

TCP/IP CONNECTION MANAGEMENT USING A REAL-
TIME DEVELOPMENT TOOL

ANN GRAY*, R. WHITELOCK*, E. PEYTCHEV** and D. AL-DABASS**

* Siemens Communications
Technology Drive, Beeston,

 Nottingham, NG9 1LA.
ann.gray@siemens.com

** School of Computing & Mathematics
The Nottingham Trent University

Nottingham, NG1 4BU.
evtim.peytchev@ntu.ac.uk

Abstract:The Central Integration Unit (CIU) is a major component of a system being developed to provide voice
and data communications between mobile radio users and fixed terminal users. The CIU has several different
TCP/IP interfaces, both external and internal to the CIU, with varying characteristics. Some use permanent
connections whilst others use transaction-based connections; some are clients or servers, others incorporate both
client and server operation. This paper looks at the issues behind the design of the connection management
aspects of the CIU and then describes the implementation of the connection management software within the
CIU.

Keywords: TCP/IP, real time tools

1. INTRODUCTION

The aim of this project is to demonstrate a method
of managing several different types of TCP/IP
interface within a single application.

The Voice Radio System provides a means of
intelligently routing calls between mobile users and
fixed terminals based upon current location of the
mobile user. This system uses a GSM network to
provide the mobile user switching capabilities, in
conjunction with a Central Integration Unit (CIU)
to provide the voice and data routing capabilities.
Figure 1.1 illustrates the basic functionality of the
Voice Radio System.

Figure 1-1 Overview of Voice Radio System

The CIU is a combined hardware and software
development consisting of many Commercial off
the Shelf (COTS) sub-components, including a
Realitis PABX, along with bespoke CIU
application software. The application’s primary
function is to control the routing of calls to and

from the fixed terminals, which it does using the
CTI (computer telephony integration) capabilities
of the PABX. In order to perform this role it uses
application level communications to the other
external components of the system. These
communications use a proprietary system
messaging protocol, which has been specified by
the customer, via TCP/IP socket connections.

All of these interfaces (five in total) use uni-
directional, transaction-based connections. This
means that the connection is established whenever a
single message is required to be sent on that
interface and closed again immediately after the
transmission. Three of the links are one-to-one, the
others having multiple remote end-points.

Figure 1-2 CIU Internal Interfaces

In addition to the external interfaces, the CIU
application also has two further internal TCP/IP
interfaces to manage, as illustrated in Figure 1.2
The first of these concerns the CTI interface to the
PABX (via CallBridge DX software, an existing
Siemens Communications product). This utilises
CSTA, the European standard CTI API, as defined
by the standards ECMA-179 and ECMA-180
(ECMA, 1992). The underlying TCP/IP connection

is permanent, one-to-one and bi-directional, with
the CIU application acting as the client.

The final interface allows the CIU Local
Management User Interface (LMUI), another piece
of software specifically designed for the CIU
development, to connect to the application for
administration and configuration purposes. This is
also a permanent, one-to-one, bi-directional TCP/IP
connection, but in this case the CIU application acts
as the server.

In order to provide the call routing capabilities
required for the Voice Radio System, the CIU must
be developed in such a way as to manage its
multiple TCP/IP connections in the most effective
manner in order to support the level of performance
required by the customer. The aim of this project is
to demonstrate a way of managing these different
types of TCP/IP interface.

2. THE CURENT SYSTEM

For a prototype CIU development, some of the
TCP/IP interfaces were developed, namely the two
internal interfaces plus one of the external
interfaces. The design of all three interface
components was based upon the CSTA interface
component (known as the CSTAIC) from the
CallBridge DX software, with the following
adaptations:-

1. The CIU CSTA interface component was
modified to be a client, rather than a server.

2. The CIU LMUI interface component needed to
be a server, therefore no modification was
required.

3. The external interface component was
considerably altered to handle transaction-
based operations for both client (for outgoing
messages) and server (for incoming messages).

Therefore the prototype software contained three
different interface components, all with the same
basic structure. This increased the amount of testing
required, and also led to maintainability issues. Any
fault that was found in one interface component had
to be checked and potentially fixed in two other
places. In the final CIU development this situation
would be further compounded with the addition of
four further external interfaces. It is not practical to
maintain seven different interface components.
Therefore it is desirable to have as few interface
components as possible, with the ideal being a
single, generic connection component.

The second concern regarding the design of the
connection interfaces is whether to re-use any part

of the prototype software as the basis for the phase
5 interface components. The prototype software,
including the interface components, utilises a
proprietary framework, which was developed by a
third party, for which Siemens Communications
owned the libraries, but not the original source
code. This framework provides the following
capabilities: - threads, task scheduling, inter-
process communication and diagnostic logging, as
well as socket handling classes.

The framework was found to have several
limitations. Firstly, link errors were encountered
when building the CIU application using Microsoft
Visual C++ 6.0. It is thought that the framework
library was built using an earlier version of Visual
C++ and includes versions of the Microsoft C++
libraries that are incompatible with those linked in
using version 6.0. During the prototype
development, reverting back to Visual C++ 5.0
solved this problem, but this is not an ideal long-
term solution, since support for earlier releases of
Microsoft products is not guaranteed indefinitely.
Although it may be possible to acquire a version of
the framework library that is compatible with
Microsoft Visual C++ 6.0, this is also limiting since
there is no guarantee that it would be compatible
with future versions. Furthermore this may take too
long to acquire and would generate an unwanted
dependency on external developers.

Secondly, there were doubts within the engineering
department regarding the performance of this
framework under heavy traffic, although this has
not been proven one way or the other. Although the
prototype CIU met its required load, the traffic
requirements for the final product would be much
greater. The project time constraints mean that the
risk is too high to invest time in using this
framework only to find later that it is not effective.

The final limitation is that, since Siemens
Communications do not own the source code, there
is no control over its operation. Any modifications
to the framework behaviour have to be made by
adapting the custom software in the application to
achieve the right results. This is very restrictive
and, in some cases, impossible.

For all these reasons, it was decided that the
framework used for the prototype would not be re-
used for the main CIU development.

3. THE NEW SYSTEM
In order to determine a strategy for the design of the
connection management software, several options
were considered. These options had to be
examined in light of a customer requirement
mandating the use of Rational Rose RealTime
(RRRT) as a development tool.

Rational Rose RealTime is a modelling tool which
uses an extended form of UML to enable the
modelling, implementation, building and debugging
of complex real-time systems. The RRRT
modelling language includes support for concurrent
objects, allowing communication between them via
ports using user-defined protocols. The dynamic
behaviour of these capsules can also be modelled
using state diagrams. Further information about
these concepts can be found in the Rational Rose
RealTime Modeling Language Guide (Rational
2002).

3.1 Pre-Existing CallBridge Framework

The majority of the CallBridge software utilises a
different framework to that used for the CSTA
interface. It was originally developed for
CallBridge’s predecessor and has been enhanced
over many years into a robust and reliable platform
on which to build an application. This framework
has also been used in other in-house developments
and is an obvious first-choice candidate for use in
the CIU. It provides a round-robin task-based
scheduler, including inter-task communication, plus
a message transport layer that allows non-blocking
TCP/IP socket management within a single-
threaded application.

Although, at first, the CallBridge framework
appears to be a good option, there are some
disadvantages to weigh up.

1. The message transport layer currently only
supports permanent connections, and would
therefore require substantial modifications to
allow its use for transaction-based connections.

2. Since RRRT has its own built-in mechanisms
for task-scheduling and inter-task
communication amongst other things, it will
provide the framework for the CIU application.
The only part of the CallBridge framework that
is required is the message transport layer.
However, the CallBridge framework is not
structured in such a way as to easily extract the
message transport software on its own. Effort
would be required to repackage it for use
within RRRT.

3. Finally, the CallBridge framework is written in
‘C’ and is likely to be difficult to maintain by a
team whose main skills are in C++ and Java.
This would not have been a major issue if the
framework was suitable in its present form, but
since points 1 and 2 imply a substantial amount
of rework, this would add a greater risk to the
project.

3.2 Single Generic Connection Manager

This option involves the development, from scratch,
of a generic connection manager component, using
the RRRT framework. This component would be
able to handle both permanent and transaction-
based connections; client or server operation, or
both; and either single or multiple remote end-
points.

The advantage of this approach is that there is
common code for all interfaces, so modifications
only need to be made in one place. This would also
reduce the time required for testing the connection
management software and it carries less risk, both
to the project timescales and the quality of the
resulting software.

Preliminary investigations into a possible design,
however, indicate that this is not straightforward,
and that the resulting code could be very complex
and difficult to follow.

3.3. Common External Connection Manager
Template
The final option is to have a single connection
manager template for all external interfaces, i.e.
those requiring transaction-based connections. The
two internal interfaces would then have their own
customised connection managers The customer had
already used Rational Rose RealTime during the
prototype development of one of the external
components and made available the connection
package (known as the TCPIP Key Mechanism) for
possible re-use by Siemens Communications.

As can be seen in Figure 3.1, the top-level
TCPIPHandler object is responsible for initialising
the Winsock library ready for use as well as
managing the incoming and outgoing connections.
Outgoing messages are passed to the TCPClient,
which creates the client connection, sends the
message, then closes the connection down.

In order to handle incoming messages to a
particular port, the TCPIPHandler initialises the
TCPServerController, informing it of the server
port number. The TCPServerController then creates
the listening socket and kicks off the first server
thread to listen for a connection. The listening
socket is a global variable so that it can be accessed
by each server thread. As soon as a server thread
receives a connection, the controller is informed
and the next thread is set listening whilst the first
receives the message.

Figure 3-1 Overview of TCP/IP Key Mechanism

Whilst this connection package contains the basic
classes for transmission and receipt of messages
using the transaction-based sockets method, it was
designed for use in an application that only requires
a single TCP/IP interface whereas the CIU requires
multiple such interfaces. It would therefore require
some small modification in order to re-use the
TCP/IP Key Mechanism in the CIU.

It was proposed that the two internal connection
managers should be designed from scratch in
RRRT using non-blocking sockets. The reason for
use of non-blocking sockets is that for permanent
bi-directional connections, the socket code needs to
be able to deal with incoming and outgoing stimuli
asynchronously. Using a blocking socket to wait for
input would delay outgoing message transmission.

Some of the low-level socket handling code from
the prototype CIU connection classes could be
incorporated in the transitions and operations of the
new capsules where appropriate in order to reduce
the implementation time and reduce the risk.

3.4 Decision Analysis

In order to determine which of the three options is
most appropriate, a Kepner Tregoe Decision
Analysis was performed. This is a technique for
arriving at a decision based on an analysis of the
alternatives against the key objectives of the
decision. The full analysis is shown in Appendix A.

There are two mandatory objectives – the solution
must be capable of supporting both permanent and
transaction-based connections, and it must be
compatible with the RRRT and C++ development
environment.

The CallBridge Framework option fails both of
these criteria, and was therefore rejected outright.

The remaining objectives were weighted according
to importance and the remaining two alternatives
(having met the mandatory objectives) were judged
on their performance against these criteria.

The Common External Connection Manager
Template alternative performed better on most of
the criteria and finished top overall. Therefore this
option was chosen.

Despite the design goal of minimising the number
of different connection managers, the decision
analysis process showed that this objective was of
relatively low importance compared to the issues of
timescale, maintainability and risk.

4. SOFTWARE IMPLEMENTATION

In this section, the design and implementation of
the software for the management of the internal
connections will be described.

Rational Rose RealTime was used throughout the
development for the design and implementation of
the application, as well as the building and unit
testing. The design is described in the following
subsections, using terminology and diagrams from
RRRT. The reader is referred to Rational (2002) for
a detailed explanation of these concepts.

4.1 External Connection Manager Template

The design of the connection managers for the
external interfaces is based upon the TCPIP Key
Mechanism with only a few modifications to enable
its use in the CIU.

Figure 4.1External Connection Manager Architecture

Since the modifications were minor the design will
not be described in detail here, however the basic
architecture is shown in Figure 4.1 in order to
provide a reference for the discussion on the CSTA
interface design.

4.2 CSTA Connection Management

4.2.1Architecture

When looking at the design for the management of
the CSTA connection, it is pertinent to investigate
the possibility of re-using any parts of the TCPIP

Key Mechanism. To recap, the CSTA interface uses
a permanent bi-directional connection acting as a
client.

The overall structure of the External Connection
Manager Template, whereby the core application
communicates with the manager using one protocol
for connection control and another protocol for
messaging, and the manager controls the capsules
that deal with the low-level connection processing,
could be re-used. Indeed, using the same protocols
would help to create an integrated connection layer
with a common interface to the core application.

The TCPClient capsule from the Key Mechanism
cannot be used here since it only handles outgoing
messages. Similarly, the ConnectionThread
capsule only handles incoming messages.
Moreover, it uses a blocking socket to wait for
input. This means that all other operations on that
thread are blocked until a message is received.
Whilst this is viable in the case of the external
interfaces (since that thread is only performing a
single operation, either transmitting one message or
receiving one message) it is not appropriate for
permanent connections where the relative ordering
of incoming and outgoing messages on the single
thread is indeterminate. In the latter case, it is
possible that an outgoing message may need to be
sent before the blocking call has returned. A non-
blocking socket must therefore be used, so that
stimuli from either the socket or the core
application can be acted upon immediately.

4.2 CSTA Connection Manager Architecture

NonBlockingTCPClient capsule is created that
handles both incoming and outgoing messages
asynchronously. In order to make the
NonBlockingTCPClient capsule re-useable, a new
ConnProfile data class is created to hold interface
specific information such as knowledge about the
format of the message header and position of the
message length field. This class is initialised by the
CSTAConnectionManager and passed to the

NonBlockingTCPClient on connection startup.
Thus the operation of the connection is tailored to
the CSTA interface.

The CSTA Connection Manager has responsibility
for the startup and shutdown of the CSTA
connection, as well as the configuration of the
connection profile. The complexity lies in the
NonBlockingTCPClient.

4.2.2 NonBlockingTCPClient Design

The NonBlockingTCPClient capsule has the
following responsibilities:-

• Maintenance of the link to CallBridge DX,
if the connection is in a started state.

• Reading and writing of messages at the
socket level.

• The ability to handle asynchronous bi-
directional communication with the
CSTAConnectionManager.

The implementation of the first two of these was
already understood since this type of interface was
implemented in the prototype. The implementation
of the last one, however, is specific to the way in
which Rational Rose RealTime handles its internal
protocols and requires some investigation.

In RRRT, when one capsule transmits a message to
another capsule, the message is placed onto the
receiving capsule’s queue and the capsule is
signalled to wake up and process the message. This
processing is all done within the RRRT capsule
framework and normally the developer does not
need to be aware of the mechanism by which this is
achieved.

In the NonBlockingTCPClient, however, the
capsule needs to be woken up either by a message
from the CSTAConnectionManager (i.e. the
normal wakeup mechanism) or by activity on the
socket. In order to do this it is necessary to
customise the capsule’s behaviour to allow it to
check for both types of event. RRRT permits
customisation of a capsule running on its own
thread by enabling the developer to change the type
of thread controller from RTPeerController (the
default setting) to RTCustomController. The
developer can then override the default
waitForEvents() operation with a customised
version.

To enable the capsule to detect events on both the
local interface (to the CSTAConnectionManager)
and the remote one (to CallBridge DX) use is made
of the TCP/IP “select” function through which the

software can specify a number of sockets to be
monitored for activity. RRRT implements this
functionality through its RTIOMonitor class. For
this to work it is necessary for a socket to be used
for the local interface as well as the remote one,
however a UDP socket will suffice in this case
since reliability of the link will not be an issue.

On connection startup the following actions are
performed by the NonBlockingTCPClient :-

1. create a UDP socket (attribute internalFd) and
connect to the local port

2. register the UDP socket with the RTIOMonitor
(attribute ioMonitor)

3. register the remote socket (attribute c_socket)
with the ioMonitor, so that its status can be
monitored

4. attempt to connect to CallBridge DX
5. if connection succeeds, the client is now ready

to process messages
6. if connection fails, a retry timer is started, upon

expiry of which connection will be attempted
again

The waitForEvents() operation monitors activity on
internalFd and c_socket as follows:-

1. it checks the status of the sockets by calling
ioMonitor.wait() with a parameter of 0 to
indicate ‘no blocking’.

2. if there is something to read on internalFd, i.e.
ioMonitor.status(internalFd) returns a non-
zero value, then it wakes up the state machine
by calling recv() on the internalFd socket. The
internal message will then be processed
through the state machine.

3. if the remote connection is in the established
state and there is some data to read, i.e.
c_socket.hasData() returns a non-zero value,
the readSocket() operation is called to read the
data in from the socket and process it.

4.3 LMUI Connection Manager

4.3.1 Architecture

Since the LMUI connection is, like the CSTA
connection, a permanent bi-directional link, it also
cannot re-use any of the classes from the TCPIP
Key Mechanism. It should use the same control and
messaging protocols to communicate with the core
application, and will also have the same basic
structure consisting of a connection manager
(LMUIConnectionManager) to handle the startup
and shutdown and to initialise the connection
profile, and a low-level capsule to handle the socket
processing.

However, as the LMUI connection acts as a server
rather than a client, it cannot re-use the

NonBlockingTCPClient capsule. Instead, a
NonBlockingTCPServer capsule will be created.

Figure 4.3 waitForEvents() operation in
NonBlockingTCPServer

4.3.2 NonBlockingTCPServer Design

The design for the NonBlockingTCPServer is
similar to that for the NonBlockingTCPClient in
that it needs to create a UDP connection to the
connection manager and use an RTIOMonitor to
check for activity on both this and the client
connection. The key differences are that on startup,
a listening socket is created and the server then
waits for the client to connect; the listening socket
has to be registered with the ioMonitor, so that any
new connection activity can be detected by
waitForEvents() (see Figure 4-8); if a new client
connection is received when the c_socket is already
active, then the new connection is refused by
closing it down; and if an active connection goes
away, the server just waits for a subsequent
reconnection – no retry state is required.

5. RESULTS AND DISCUSSION

5.1 Test Objectives

Since the connection management software is very
low level it is crucial to the operation of all
communication between the application and the
other system components. As such it is important to
verify the connection software thoroughly before
testing the higher level functionality.

The testing must prove that the appropriate
connections can be established, that data can be
transmitted in either direction, and that the software
can recover from a connection failure.

5.2 Test Strategy

The initial unit testing of each connection manager
in isolation was to be performed using Rational
Quality Architect (RQA-RT), a desktop test tool
that is integrated into RRRT. RQA-RT provides the

developer with the capability to specify, and
automatically verify, a test sequence. The aim is to
test as near to 100% of the code as possible. In
order to demonstrate the RQA-RT test procedure
that was used the testing of only one of the
connection managers (the CSTA Connection
Manager) will be described in detail, in section 0.
The same procedure was followed for all
connection components.

Once unit testing of all components has been
completed, the application would undergo pre-
integration testing on a test system in the laboratory
followed by a period of thorough functional and
performance testing.

5.3 Unit Testing the CSTA Connection Manager

In order to test any of the connection managers it is
essential first to have an application to simulate the
remote end of the connection. In the case of the
CSTA Connection Manager, a server that can send
and receive CSTA type messages is required. Note
that the full CSTA encoding and decoding is not
required for the testing of the low-level connection
software since the connection management code is
only concerned with the transport of the messages,
not their content. Thus, the phrase “CSTA type
message” means that the header part of the message
has the correct length and format for CSTA
messages.

A simple TestServer application was created in
RRRT with the help of the
NonBlockingTCPServer capsule. The parent
TestServer capsule creates the

Fig. 5.1 Screenshot of RQA-RT Test Run

NonBlockingTCPServer, and then just prints out
connection information and received messages,
sending a response message in reply. The
TestServer application was built in RRRT and the
executable was run from the DOS command line
when required.

The next stage of test preparation is to create a test
capsule in RRRT, this was named ConnectionTest.
This will contain the capsule under test (CUT), in
this case CSTAConnectionManager, as well as a
dummy client capsule, ConnClient, that is
connected to the test capsule to simulate the core
application.

Each test is now specified by creating a sequence
diagram showing the expected sequence of events
for the particular scenario. Input data must be
specified for signals sent into the CUT and,
similarly, the content of output signals must be
checked. Once the test specification is complete and
a build component has been created for the test
capsule, RQA-RT is then invoked to verify the
sequence. RQA-RT automatically generates the test
code for the dummy ConnClient capsule, then
builds the test capsule and runs the sequence.
Finally, it verifies the test output against the
expected sequence and reports any differences.

Figure 5.2 Screenshot of RQA-RT Test Trace

Figure 5.1 contains a screen shot of a running
RQA-RT test. It shows the TestServer output
window as well as the console window for the test.
In the background is the RRRT window that is
controlling the test run.

Figure 5.2 shows a screen shot of the test trace that
is generated at the end of the test run. The Log
window in the bottom left of the screen details any
differences between the test specification and the
trace. In this case there were no differences.

6. FUTURE DEVELOPMENT

The report shows that it is possible to design a
consistent approach to managing to diverse types
of connection within a single application and that
this can be done within the Rational Rose
RealTime framework by use of the
RTCustomController designation.

Furthermore, the use of RQA-RT as a testing tool
enabled rapid development of a test environment,
which would have been very difficult to achieve
using traditional methods.

The combination of a robust framework with the
already proven interface specific code from the
prototype development meant that very few
problems were found relating to the connection
management software, and only one fault was
raised in this area of software during formal system
testing. This fault, in the external connection
manager software meant that a failure to connect to
the remote server in order to transmit a message
caused the application to block for around 20
seconds.

Further work has been done more recently to
enhance the performance and maintainability of the
external connection managers. Use of the dynamic
thread creation and deletion capabilities of RRRT
has enabled the production of a single common
connection manager which dynamically incarnates
TCPClient capsules on separate threads. This has
solved the bug that caused the application to block.

REFERENCES

RATIONAL SOFTWARE CORPORATION 2002.
Rational Rose RealTime Modeling Language
Guide

KEPNER, C.H. & TREGOE, B.B. 1997. The New
Rational Manager.
Princeton, New Jersey: Princeton Research
Press

EUROPEAN COMPUTER MANUFACTURERS
ASSOCIATION 1992. Standard ECMA-179,
Services for Computer-Supported
Telecommunications Applications (CSTA)
Available at: http://www.ecma.ch/

EUROPEAN COMPUTER MANUFACTURERS
ASSOCIATION 1992. Standard ECMA-180,
Protocol for Computer-Supported
Telecommunications Applications (CSTA)
Available at: http://www.ecma.ch/

BIBLIOGRAPHY

COMER, DOUGLAS & STEVENS, DAVID 1991.
Internetworking with TCP/IP
Englewood Cliffs, New Jersey: Prentice-Hall
International, Inc.

	c0: Proceedings 17th European Simulation Multiconference
(c) SCS Europe BVBA, 2003 Copyright (c) Siemens AG 2003

