics from
switches.

ABBREVIATIONS

The following abbreviations have been used in this
paper:

A&S - Administration and Service
ADP - Administration Data Processor
CGI - Common Gateway Interface
CPU - Central Processing Unit
GUI - Graphical User Interface
HTTP - HyperText Transfer Protocol
HTTPS -HyperText Transfer Protocol Secure
ICN - Information and Communication Networks
IP - Internet Protocol
PSTN - Public Switch Telecommunication
Network
RFC - Request For Comment
RMI - Remote Method Invocation
SLC - Subscriber Line Cordless
SSL - Secure Sockets Layer
URL - Uniform Resource Locator
XML - Extensible Markup Language

ACKNOWLEDGMENTS

I would like to thank Siemens ICN and especially
my immediate management; Mr. Roger Andrews,
Mr. Paul Erckens, Mr. Jeff Conway, and Mr.
Graham Underwood for giving me the opportunity,
time, and support to do the MSc and this paper.

Finally, I owe a lot of gratitude and thanks to my
wife Mrs. Janet Simner and children David and
Andrew for their love, support, and encouragement
whilst doing this paper.

AUTHOR

John Simner is a senior software
engineer in Siemens’ Design
Services at Nottingham, U.K..
He graduated from the
University of Birmingham in
1978 with a BSc with Honours
Class I in Electronic and
Electrical Engineering. He has

worked in the Telecommunication Industry for over
25 years, working on real-time embedded and
application software in C, C++, and Java.
Currently, he is part of a team enhancing a web-

based administration and service (A&S) product
developed by Siemens Information and
Communication Networks. He was part of the first
cohort on a MSc course set up between NTU and
Roger Andrews Siemens’ Head of Engineering.
This paper is taken from his MSc. project which
developed an application that remotely collected
Cordless Telecommunication statistics from HiPath
4000 telecommunication equipment.

REFERENCES

BROWN, M.R., 1996a. FastCGI: A High-
Performance Gateway Interface. Open Market,
Inc. <http://www.fastcgi.com.devkit/doc/www5-
api-workshop.htm> (3 July 2002)

BROWN, M.R., 1996b. Understanding FastCGI
Application Performance. Open Market, Inc.
<http://www.fastcgi.com.devkit/doc/fcgi-perf.htm>
(3 July 2002)

DUMITRESCU, R.A., 1998. Two-stage
Programming via the Client-Servlet-Coprocess
Interaction Model. University of Basel,
Switzerland.
(Source http://citeseer.nj.nec.com/77511.html
Cached: PDF, 12 June 2002)

ERONEN, P., 2001. Denial of service in public
key protocols.
Helsinki University of Technology.
(Source
http://citeseer.nj.nec.com/eronen01denial.html
Cached: PDF, 11 May 2002)

FABRI, A., NIEVA, T. & UMILIACCHI, P., 1999.
Use of the Internet for Remote Train Monitoring
and Control: the ROSIN Project.
Paper appeared in the Proceedings of Rail
Technology ’99, London, September 1999.
(Available
http://icawww.epfl.ch/nieva/thesis/Conferences/Rai
lTech99/article/RailTech99.pdf)

GAVALAS, D., GREENWOOD, D., GHANBARI,
M. & O’MAHONY, M., 2000. Advanced
Network Monitoring Applications Based on
Mobile/Intelligent Agent Technology.
University of Essex, Colchester, UK & Fujitsu
Telecommunications Europe Ltd., UK.
(Source http://citeseer.nj.nec.com/268291.html
Cached: PDF, 18 July 2002)

GONG, L. & SYVERSON, P., 1995. Fail-Stop
Protocols: An Approach to Designing Secure

Protocols. SRI international, Menlo Park,
California.
Paper to appear in Proceedings of IFIP DCCA-5,
Illinois, September 1995.
(Source http://citeseer.nj.nec.com/49099.html
Cached: PDF, 11 May 2002)

GUNDAVARAM, S., 1996. CGI Programming
on the World Wide Web. 1st ed.
Sebastopol, CA: O’Reilly & Associates, Inc.

KARGL, F., MAIER, J. & WEBER, M., 2001.
Protecting Web Servers from Distributed Denial
of Service Attacks. University of Ulm, Germany.
(Source http://citeseer.nj.nec.com/444367.html
Cached: PDF, 11 May 2002)

KARN, P. & SIMPSON, W., 1999. Photuris:
Session-key Management Protocol.
Network Working Group, Request for Comments
2522 (RFC 2522), Category: Experimental.
(Source http://rfc.sunsite.dk/rfc/rfc2522.html, 8
September 2002)

KOOIJMAN, R., 1995. Divide and conquer in
network management using event-driven
network area agents.
(Source
http://citeseer.nj.nec.com/Kooijman95divide.html
Cached: PDF, 18 July 2002)

KOTHARI, B. & CLAYPOOL, M., 1999.
Performance Analysis of Dynamic Web Page
Generation Technologies. Computer Science
Technical Report Series. WPI-CS-TR-99-12
Worcester Polytechnic Institute, Massachusetts.
(Source http://citeseer.nj.nec.com/119628.html
Cached: PDF, 12 June 2002)

MEADOWS, C., 2000a. A Cost-Based
Framework for Analysis of Denial of Service in
Networks. Naval Research Laboratory,
Washington, DC 20375.
(Source http://citeseer.nj.nec.com/375643.html
Cached: PDF, 11 May 2002)

MEADOWS, C., 2000b. A Framework for
Denial of Service Analysis.
Naval Research Laboratory, Washington, DC
20375.
(Source http://citeseer.nj.nec.com/484887.html
Cached: PDF, 11 May 2002)

mod_perl guide.
<http://perl.apache.org/guide/intro.htm> (3 July
2002)

MOORE, D., VOELKER, G.M. & SAVAGE, S.
2001. Inferring Internet Denial-of-Service
Activity. University of California, San Diego.
(Source
http://citeseer.nj.nec.com/moore01inferring.html
Cached: PDF, 11 May 2002)

NIEVA, T., FABRI, A. & WEGMANN, A., 2001.
Remote Monitoring of Railway Equipment using
Internet Technologies. Swiss Federal Institute of
Technology (EPFL), Lausanne, Switzerland &
ABB Corporate Research Ltd., Baden, Switzerland.
(Available
http://icawww.epfl.ch/nieva/thesis/TechnicalReport
s/RMREIT/TR01_018.pdf)

Open Market, Inc., 1996, Technical White Paper.
Fast CGI: A High-Performance Web Server
Interface.
<http://www.fastcgi.com.devkit/doc/fastcgi-
whitepaper/fastcgi.htm>
(3 July 2002)

SHAH, A. & DARGAR T., 1998. Creating High
Performance Web Applications Using Perl,
Display Templates, XML, and Database
Content. Binary Evolution, Inc.
(Source http://citeseer.nj.nec.com/112243.html
Cached: PDF, 11 June 2002)

VENKITACHALAM, G. & CHIUEH, T., 1999.
High Performance Common Gateway Interface
Invocation. State University of New York at Stony
Brook, Stony Brook, NY.
(Source http://citeseer.nj.nec.com/77638.html
Cached: PDF, 11 June 2002)

WU, A.W., WANG, H. & WILKINS, D., 2000.
Performance Comparison of Alternative
Solutions For Web-To-Database Applications.
Proceedings of the Southern Conference on
Computing. The University of Southern
Mississippi, October 26-28, 2000.
(Source http://citeseer.nj.nec.com/428587.html
Cached: PDF, 11 June 2002)

	c0: Proceedings 17th European Simulation Multiconference
(c) SCS Europe BVBA, 2003 Copyright (c) Siemens AG 2003

