
CASE STUDY OF 100% TEST COVERAGE

J.C. SIMNER*, J. CONWAY*, T. OSMAN** and D. AL-DABASS**

* Siemens Communications
Technology Drive, Beeston,

 Nottingham, NG9 1LA.
john.simner@siemens.com

** School of Computing & Mathematics
The Nottingham Trent University

Nottingham, NG1 4BU.
taha.osman@ntu.ac.uk

Abstract: Telecommunication software is expected to have a long lifespan during which many developers will
add new features, modify existing features, or correct bugs. The software must be understandable, reliable, and
maintainable otherwise the additions and modifications will take longer to develop and introduce further errors.
Siemens has a software development process, which includes Fagan inspections, module testing, integration
testing, internal, and customer field trials. The Quality Plan for a large software development stated that the
developed software will be subject to either “100% code reviews and normal levels of testing” or “No code
reviews and 100% testing”. This paper tries to determine whether “100% testing with no code reviews” is a
viable alternative to “100% code reviews with testing” for commercial software products. It provides a case
study of a recently developed application that was subject to “100% testing and no code reviews”. It uses a
commercial tool to demonstrate the test coverage.

Keywords: quality assurance, telecom software testing.

1. INTRODUCTION

Telecommunications plays an important role in any
company’s business. Modern private
telecommunication equipment provides an
extensive range of features which allows companies
to manage their business more efficiently and
effectively. As their business, organisation, or
needs evolve, it is imperative that the configuration
of the installed equipment and network is changed
to meet the new circumstances otherwise, the
efficiency and effectiveness of their business may
be less than it should be.

Over the last two years, Siemens Information and
Communication Networks have developed an
enhanced Administration and Service (A&S)
product which allows easier access to the
configuration and performance data on Siemen’s
range of telecommunication equipment. Figure 1
shows an overview of the A&S product (known as
“HiPath 4000 Manager”).

The HiPath 4000 Manager was developed by a
multi-national and multi-site team, involving 800
people worldwide, including Beeston, Munich,
Berlin, Graz, and Boca Ratoon.

The goal of this paper is to provide a case study of a
recently developed application that was subject to
100% testing and no code reviews.

One of the applications developed for the HiPath
4000 Manager (PmAmoProc) was chosen to be
subject to 100% testing and no code reviews. It is a
standalone application that runs on the HiPath
4000. It periodically invokes collection commands,
parses their output, and generates statistic reports,

which are collected and handled by two other
applications on the HiPath 4000 Manager.

Section 2 reviews software inspection and testing
techniques to determine whether “100% testing
with no code reviews” or “100% code reviews with
testing” are viable alternatives.

Section 3 identifies a testing strategy that should
achieve 100% test coverage using both black-box
and white-box testing approaches.

Section 4 uses the same to dynamically analyse the
product and determine what percentage of the
product was actually tested. Initially, it identified a
high percentage of untested paths. The reasons for
the untested paths were determined. Additional
tests were carried out until there was no further
increase in test coverage. 100% test coverage was
not achieved because some exception handling code
could not be executed. As this situation is not
unique to this particular product, an additional
utility is available to mark the exception branches.
This effectively removes them from the metrics
thereby achieving higher overall test coverage.

Figure 1 – HiPath 4000 Manager Product

Overview

Section 4 concludes with a fault analysis of the
errors found during testing and field trials to
determine whether the decision made to perform no
code reviews was correct or not.

Section 5 summarises how well the chosen
application met its goal and demonstrated reliability
and maintainability. It identifies that no code
reviews and 100% testing leads to coding errors
being detected in field trials that should have been
found earlier.

2. PRODUCT QUALITY

Telecommunication software is expected to have a
long lifespan during which many developers will
add new features, modify existing features, or
correct bugs. The software must be understandable,
reliable, and maintainable otherwise the additions
and modifications will take longer to develop and
introduce further errors.

Siemens has a software development process,
which includes Fagan inspections, module testing,
integration testing, internal, and customer field
trials. The Quality Plan for the HiPath 4000
Manager states that the developed software will be
subject to either “100% code reviews and normal
levels of testing” or “100% testing and no code
reviews”. This section explores how realistic this
is.

Table 1 shows the actual code review statistics for
three modules in the HiPath 4000 Manager. In
summary 1454 lines of code were reviewed in 3
hours consuming 16¼ person hours of effort and
finding 16 defects.

Table 1 - Code Review Statistics

Laitenberger and DeBaud (1998) carried out a
survey of Software Inspection Technologies. He
cites the work of Ackerman et al. (see Laitenberger
and DeBaud 1998, p19) which reports the
individual preparation and meeting time, per
thousand lines of code, for code reviews, by two
different development groups; 7.9 and 4.4, and 4.91
and 3.32.

The figures for HiPath 4000 Manager are 1.66 and
2.62. This shows that the review rate on HiPath
4000 Manager compares favourable with other
organisations whilst the preparation rate is

substantially higher. The difference may be due to
knowledge, familiarity, or complexity of the code.

In the HiPath 4000 Manager, there are
approximately 14000 modules with 3.5 million
lines of code. At the above review rate, it would
take 20 person years of effort to review all the code
(assuming an 8 hour day and 20 working days per
month).

Laitenberger and DeBaud report that “part of the
problem [with software inspections] is the
perception that … [they] cost more than they are
worth.” (Laitenberger and DeBaud 1998, p21).

For example, is it worth spending 20 person years
(@ £85K per person per year, total £1.7 million)
inspecting 3.5 million lines of code. Expressed in
this way the general answer is no. It is not
economical or viable to do so.

So, is 100% testing more realistic?

Rushby (1991), Watson (1996), and Watson and
McCabe (1996) all describe different testing
methodologies. They include; random, regression,
thorough, and functional.

Watson and McCabe identify that “[a] common
approach to testing is based on requirements
analysis. A requirements specification is converted
into test cases, which are then executed … “
(Watson and McCabe 1996, p2).

This is a very easy approach to adopt. If the
software has been analysed and designed to meet
the requirements then executing the test cases will
fully test the software. Watson and McCabe
identify that the requirements are usually at a higher
level than the code so a lot of the code will not be
tested.

Therefore, a lower level approach must be adopted.
The code is inspected and a set of test cases is
derived that test each and every statement, line,
branch, variable, or path, through the code. This is
a manual method, which is very time consuming
and error prone.

Watson outlines the different testing criterions
including; statement testing, code coverage, branch
testing, data flow testing, and structured testing.

Watson states that “Structured testing, also known
as basic path testing, is a methodology for software
module testing based on the cyclomatic complexity
measure of McCabe.” (Watson 1996, piii and p1).

The cyclomatic complexity measures the logical
complexity of a module.

Watson and McCabe state that “it gives the number
of recommended tests for software.” (Watson and
McCabe 1996, p7). A module’s cyclomatic
complexity is the minimum number of tests

required to fully test the module. It is a theoretical
value, which may not be achievable in practice.

Watson and Watson and McCabe both define and
characterise cyclomatic complexity.

Watson and McCabe cite the work of McCabe
stating that “Structured testing is more theoretically
rigorous and more effective at detecting errors in
practice than other common test coverage criteria
such as statement and branch coverage.” (Watson
and McCabe 1996, p31).

Watson identifies an automated approach to
structured testing in which the source code is
instrumented and writes a trace file of its execution.
The McCabe INTEGRATED QUALITY™ toolset
is a commercial tool that automatically instruments
the source code and analyses the resultant trace file.
The tool reports code, branch, and complexity
coverage.

There are very few papers on structured testing and
the McCabe toolset. There are many papers on
metrics, some of which question the usefulness and
theoretical foundations of the cyclomatic
complexity metric. In their defence, Watson and
McCabe present many case studies that report
successes with cyclomatic complexity.

Finally, there is general concensus that 100%
testing is feasible using an automated tool to record
test coverage. However, it is still a high risk
strategy to perform 100% testing in preference to
code inspections especially as Laitenberger and
DeBaud reports that “available quantitative
evidence [between 19-93% of all defects were
detected by inspections] … indicates that
inspections have had significant positive impact on
the quality of the developed software and that
inspections are more cost-effective than other
defect detection activities, such as testing.”
(Laitenberger and DeBaud 1998, p21).

3. TESTING STRATEGY

The case study adopted a two stage testing strategy.
A black-box testing approach was carried out in the
first stage with a white-box testing approach in the
second stage. These two approaches are not
alternatives; they are complimentary. They are
normally applied at different stages in the
development of the code. This particular testing
strategy was adopted to see how much test coverage
was achieved by each approach.

Black-box testing tests the functionality of the
software at its interfaces. The tests are usually
performed at the end of the coding stage. They
check that the software meets its requirements.
White-box testing (which includes basic path and
control structure testing techniques) tests the code
from a design perspective.

With knowledge of the code and its data structures,
a set of test cases can be derived that test the
individual paths, controls, and data within the code.
These tests can be performed whilst the code is
being developed. Experience has shown that most
errors are logical ones. They occur through
incorrect equality tests (e.g. a < b, a <= b, etc.) and
incorrect boundary conditions on loops. These
errors are easily detected by white-box testing.

With white-box testing, 100% test coverage should
be achieved but it takes a long time. Whereas, with
black-box testing, all of the functionality can be
tested in a reasonable time frame but 100% test
coverage may not be achieved. The correct testing
strategy will use the best combination of both
approaches to find the maximum number of errors
in the minimum time whilst ensuring maximum test
coverage.

The individual test cases are described in Appendix
A.

MCCABE DYNAMIC ANALYSIS OF
PMAMOPROC APPLICATION

A commercial tool, McCabe INTEGRATED
QUALITY™ Test tool was used to measure and
assess the effectiveness of the testing strategy. The
tool automatically instruments the source code so
that it can identify what has been covered. It
supports a number of different module testing
methodologies; structured testing, design path
coverage, branch coverage, slice coverage, and
Boolean coverage (McCabe 2001, p116).

Path, code, and branch coverage are all used to
assess how well the PmAmoProc application is
tested using the test cases defined in appendix A.

Figure 2 - Class Coverage Metrics

Figure 2 test cases 1 and 2 show the branch
coverage for the six classes in PmAmoProc. It
clearly shows that only 52.4% to 69.6% branch
coverage has been achieved by black-box testing.
This confirms the Watson and McCabe (1996)

finding that test cases based only on requirements
do not test most of the code.

The McCabe INTEGRATED QUALITY™ Test
tool was used to identify untested paths, determine
why they were not tested, and derive suitable test
cases.
The reasons for the untested paths were as follows:

1. High Level Requirements - Watson and
McCabe identified that requirements may be at
higher level than the code so code inspection may
be required to generate test cases. This approach
was used to generate the latter test cases listed in
appendix A.

2. Boundary Checks – All parameters received
from the command line or external modules should
be range checked/validated. With embedded
software and no debugging environment, it may be
difficult to generate out of range values from
external modules.

3. Test Code – There are many different
approaches to testing. One approach is to write all
the code then test it whilst an alternative approach
is to write some of the code, test it, then write some
more. To perform incremental testing, test stubs or
test options are added but rarely removed. The
additional code, tested or not, affects the test
coverage metrics.

4. Trace Code – It can be very difficult to debug
embedded software on target hardware so trace
statements are often added. As they always effect
performance, they must be enabled or disabled
through compiler options or control files on the
target hardware. A control file is the preferred
option because it allows tracing to be turned on and
off in the field whilst the compiler option requires a
new version to be built, distributed and installed.
The software is often tested with tracing enabled. It
must also be tested with tracing disabled to ensure
maximum test coverage.

5. Unreachable Code – Sometimes modules (or
code) are written that can never be reached. For
example, a class must always have a default
constructor. If the class also has a non-default
constructor, the default constructor may never be
called. The additional code effects the test
coverage metrics.

6. Error/Exception Handling – Embedded
software must detect and handle all error conditions
(or exceptions) to ensure that the software
continues to run and does not cause any problems.
For example, if the application writes to a file, it
must always check that the file has been
successfully opened before it writes to it. If it fails
to open the file, it should log an error rather than
write to it. It is very difficult to test system errors
and exceptions.

7. Semaphore/Control Files – With multi-
threaded and multi-process applications, there is
controlled access to shared resources. With
embedded software and no debugging environment,
this may be difficult to test.

8. Redundant Code – Sometimes modules are
written but never called. The additional code
effects the test coverage metrics. They should
always be removed.

9. Coding Error – Sometimes coding errors
occur that results in unreachable code, which is not
detected by the compiler. For example, in
PmAmoProc, a class instance is explicitly created
but never deleted. This coding error should have
been picked up at code review. It effects the test
coverage metrics. It may cause memory leaks at
run time.
The derived test cases and their class coverage
metrics are listed in appendix A. Figure 2 shows a
graph of branch coverage versus the test cases for
the six classes in PmAmoProc. Branch coverage
was chosen because it gave the highest coverage
value. However, Figure 2 clearly shows that only
66.9% to 94.9% branch coverage has been achieved
with the derived test cases. The discrepancy is due
to boundary checks, unreachable code, and
error/exception handling.

Table 2 lists the path, code, and branch coverage
for the least tested modules after completing all of
the test cases listed in appendix A.

Table 2 - McCabe Dynamic Analysis – Least
Tested Modules

A module’s cyclomatic complexity (v(G)) is the
minimum number of tests required to fully test the
module. It is a theoretical value, which may not be
achievable in practice (see McCabe 2001, p51-53).

A module’s design complexity (iv(G)) is the
number of paths with calls to other modules (see
McCabe 2001, p55-57). If there are no calls to
other modules, the design complexity is zero and
can not be tested.

Line coverage shows how many source code
statements were executed. This does not include
any comments or blank lines, as they can never be
tested.

Branch coverage shows how many of the exits from
branches were executed. For example, an ‘if …
then’ has two exits, one if the condition is true and
one if the condition is false. A ‘if … then … else’
also has the same two exits.

An analysis of the modules listed in Table 2
revealed:

• 1 Coding Error – For example, an
instance of BaseStationStatConfig was created by
PmAmoProc and never deleted.

• 4 Boundary Checks – For example,
checkAmoSuccessfullyCompleted() checked the
AMO output for NOT COMPLETED, NOT
EXECUTED, and EXECUTED. These conditions
were not generated during the tests.

• 31 Error/Exception Handling – For
example, convertAndStripSpaces() checked for null
strings and strings with no spaces. These
conditions were not generated during the tests.
This analysis clearly shows that it is extremely
difficult to achieve 100% test coverage because of
the difficulties testing exception handling code.

As this situation is not unique to these particular
modules, McCabe have developed an additional
utility (McCabe Exception Coverage Utility
Version 1.8 20020228) that can mark the exception
branches. The branch report shows the percentage
of branches tested and the percentage of non-
exceptional branches tested (i.e. the number of
actual branches minus those marked as
exceptional). This effectively removes them from
the metrics thereby achieving higher overall test
coverage.

Finally, Table 2 shows 5 modules with low
cyclomatic and design complexity coverage but
high code and branch coverage. The untested graph
listings in the McCabe INTEGRATED
QUALITY™ Test tool did not match the
cyclomatic complexity coverage. This matter was
raised with McCabe. The calculation of the
cyclomatic and design complexity coverage in the
test tool is designed for modules with only one
entry and exit point. If the code allows early exits
from the module by exiting straight out of a loop,
the coverage for that module may not be recorded.
There is some debate over whether it is good or bad
practice to exit straight out of loops. The author
believes it is sometimes permissible if it makes the
overall code simpler.

4. RESULTS AND DISCUSSION

The main intention of this case study was to subject
a developed application to 100% testing and not do
code reviews. Section 0 identified that this is a
high-risk strategy, which may not find all of the
code errors. One way of determining that the
strategy has worked is to carry out a fault analysis
at the end of the field trial. The fault analysis
determines; how many errors were detected, where
they were found, their cause, and whether they
should have been found earlier. The fault analysis
was extended to cover the whole development cycle
(i.e. development phase, module testing, integration
testing, and field trials).

If the strategy has worked, none of the errors raised
during the field trial will have a cause of coding
error.

Table 3 shows a summary of the fault analysis for
PmAmoProc.

Table 3 - Summary Fault Analysis for
PmAmoProc

The fault analysis showed that 41 faults and 11
change requests were found on the PmAmoProc
application.

The faults were categorised as:

• Unclear, Missing, Changed, and Additional
Requirements – 22
• Coding Errors and Insufficient Testing – 26
• External Errors (i.e. Switch, Library, and
Compiler) - 4
This clearly demonstrates one of the problems of
developing software is the nature of the
requirements. They are often unclear and change
during the development.

The coding errors were examined to determine the
cause of the high fault rate (21 faults/KLOC).

There were three classes, which were very similar
in functionality. The code from one class was
copied to the other classes and amended as
appropriate. There were coding errors in the first
class, which were also copied into the other classes;
resulting in a higher fault rate.

The remaining coding errors were due to over
zealous error reporting.

Embedded software must detect and handle all error
conditions (or exceptions) to ensure that the
software continues to run and does not cause any
problems.

The PmAmoProc application is a good example. It
is expected to automatically run on a periodic basis,
collect the information, and produce the reports.
There is no user intervention. If it fails to run,
collect the information, or generate the reports, the
historical information for that period will be lost
forever.

There are two ways of developing the error or
exception handling code; pre-emption or
responding to crashes.

The first approach looks at the overall system, tries
to determine what might cause errors, and adds
exception code to handle these situations. The
exception code usually reports an error and
recovers from the situation. There are two potential
problems with this approach; it may identify errors
that are not errors, and it will never find every
possible error.

The second approach waits for the system to crash
during testing, identifies the cause, and adds
exception code to handle the crash. Again, the
exception code usually reports an error and
recovers from the situation. There are also two
potential problems with this approach; crashes may
not occur until field trials, and it can be very
difficult to identify the cause of a crash from the
crash dump and any trace logs.

Hence, the first approach is recommended but there
is sometimes a fine line between what is believed to
be an error and what is actually an error.

Finally, the fault analysis clearly shows that the
strategy of subjecting the developed product to
100% testing and not doing any code reviews did
not work because seven coding errors were found
during field trial that would have been found (in the
author’s opinion) at a code review. Finding coding
errors at the later stages could delay the product as
they have to be fixed, retested, and retrialled.

5. CONCLUSIONS

On reflection, it was unwise to adopt the high-risk
strategy of 100% testing and not do code reviews.
The fault analysis showed too many coding errors
found during the latter stages of test and trial, which
should have been found earlier.

Therefore, code reviews and testing should both be
carried out. They both should be used for their
strengths. Code reviews can check for typical
coding errors and understand what the code is
trying to do. Whereas, testing can check that a
product meets its requirements and does what it
should do.

The metrics can be used to identify the risks and
take appropriate action. For example, any complex
code or code that has not been tested, should be
reviewed. Likewise, any code that has not been
reviewed should be 100% tested.

To be effective, code reviews should involve
diligent software engineers with detailed
knowledge of the product, the requirements, and
available libraries, and general background
knowledge of software, and the general subject
area.

The testing clearly showed how extremely difficult
it was to obtain 100% test coverage across the
whole PmAmoProc application. Some modules
were 100% tested but the average test coverage for
lines and branches were 79.4% and 75.4,
respectively. The discrepancy was mainly due to
exception handling code. The additional utility to
mask the execution code and report a higher
coverage may satisfy 100% testing contracts but it
does not solve the underlying problem shown by
the fault analysis that even exception code has
coding errors.

There was some concern that different metrics for
the same module showed different % coverage (e.g.
100% line coverage but only 57% branch coverage,
64% branch coverage but only 30% line coverage).
This shows the importance of understanding the
metrics and how they are generated rather than
taking them at face value. It also shows that more
than one coverage metric should be used to
demonstrate 100% test coverage.

There was a slight incompatibility problem between
the HiPath 4000 Manager development
environment and the McCabe INTEGRATED
QUALITY™ Test tool environment. However,
once these were overcome, the tool provided very
good support for instrumenting the C++ code,
exporting the instrumented code, importing the
resultant output from running the instrumented
code, and generating the reports.

Finally, product quality can be improved by using
the metrics to focus resources on those areas that

need reviewing. The project team must decide
which metrics are appropriate for their project and
what level they should be limited to.

AUTHOR

John Simner is a senior software
engineer in Siemens’ Design
Services at Nottingham, U.K.. He
graduated from the University of
Birmingham in 1978 with a BSc
with Honours Class I in Electronic
and Electrical Engineering. He has
worked in the Telecommunication
Industry for over 25 years, working

on real-time embedded and application software in C,
C++, and Java. Currently, he is part of a team enhancing
a web-based administration and service (A&S) product
developed by Siemens Information and Communication
Networks. He was part of the first cohort on a MSc
course set up between NTU and Roger Andrews
Siemens’ Head of Engineering. This paper is taken from
his MSc. project which developed an application that
remotely collected Cordless Telecommunication statistics
from HiPath 4000 telecommunication equipment.

ACKNOWLEDGMENTS

I would like to thank Siemens ICN and especially my
immediate management; Mr. Roger Andrews, Mr. Paul
Erckens and Mr. Graham Underwood for their support.
Finally, I owe a lot of gratitude and thanks to my wife
Mrs. Janet Simner and children David and Andrew for
their love, support, and encouragement whilst doing this
paper.

REFERENCES

The following were used as reference material for
this paper:

McCABE, 2001. Using McCabe Test, Version
7.1, Manual.
Columbia, MD: McCabe Associates.

LAITENBERGER, O. & DEBUAD, J-M, 1998.
An Encompassing Life-Cycle Centric Survey of
Software Inspection (ISERN-98-32). Fraunhofer
Institute for Expermiental Software Engineering,
Kaiserslautern, Germany & Lucent Technologies,
Naperville, IL

RUSHBY, J., 1991. Measures and Techniques
for Software Quality Assurance. SRI
International, Menlo Park, CA.

WATSON, A.H., 1996. FastCGIStructured
Testing:Analysis and Extensions. A Dissertation
presented to the Faculty of Princeton University in
Candidacy for the Degree of Doctor of Philosophy.

WATSON, A.H. & McCABE, T.J., 1996.

Structured Testing:A Testing Methodology
Using the Cyclomatic Complexity Metric.
National Institute of Standards and Technology,
Gaithersburg, MD. NIST Special Publication 500-
235.

APPENDIX A – McCabe Dynamic Analysis – Class
Coverage Metrics

This appendix contains the class results of the McCabe
Dynamic Analysis of the PmAmoProc application using
McCabe INTEGRATED QUALITY™ toolset Version
7.1.

Table 4 to Table 9 show the class coverage metrics for
each class in the PmAmoProc application for the
following test cases (T1 to T13):

1. With Unity A&S Trace Tool tracing enabled and
PmAmoProc tracing disabled, update the list of cordless
equipment on the HiPath 4000 switch using the HiPath
4000 Manager Client GUI.

2. With Unity A&S Trace Tool tracing, cordless and
feature usage collection all enabled, and PmAmoProc
tracing disabled, collect the cordless and feature usage
statistics from the HiPath 4000 switch.

3. With Unity A&S Trace Tool tracing enabled and
PmAmoProc tracing disabled, update the list of cordless
equipment on the HiPath 4000 switch using the now
option on the local command line interface.

4. With PmAmoProc tracing disabled and Unity A&S
Trace Tool tracing both enabled and disabled, update the
list of cordless equipment on the HiPath 4000 switch
using the midnight option on the local command line
interface.

5. With Unity A&S Trace Tool tracing, PmAmoProc
tracing, cordless and feature usage collection all disabled,
collect the cordless and feature usage statistics from the
HiPath 4000 switch.

6. With Unity A&S Trace Tool tracing and
PmAmoProc tracing both disabled, update the list of
cordless equipment on the HiPath 4000 switch using the
HiPath 4000 Manager Client GUI.

7. With Unity A&S Trace Tool tracing and
PmAmoProc tracing both disabled, and cordless and
feature usage collection both enabled, collect the cordless
and feature usage statistics from the HiPath 4000 switch.

8. With PmAmoProc tracing enabled, update the list of
cordless equipment on the HiPath 4000 switch using the
HiPath 4000 Manager Client GUI and collect the cordless
and feature usage statistics from the HiPath 4000 switch.

9. Using the local command line interface:

• Invoke PmAmoProc with more than two
arguments,

• Invoke PmAmoProc with an invalid argument,
• Invoke PmAmoProc with no argument,
• Invoke PmAmoProc after removing the unlock

file,
• Invoke PmAmoProc after creating installation

control file,
• Invoke PmAmoProc after creating startup

control file,

• Invoke PmAmoProc then remove the lock file.

10. With cordless and feature usage collection both
enabled, create pm_temp_base_stat.txt and ziel_intern
files, and collect the cordless and feature usage statistics
from the HiPath 4000 switch.

11. With cordless and feature usage collection both
enabled, delete all previous statistic files and station
number files the list of cordless equipment on the HiPath
4000 switch using the HiPath 4000 Manager Client GUI,
and collect the cordless and feature usage statistics from
the HiPath 4000 switch.

12. With cordless and feature usage collection both
enabled, delete the zausl control file (PmAmoProc.zausl),
and collect the cordless and feature usage statistics from
the HiPath 4000 switch.

13. With cordless and feature usage collection both
enabled, create the collection stop files in the file transfer
directory, and collect the cordless and feature usage

statistics from the HiPath 4000 switch. After a few
minutes, delete the collection stop files.

The Unity A&S Server Trace Tool is a proprietary trace
tool used in the HiPath 4000 Manager. PmAmoProc
tracing is a local tracing utility within the PmAmoProc
application. The cordless collection and feature usage
collection are controlled by local control files.

The tables include the percentage coverage for three
metrics; Cyclomatic Complexity, Module Design
Complexity, and branches.

A module’s Cyclomatic Complexity (v(G)) is the
minimum number of linearly independent paths through
the module (see McCabe 2001, p51-53).

A module’s Design Complexity (iv(G)) is the number of
paths with calls to other modules (see McCabe 2001,
p55-57).

Branch coverage shows how many of the exits from
branches were executed.

Table 4 - Class Coverage Metrics for BaseStationStat

% Coverage T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13

v(G) 0.0 36.7 36.7 36.7 36.7 36.7 59.0 62.8 62.8 62.8 62.8 62.8 62.8

iv(G) 0.0 38.0 38.0 38.0 38.0 38.0 62.8 66.7 66.7 66.7 66.7 66.7 66.7

Branches 0.0 56.2 56.2 56.2 56.2 56.2 70.4 73.0 73.0 73.0 73.0 73.0 73.0
Table 5 - Class Coverage Metrics for BaseStationStatConfig

% Coverage T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13

v(G) 0.0 44.3 44.3 44.3 44.3 44.3 60.7 60.7 60.7 60.7 60.7 60.7 60.7

iv(G) 0.0 46.7 46.7 46.7 46.7 46.7 63.9 63.9 63.9 63.9 63.9 63.9 63.9

Branches 0.0 64.7 64.7 64.7 64.7 64.7 74.9 74.9 74.9 74.9 74.9 74.9 74.9
Table 6 - Class Coverage Metrics for CardStatSLC16

% Coverage T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13

v(G) 0.0 34.2 34.2 34.2 34.2 34.2 55.8 55.8 55.8 55.8 55.8 55.8 55.8

iv(G) 0.0 36.5 36.5 36.5 36.5 36.5 61.4 61.4 61.4 61.4 61.4 61.4 61.4

Branches 0.0 57.2 57.2 57.2 57.2 57.2 70.7 70.7 70.7 70.7 70.7 70.7 70.7
Table 7 - Class Coverage Metrics for FeatUsageStat

% Coverage T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13

v(G) 0.0 44.1 44.1 44.1 58.0 58.0 71.7 71.7 71.7 71.7 71.7 71.7 80.1

iv(G) 0.0 45.8 45.8 45.8 61.3 61.3 76.2 76.2 76.2 76.2 76.2 76.2 85.1

Branches 0.0 69.6 69.6 69.6 78.6 78.6 87.1 87.1 87.1 87.1 87.1 87.1 94.9
Table 8 - Class Coverage Metrics for PmAmoIf

% Coverage T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13

v(G) 11.3 14.6 14.6 24.6 26.5 26.5 27.8 27.8 27.8 27.8 27.8 28.7 28.7

iv(G) 12.4 15.6 15.6 26.2 28.2 28.2 29.5 29.5 29.5 29.5 29.5 30.4 30.4

Branches 35.6 52.4 52.4 61.6 63.8 63.8 65.4 65.4 65.4 65.4 65.4 66.9 66.9
Table 9 - Class Coverage Metrics for PmAmoProc

% Coverage T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13

v(G) 12.6 19.5 19.5 28.8 33.9 33.9 40.8 40.8 40.8 40.8 43.4 44.4 45.2

iv(G) 12.6 19.5 19.5 28.9 33.9 33.9 40.8 40.8 40.8 40.8 43.4 44.4 45.2

Branches 26.9 55.3 55.3 60.9 67.2 67.2 68.1 68.1 68.1 68.1 70.0 71.0 72.2

	c0: Proceedings 17th European Simulation Multiconference
(c) SCS Europe BVBA, 2003 Copyright (c) Siemens AG 2003

