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Abstract: Telecommunication software is expected to have a long lifespan during which many developers will 
add new features, modify existing features, or correct bugs.  The software must be understandable, reliable, and 
maintainable otherwise the additions and modifications will take longer to develop and introduce further errors. 
Siemens has a software development process, which includes Fagan inspections, module testing, integration 
testing, internal, and customer field trials.  The Quality Plan for a large software development stated that the 
developed software will be subject to either “100% code reviews and normal levels of testing” or “No code 
reviews and 100% testing”. This paper tries to determine whether “100% testing with no code reviews” is a 
viable alternative to “100% code reviews with testing” for commercial software products.  It provides a case 
study of a recently developed application that was subject to “100% testing and no code reviews”.  It uses a 
commercial tool to demonstrate the test coverage. 
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1. INTRODUCTION 

Telecommunications plays an important role in any 
company’s business.  Modern private 
telecommunication equipment provides an 
extensive range of features which allows companies 
to manage their business more efficiently and 
effectively.  As their business, organisation, or 
needs evolve, it is imperative that the configuration 
of the installed equipment and network is changed 
to meet the new circumstances otherwise, the 
efficiency and effectiveness of their business may 
be less than it should be. 

Over the last two years, Siemens Information and 
Communication Networks have developed an 
enhanced Administration and Service (A&S) 
product which allows easier access to the 
configuration and performance data on Siemen’s 
range of telecommunication equipment.  Figure 1 
shows an overview of the A&S product (known as 
“HiPath 4000 Manager”). 

The HiPath 4000 Manager was developed by a 
multi-national and multi-site team, involving 800 
people worldwide, including Beeston, Munich, 
Berlin, Graz, and Boca Ratoon. 

The goal of this paper is to provide a case study of a 
recently developed application that was subject to 
100% testing and no code reviews. 

One of the applications developed for the HiPath 
4000 Manager (PmAmoProc) was chosen to be 
subject to 100% testing and no code reviews.  It is a 
standalone application that runs on the HiPath 
4000.  It periodically invokes collection commands, 
parses their output, and generates statistic reports, 

which are collected and handled by two other 
applications on the HiPath 4000 Manager. 

Section 2 reviews software inspection and testing 
techniques to determine whether “100% testing 
with no code reviews” or “100% code reviews with 
testing” are viable alternatives. 

Section 3 identifies a testing strategy that should 
achieve 100% test coverage using both black-box 
and white-box testing approaches. 

Section 4 uses the same to dynamically analyse the 
product and determine what percentage of the 
product was actually tested.  Initially, it identified a 
high percentage of untested paths.  The reasons for 
the untested paths were determined.  Additional 
tests were carried out until there was no further 
increase in test coverage.  100% test coverage was 
not achieved because some exception handling code 
could not be executed.  As this situation is not 
unique to this particular product, an additional 
utility is available to mark the exception branches.  
This effectively removes them from the metrics 
thereby achieving higher overall test coverage. 

 
Figure 1 – HiPath 4000 Manager Product 

Overview 



Section 4 concludes with a fault analysis of the 
errors found during testing and field trials to 
determine whether the decision made to perform no 
code reviews was correct or not. 

Section 5 summarises how well the chosen 
application met its goal and demonstrated reliability 
and maintainability.  It identifies that no code 
reviews and 100% testing leads to coding errors 
being detected in field trials that should have been 
found earlier. 

2. PRODUCT QUALITY 

Telecommunication software is expected to have a 
long lifespan during which many developers will 
add new features, modify existing features, or 
correct bugs.  The software must be understandable, 
reliable, and maintainable otherwise the additions 
and modifications will take longer to develop and 
introduce further errors. 

Siemens has a software development process, 
which includes Fagan inspections, module testing, 
integration testing, internal, and customer field 
trials.  The Quality Plan for the HiPath 4000 
Manager states that the developed software will be 
subject to either “100% code reviews and normal 
levels of testing” or “100% testing and no code 
reviews”.  This section explores how realistic this 
is. 

Table 1 shows the actual code review statistics for 
three modules in the HiPath 4000 Manager.  In 
summary 1454 lines of code were reviewed in 3 
hours consuming 16¼ person hours of effort and 
finding 16 defects. 

 

Table 1 - Code Review Statistics 

Laitenberger and DeBaud (1998) carried out a 
survey of Software Inspection Technologies.  He 
cites the work of Ackerman et al. (see Laitenberger 
and DeBaud 1998, p19) which reports the 
individual preparation and meeting time, per 
thousand lines of code, for code reviews, by two 
different development groups; 7.9 and 4.4, and 4.91 
and 3.32. 

The figures for HiPath 4000 Manager are 1.66 and 
2.62.  This shows that the review rate on HiPath 
4000 Manager compares favourable with other 
organisations whilst the preparation rate is 

substantially higher.  The difference may be due to 
knowledge, familiarity, or complexity of the code. 

In the HiPath 4000 Manager, there are 
approximately 14000 modules with 3.5 million 
lines of code.  At the above review rate, it would 
take 20 person years of effort to review all the code 
(assuming an 8 hour day and 20 working days per 
month). 

Laitenberger and DeBaud report that “part of the 
problem [with software inspections] is the 
perception that … [they] cost more than they are 
worth.” (Laitenberger and DeBaud 1998, p21). 

For example, is it worth spending 20 person years 
(@ £85K per person per year, total £1.7 million) 
inspecting 3.5 million lines of code.  Expressed in 
this way the general answer is no.  It is not 
economical or viable to do so.  

So, is 100% testing more realistic? 

Rushby (1991), Watson (1996), and Watson and 
McCabe (1996) all describe different testing 
methodologies.  They include; random, regression, 
thorough, and functional. 

Watson and McCabe identify that “[a] common 
approach to testing is based on requirements 
analysis.  A requirements specification is converted 
into test cases, which are then executed … “ 
(Watson and McCabe 1996, p2). 

This is a very easy approach to adopt.  If the 
software has been analysed and designed to meet 
the requirements then executing the test cases will 
fully test the software.  Watson and McCabe 
identify that the requirements are usually at a higher 
level than the code so a lot of the code will not be 
tested. 

Therefore, a lower level approach must be adopted.  
The code is inspected and a set of test cases is 
derived that test each and every statement, line, 
branch, variable, or path, through the code.  This is 
a manual method, which is very time consuming 
and error prone. 

Watson outlines the different testing criterions 
including; statement testing, code coverage, branch 
testing, data flow testing, and structured testing. 

Watson states that “Structured testing, also known 
as basic path testing, is a methodology for software 
module testing based on the cyclomatic complexity 
measure of McCabe.” (Watson 1996, piii and p1). 

The cyclomatic complexity measures the logical 
complexity of a module. 

Watson and McCabe state that “it gives the number 
of recommended tests for software.” (Watson and 
McCabe 1996, p7).  A module’s cyclomatic 
complexity is the minimum number of tests 



required to fully test the module.  It is a theoretical 
value, which may not be achievable in practice. 

Watson and Watson and McCabe both define and 
characterise cyclomatic complexity. 

Watson and McCabe cite the work of McCabe 
stating that “Structured testing is more theoretically 
rigorous and more effective at detecting errors in 
practice than other common test coverage criteria 
such as statement and branch coverage.” (Watson 
and McCabe 1996, p31). 

Watson identifies an automated approach to 
structured testing in which the source code is 
instrumented and writes a trace file of its execution.  
The McCabe INTEGRATED QUALITY™   toolset 
is a commercial tool that automatically instruments 
the source code and analyses the resultant trace file.  
The tool reports code, branch, and complexity 
coverage. 

There are very few papers on structured testing and 
the McCabe toolset.  There are many papers on 
metrics, some of which question the usefulness and 
theoretical foundations of the cyclomatic 
complexity metric.  In their defence, Watson and 
McCabe present many case studies that report 
successes with cyclomatic complexity. 

Finally, there is general concensus that 100% 
testing is feasible using an automated tool to record 
test coverage.  However, it is still a high risk 
strategy to perform 100% testing in preference to 
code inspections especially as Laitenberger and 
DeBaud reports that “available quantitative 
evidence [between 19-93% of all defects were 
detected by inspections] … indicates that 
inspections have had significant positive impact on 
the quality of the developed software and that 
inspections are more cost-effective than other 
defect detection activities, such as testing.” 
(Laitenberger and DeBaud 1998, p21). 

3. TESTING STRATEGY 

The case study adopted a two stage testing strategy.  
A black-box testing approach was carried out in the 
first stage with a white-box testing approach in the 
second stage.  These two approaches are not 
alternatives; they are complimentary.  They are 
normally applied at different stages in the 
development of the code.  This particular testing 
strategy was adopted to see how much test coverage 
was achieved by each approach. 

Black-box testing tests the functionality of the 
software at its interfaces.  The tests are usually 
performed at the end of the coding stage.  They 
check that the software meets its requirements.  
White-box testing (which includes basic path and 
control structure testing techniques) tests the code 
from a design perspective. 

With knowledge of the code and its data structures, 
a set of test cases can be derived that test the 
individual paths, controls, and data within the code.  
These tests can be performed whilst the code is 
being developed.  Experience has shown that most 
errors are logical ones.  They occur through 
incorrect equality tests (e.g. a < b, a <= b, etc.) and 
incorrect boundary conditions on loops.  These 
errors are easily detected by white-box testing. 

With white-box testing, 100% test coverage should 
be achieved but it takes a long time.  Whereas, with 
black-box testing, all of the functionality can be 
tested in a reasonable time frame but 100% test 
coverage may not be achieved.  The correct testing 
strategy will use the best combination of both 
approaches to find the maximum number of errors 
in the minimum time whilst ensuring maximum test 
coverage. 

The individual test cases are described in Appendix 
A. 

MCCABE DYNAMIC ANALYSIS OF 
PMAMOPROC APPLICATION 

A commercial tool, McCabe INTEGRATED 
QUALITY™  Test tool was used to measure and 
assess the effectiveness of the testing strategy.  The 
tool automatically instruments the source code so 
that it can identify what has been covered.  It 
supports a number of different module testing 
methodologies; structured testing, design path 
coverage, branch coverage, slice coverage, and 
Boolean coverage (McCabe 2001, p116). 

Path, code, and branch coverage are all used to 
assess how well the PmAmoProc application is 
tested using the test cases defined in appendix A. 

 

Figure 2 - Class Coverage Metrics 

Figure 2 test cases 1 and 2 show the branch 
coverage for the six classes in PmAmoProc.  It 
clearly shows that only 52.4% to 69.6% branch 
coverage has been achieved by black-box testing.  
This confirms the Watson and McCabe (1996) 



finding that test cases based only on requirements 
do not test most of the code. 
 
The McCabe INTEGRATED QUALITY™  Test 
tool was used to identify untested paths, determine 
why they were not tested, and derive suitable test 
cases. 
The reasons for the untested paths were as follows: 

1. High Level Requirements - Watson and 
McCabe identified that requirements may be at 
higher level than the code so code inspection may 
be required to generate test cases.  This approach 
was used to generate the latter test cases listed in 
appendix A. 

2. Boundary Checks – All parameters received 
from the command line or external modules should 
be range checked/validated.  With embedded 
software and no debugging environment, it may be 
difficult to generate out of range values from 
external modules. 

3. Test Code – There are many different 
approaches to testing.  One approach is to write all 
the code then test it whilst an alternative approach 
is to write some of the code, test it, then write some 
more.  To perform incremental testing, test stubs or 
test options are added but rarely removed.  The 
additional code, tested or not, affects the test 
coverage metrics. 

4. Trace Code – It can be very difficult to debug 
embedded software on target hardware so trace 
statements are often added.  As they always effect 
performance, they must be enabled or disabled 
through compiler options or control files on the 
target hardware.  A control file is the preferred 
option because it allows tracing to be turned on and 
off in the field whilst the compiler option requires a 
new version to be built, distributed and installed.  
The software is often tested with tracing enabled.  It 
must also be tested with tracing disabled to ensure 
maximum test coverage. 

5. Unreachable Code – Sometimes modules (or 
code) are written that can never be reached.  For 
example, a class must always have a default 
constructor.  If the class also has a non-default 
constructor, the default constructor may never be 
called.  The additional code effects the test 
coverage metrics. 

6. Error/Exception Handling – Embedded 
software must detect and handle all error conditions 
(or exceptions) to ensure that the software 
continues to run and does not cause any problems.  
For example, if the application writes to a file, it 
must always check that the file has been 
successfully opened before it writes to it.  If it fails 
to open the file, it should log an error rather than 
write to it.  It is very difficult to test system errors 
and exceptions. 

7. Semaphore/Control Files – With multi-
threaded and multi-process applications, there is 
controlled access to shared resources.  With 
embedded software and no debugging environment, 
this may be difficult to test. 

8. Redundant Code – Sometimes modules are 
written but never called.  The additional code 
effects the test coverage metrics.  They should 
always be removed. 

9. Coding Error – Sometimes coding errors 
occur that results in unreachable code, which is not 
detected by the compiler.  For example, in 
PmAmoProc, a class instance is explicitly created 
but never deleted.  This coding error should have 
been picked up at code review.  It effects the test 
coverage metrics.  It may cause memory leaks at 
run time. 
The derived test cases and their class coverage 
metrics are listed in appendix A.  Figure 2 shows a 
graph of branch coverage versus the test cases for 
the six classes in PmAmoProc.  Branch coverage 
was chosen because it gave the highest coverage 
value.  However, Figure 2 clearly shows that only 
66.9% to 94.9% branch coverage has been achieved 
with the derived test cases.  The discrepancy is due 
to boundary checks, unreachable code, and 
error/exception handling. 

Table 2 lists the path, code, and branch coverage 
for the least tested modules after completing all of 
the test cases listed in appendix A. 

 

Table 2 - McCabe Dynamic Analysis – Least 
Tested Modules 

A module’s cyclomatic complexity (v(G)) is the 
minimum number of tests required to fully test the 
module.  It is a theoretical value, which may not be 
achievable in practice (see McCabe 2001, p51-53). 

A module’s design complexity (iv(G)) is the 
number of paths with calls to other modules (see 
McCabe 2001, p55-57).  If there are no calls to 
other modules, the design complexity is zero and 
can not be tested. 



Line coverage shows how many source code 
statements were executed.  This does not include 
any comments or blank lines, as they can never be 
tested. 

Branch coverage shows how many of the exits from 
branches were executed.  For example, an ‘if … 
then’ has two exits, one if the condition is true and 
one if the condition is false.  A ‘if … then … else’ 
also has the same two exits. 

An analysis of the modules listed in Table 2 
revealed: 

• 1 Coding Error – For example, an 
instance of BaseStationStatConfig was created by 
PmAmoProc and never deleted. 

• 4 Boundary Checks – For example, 
checkAmoSuccessfullyCompleted() checked the 
AMO output for NOT COMPLETED, NOT 
EXECUTED, and EXECUTED.  These conditions 
were not generated during the tests. 

• 31 Error/Exception Handling – For 
example, convertAndStripSpaces() checked for null 
strings and strings with no spaces.  These 
conditions were not generated during the tests. 
This analysis clearly shows that it is extremely 
difficult to achieve 100% test coverage because of 
the difficulties testing exception handling code. 

As this situation is not unique to these particular 
modules, McCabe have developed an additional 
utility (McCabe Exception Coverage Utility 
Version 1.8 20020228) that can mark the exception 
branches.  The branch report shows the percentage 
of branches tested and the percentage of non-
exceptional branches tested (i.e. the number of 
actual branches minus those marked as 
exceptional).  This effectively removes them from 
the metrics thereby achieving higher overall test 
coverage. 

Finally, Table 2 shows 5 modules with low 
cyclomatic and design complexity coverage but 
high code and branch coverage.  The untested graph 
listings in the McCabe INTEGRATED 
QUALITY™  Test tool did not match the 
cyclomatic complexity coverage.  This matter was 
raised with McCabe.  The calculation of the 
cyclomatic and design complexity coverage in the 
test tool is designed for modules with only one 
entry and exit point.  If the code allows early exits 
from the module by exiting straight out of a loop, 
the coverage for that module may not be recorded.  
There is some debate over whether it is good or bad 
practice to exit straight out of loops.  The author 
believes it is sometimes permissible if it makes the 
overall code simpler. 

4. RESULTS AND DISCUSSION 

The main intention of this case study was to subject 
a developed application to 100% testing and not do 
code reviews.  Section 0 identified that this is a 
high-risk strategy, which may not find all of the 
code errors.  One way of determining that the 
strategy has worked is to carry out a fault analysis 
at the end of the field trial.  The fault analysis 
determines; how many errors were detected, where 
they were found, their cause, and whether they 
should have been found earlier.  The fault analysis 
was extended to cover the whole development cycle 
(i.e. development phase, module testing, integration 
testing, and field trials). 

If the strategy has worked, none of the errors raised 
during the field trial will have a cause of coding 
error. 

Table 3 shows a summary of the fault analysis for 
PmAmoProc. 

 

Table 3 - Summary Fault Analysis for 
PmAmoProc 

The fault analysis showed that 41 faults and 11 
change requests were found on the PmAmoProc 
application. 

The faults were categorised as: 

• Unclear, Missing, Changed, and Additional 
Requirements – 22 
• Coding Errors and Insufficient Testing – 26 
• External Errors (i.e. Switch, Library, and 
Compiler) - 4 
This clearly demonstrates one of the problems of 
developing software is the nature of the 
requirements.  They are often unclear and change 
during the development. 



The coding errors were examined to determine the 
cause of the high fault rate (21 faults/KLOC). 

There were three classes, which were very similar 
in functionality.  The code from one class was 
copied to the other classes and amended as 
appropriate.  There were coding errors in the first 
class, which were also copied into the other classes; 
resulting in a higher fault rate. 

The remaining coding errors were due to over 
zealous error reporting. 

Embedded software must detect and handle all error 
conditions (or exceptions) to ensure that the 
software continues to run and does not cause any 
problems. 

The PmAmoProc application is a good example.  It 
is expected to automatically run on a periodic basis, 
collect the information, and produce the reports.  
There is no user intervention.  If it fails to run, 
collect the information, or generate the reports, the 
historical information for that period will be lost 
forever. 

There are two ways of developing the error or 
exception handling code; pre-emption or 
responding to crashes.   

The first approach looks at the overall system, tries 
to determine what might cause errors, and adds 
exception code to handle these situations.  The 
exception code usually reports an error and 
recovers from the situation.  There are two potential 
problems with this approach; it may identify errors 
that are not errors, and it will never find every 
possible error. 

The second approach waits for the system to crash 
during testing, identifies the cause, and adds 
exception code to handle the crash.  Again, the 
exception code usually reports an error and 
recovers from the situation.  There are also two 
potential problems with this approach; crashes may 
not occur until field trials, and it can be very 
difficult to identify the cause of a crash from the 
crash dump and any trace logs. 

Hence, the first approach is recommended but there 
is sometimes a fine line between what is believed to 
be an error and what is actually an error. 

Finally, the fault analysis clearly shows that the 
strategy of subjecting the developed product to 
100% testing and not doing any code reviews did 
not work because seven coding errors were found 
during field trial that would have been found (in the 
author’s opinion) at a code review.  Finding coding 
errors at the later stages could delay the product as 
they have to be fixed, retested, and retrialled. 

5. CONCLUSIONS 

On reflection, it was unwise to adopt the high-risk 
strategy of 100% testing and not do code reviews.  
The fault analysis showed too many coding errors 
found during the latter stages of test and trial, which 
should have been found earlier. 

Therefore, code reviews and testing should both be 
carried out.  They both should be used for their 
strengths.  Code reviews can check for typical 
coding errors and understand what the code is 
trying to do.  Whereas, testing can check that a 
product meets its requirements and does what it 
should do. 

The metrics can be used to identify the risks and 
take appropriate action.  For example, any complex 
code or code that has not been tested, should be 
reviewed.  Likewise, any code that has not been 
reviewed should be 100% tested. 

To be effective, code reviews should involve 
diligent software engineers with detailed 
knowledge of the product, the requirements, and 
available libraries, and general background 
knowledge of software, and the general subject 
area. 

The testing clearly showed how extremely difficult 
it was to obtain 100% test coverage across the 
whole PmAmoProc application.  Some modules 
were 100% tested but the average test coverage for 
lines and branches were 79.4% and 75.4, 
respectively.  The discrepancy was mainly due to 
exception handling code.  The additional utility to 
mask the execution code and report a higher 
coverage may satisfy 100% testing contracts but it 
does not solve the underlying problem shown by 
the fault analysis that even exception code has 
coding errors. 

There was some concern that different metrics for 
the same module showed different % coverage (e.g. 
100% line coverage but only 57% branch coverage, 
64% branch coverage but only 30% line coverage ).  
This shows the importance of understanding the 
metrics and how they are generated rather than 
taking them at face value.  It also shows that more 
than one coverage metric should be used to 
demonstrate 100% test coverage. 

There was a slight incompatibility problem between 
the HiPath 4000 Manager development 
environment and the McCabe INTEGRATED 
QUALITY™  Test tool environment.  However, 
once these were overcome, the tool provided very 
good support for instrumenting the C++ code, 
exporting the instrumented code, importing the 
resultant output from running the instrumented 
code, and generating the reports. 

Finally, product quality can be improved by using 
the metrics to focus resources on those areas that 



need reviewing.  The project team must decide 
which metrics are appropriate for their project and 
what level they should be limited to. 
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APPENDIX A – McCabe Dynamic Analysis – Class 
Coverage Metrics 

This appendix contains the class results of the McCabe 
Dynamic Analysis of the PmAmoProc application using 
McCabe INTEGRATED QUALITY™  toolset Version 
7.1. 

Table 4 to Table 9 show the class coverage metrics for 
each class in the PmAmoProc application for the 
following test cases (T1 to T13): 

1. With Unity A&S Trace Tool tracing enabled and 
PmAmoProc tracing disabled, update the list of cordless 
equipment on the HiPath 4000 switch using the HiPath 
4000 Manager Client GUI. 

2. With Unity A&S Trace Tool tracing, cordless and 
feature usage collection all enabled, and PmAmoProc 
tracing disabled, collect the cordless and feature usage 
statistics from the HiPath 4000 switch. 

3. With Unity A&S Trace Tool tracing enabled and 
PmAmoProc tracing disabled, update the list of cordless 
equipment on the HiPath 4000 switch using the now 
option on the local command line interface. 

4. With PmAmoProc tracing disabled and Unity A&S 
Trace Tool tracing both enabled and disabled, update the 
list of cordless equipment on the HiPath 4000 switch 
using the midnight option on the local command line 
interface. 

5. With Unity A&S Trace Tool tracing, PmAmoProc 
tracing, cordless and feature usage collection all disabled, 
collect the cordless and feature usage statistics from the 
HiPath 4000 switch. 

6. With Unity A&S Trace Tool tracing and 
PmAmoProc tracing both disabled, update the list of 
cordless equipment on the HiPath 4000 switch using the 
HiPath 4000 Manager Client GUI. 

7. With Unity A&S Trace Tool tracing and 
PmAmoProc tracing both disabled, and cordless and 
feature usage collection both enabled, collect the cordless 
and feature usage statistics from the HiPath 4000 switch. 

8. With PmAmoProc tracing enabled, update the list of 
cordless equipment on the HiPath 4000 switch using the 
HiPath 4000 Manager Client GUI and collect the cordless 
and feature usage statistics from the HiPath 4000 switch. 

9. Using the local command line interface: 

• Invoke PmAmoProc with more than two 
arguments, 

• Invoke PmAmoProc with an invalid argument, 
• Invoke PmAmoProc with no argument, 
• Invoke PmAmoProc after removing the unlock 

file, 
• Invoke PmAmoProc after creating installation 

control file, 
• Invoke PmAmoProc after creating startup 

control file, 



• Invoke PmAmoProc then remove the lock file. 
 

10. With cordless and feature usage collection both 
enabled, create pm_temp_base_stat.txt and ziel_intern 
files, and collect the cordless and feature usage statistics 
from the HiPath 4000 switch. 

11. With cordless and feature usage collection both 
enabled, delete all previous statistic files and station 
number files the list of cordless equipment on the HiPath 
4000 switch using the HiPath 4000 Manager Client GUI, 
and collect the cordless and feature usage statistics from 
the HiPath 4000 switch. 

12. With cordless and feature usage collection both 
enabled, delete the zausl control file (PmAmoProc.zausl), 
and collect the cordless and feature usage statistics from 
the HiPath 4000 switch. 

13. With cordless and feature usage collection both 
enabled, create the collection stop files in the file transfer 
directory, and collect the cordless and feature usage 

statistics from the HiPath 4000 switch.  After a few 
minutes, delete the collection stop files. 

The Unity A&S Server Trace Tool is a proprietary trace 
tool used in the HiPath 4000 Manager.  PmAmoProc 
tracing is a local tracing utility within the PmAmoProc 
application.  The cordless collection and feature usage 
collection are controlled by local control files. 

The tables include the percentage coverage for three 
metrics; Cyclomatic Complexity, Module Design 
Complexity, and branches. 

A module’s Cyclomatic Complexity (v(G)) is the 
minimum number of linearly independent paths through 
the module (see McCabe 2001, p51-53). 

A module’s Design Complexity (iv(G)) is the number of 
paths with calls to other modules  (see McCabe 2001, 
p55-57). 

Branch coverage shows how many of the exits from 
branches were executed. 

                        
Table 4 - Class Coverage Metrics for BaseStationStat 

% Coverage T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 

v(G) 0.0 36.7 36.7 36.7 36.7 36.7 59.0 62.8 62.8 62.8 62.8 62.8 62.8 

iv(G) 0.0 38.0 38.0 38.0 38.0 38.0 62.8 66.7 66.7 66.7 66.7 66.7 66.7 

Branches 0.0 56.2 56.2 56.2 56.2 56.2 70.4 73.0 73.0 73.0 73.0 73.0 73.0 
Table 5 - Class Coverage Metrics for BaseStationStatConfig 

% Coverage T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 

v(G) 0.0 44.3 44.3 44.3 44.3 44.3 60.7 60.7 60.7 60.7 60.7 60.7 60.7 

iv(G) 0.0 46.7 46.7 46.7 46.7 46.7 63.9 63.9 63.9 63.9 63.9 63.9 63.9 

Branches 0.0 64.7 64.7 64.7 64.7 64.7 74.9 74.9 74.9 74.9 74.9 74.9 74.9 
Table 6 - Class Coverage Metrics for CardStatSLC16 

% Coverage T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 

v(G) 0.0 34.2 34.2 34.2 34.2 34.2 55.8 55.8 55.8 55.8 55.8 55.8 55.8 

iv(G) 0.0 36.5 36.5 36.5 36.5 36.5 61.4 61.4 61.4 61.4 61.4 61.4 61.4 

Branches 0.0 57.2 57.2 57.2 57.2 57.2 70.7 70.7 70.7 70.7 70.7 70.7 70.7 
Table 7 - Class Coverage Metrics for FeatUsageStat 

% Coverage T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 

v(G) 0.0 44.1 44.1 44.1 58.0 58.0 71.7 71.7 71.7 71.7 71.7 71.7 80.1 

iv(G) 0.0 45.8 45.8 45.8 61.3 61.3 76.2 76.2 76.2 76.2 76.2 76.2 85.1 

Branches 0.0 69.6 69.6 69.6 78.6 78.6 87.1 87.1 87.1 87.1 87.1 87.1 94.9 
Table 8 - Class Coverage Metrics for PmAmoIf 

% Coverage T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 

v(G) 11.3 14.6 14.6 24.6 26.5 26.5 27.8 27.8 27.8 27.8 27.8 28.7 28.7 

iv(G) 12.4 15.6 15.6 26.2 28.2 28.2 29.5 29.5 29.5 29.5 29.5 30.4 30.4 

Branches 35.6 52.4 52.4 61.6 63.8 63.8 65.4 65.4 65.4 65.4 65.4 66.9 66.9 
Table 9 - Class Coverage Metrics for PmAmoProc 

% Coverage T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 

v(G) 12.6 19.5 19.5 28.8 33.9 33.9 40.8 40.8 40.8 40.8 43.4 44.4 45.2 

iv(G) 12.6 19.5 19.5 28.9 33.9 33.9 40.8 40.8 40.8 40.8 43.4 44.4 45.2 

Branches 26.9 55.3 55.3 60.9 67.2  67.2 68.1 68.1 68.1 68.1 70.0 71.0 72.2 
 


	c0: Proceedings 17th European Simulation Multiconference
(c) SCS Europe BVBA, 2003 Copyright (c) Siemens AG 2003


