
IMPLEMENTATION OF A TILEWORLD TEST-BED
ON A DISTRIBUTED BLACKBOARD SYSTEM

K.W. Choy, A.A. Hopgood, L. Nolle, B.C. O’Neill

The Nottingham Trent University
School of Computing and Technology,

Burton Street,
Nottingham NG1 4BU

United Kingdom
E-Mail: {kw.choy, adrian.hopgood, lars.nolle, brian.oneill}@ntu.ac.uk

KEYWORDS

TileWorld, multi-agent simulator, distributed
blackboard system, DARBS

ABSTRACT

 Research into multi-agent systems has increased over
several years, leading to demand for multi-agent system
simulators to investigate the interaction between
different agents and their environment. The more
complex and intelligent the agents become, the more
difficult it is to simulate them. Distributing the
simulation across different processors would improve its
performance. This paper describes the implementation
of a multi-agent test-bed called TileWorld on a
distributed blackboard system, DARBS. The slow-down
of the simulator on a single processor has been
measured as the number of agents increases, and the
likely effect of migrating to a multiple-processor system
is assessed.

1. INTRODUCTION

 Research in multi-agent systems is currently on the
increase. Investigating the behaviour of the agents’
interaction with each other and with the environment is
inevitably part of this research. There is a need for a
test-bed to simulate the agents in an artificial
environment that can be both dynamic and static.
TileWorld (Pollack and Ringuette 1990) is a well-
established test-bed for agent systems and MA-
TileWorld (Ephrati et al. 1995) is its multi-agent version.

 Unfortunately, this type of simulation becomes
processor-intensive as the number of agents is increased.
An ideal solution to this would be to distribute the
agents across different processors. A distributed
blackboard system such as DARBS (Distributed
Algorithmic and Rule-based Blackboard System) (Nolle
et al. 2001) would be a suitable architecture.

1.1 TileWorld Test-bed

 From here onwards, MA-TileWorld will simply be
referred to as TileWorld. In this test-bed, the world is
set up as a two dimensional grid. There are agents, tiles,

holes, and obstacles in the TileWorld. The objective of
the agents is to score as many points as possible. They
score points by moving around the TileWorld to find
and pick up tiles which they put into holes. The agents
have a limited view of the TileWorld. The viewing
radius is a variable that can be set. For example, in the
DARBS TileWorld test-bed, the agents have a viewing
radius of 5 cells. Each cell can only be occupied by one
agent at a time. Agents cannot move to a cell with an
obstacle in it. An example of a 10 × 10 TileWorld is
shown in Figure 1.

7 8 9 10 1 2 3 4 5 6

1

2 T4 O1 O6 T1

3 O4

4 A1 H1 T3

5

6 O5 Legend
7 O2 A2 Ax Agent x
8 Hx Hole x
9 Ox Obstacle x H2 O3 T2 H3

Tx Tile x 10

Figure 1: A 10 × 10 TileWorld

 The holes, obstacles, and tiles in the TileWorld can
change dynamically, i.e. they can appear and disappear
in different locations in the TileWorld. The rate of
change is set by a variable, and this can be used to
reflect the dynamically changing real-world
environment. The TileWorld test-bed has been widely
used to test the behaviour and interaction of multiple
agents in a dynamic environment (Lees et al. 2003;
Kinny et al. 1992). There is also a variant of the original
TileWorld test-bed that includes “gas station” objects to
top up the resources of the agents (Uhrmacher and
Schattenberg 1998). In this variant, the agent’s
resource-management skill is investigated by making
each move consume fuel. Carrying a tile would cause
the agent to consume more fuel. Therefore the agent
would need to balance the consumption of resources
with scoring points.

1.2 DARBS

 A blackboard system is an artificial intelligence (AI)
technique that is analogous to a team of experts who
communicate their ideas by writing them on a
blackboard (Engelmore and Morgan 1988). The experts
are represented by sets of rules, conventional procedures,
neural networks, or other program modules. These
modules are termed knowledge sources (KS). The
blackboard is an area of global memory containing
evolving information. The system’s current state of
understanding of a problem is stored here as it develops
from a set of data towards a conclusion. DARBS is a
distributed blackboard system developed at the Open
University and the Nottingham Trent University (Nolle
et al. 2001). The original non-distributed blackboard
system was called ARBS and was run on a single
processor machine (Hopgood et al. 1998).

 DARBS was selected for this work as it is a research-
based distributed blackboard system that does not have
a central control module. Commercially available
distributed blackboard systems were not considered
owing to their cost and the limitations on access to their
source code.

 In DARBS, the blackboard system is modelled on the
client/server model where the blackboard (BB) is the
server and the KSs are the clients. Therefore, DARBS
can be seen as a distributed blackboard system with the
blackboard server running on one PC and other KS
clients running on different PCs. This allows different
KSs to run in parallel and thus to be truly opportunistic
(Engelmore and Morgan 1988). For this reason,
DARBS may also be considered as a multi-agent
collaborative system (Jennings and Wooldridge 1998).
Different KS clients on different PCs can work
independently, in keeping with the TileWorld test-bed
where each agent can be run as a separate KS client

 DARBS does not have a control module and as such
uses broadcast messages to inform other KSs that a
change in a particular partition of the blackboard has
occurred. It is then up to the KS to decide what to do. It
may either stop what it is doing and check exactly what
has changed or it may finish what it is doing and then
check.

1.3 Design criteria

 One of the benefits of the blackboard architecture is
that there is central storage of information about the
current problem. All KSs store their working memory
on the blackboard, visibly to other KSs or users. New
KSs can then be developed that can make use of this
information or the information can be use for debugging
purposes. A balance is needed, as too little information
on the blackboard defeats the purpose of central storage
and too much information would create a great
communication overhead. Partitioning the information
on the blackboard can help, but again there is a balance.

 Too much information on a single partition would
slow down the blackboard server in searching for the
information, and too many partitions would cause the
KS clients to monitor more partitions for changes.

 The format of the information stored on the
blackboard is also important. The more intelligible the
information, the greater the amount of data that is used
to store it and the more data the communication channel
has to send. Also putting the information in a format
that is difficult to search or query would slow down the
overall system. With all these criteria in mind,
TileWorld was designed and implemented on DARBS.

2. DESIGNING TILEWORLD ON DARBS

 The natural way the TileWorld test-bed fits a
blackboard system made it ideal for DARBS. In the
TileWorld environment all the agents and other objects
interact with each other and hence the agents can be
directly implemented as KS clients and the world itself
can reside on the blackboard. This gave all the agents
equal access to view and change the world, thus
allowing true parallel agent simulations. The setup of
the TileWorld on DARBS is as shown in Figure 2. The
Initiator KS is the KS that sets up the TileWorld with its
parameters and generates the world. The Display
TileWorld KS displays the TileWorld and its contents in
a graphical format so that it is easy for users to view the
simulation. The display KS also needs to keep track of
the changes in the world and make sure that the
graphical representation is as up-to-date as possible.
Each Agent KS controls their respective agent on the
TileWorld and makes changes to the world according to
the behaviours that are coded in them.

Figure 2: TileWorld on DARBS

 To simplify the design, the objects in the TileWorld
(i.e. tiles, holes, and obstacles) cannot move themselves.
However, it is possible to make the objects in the
TileWorld dynamic, i.e. appear and disappear with time
by simply adding another KS that uses a probability rate
to change the number and position of tiles, holes, and
obstacles in the TileWorld. A benefit of the blackboard
architecture is that new KSs can easily be added to
provide more agents or to change the way the TileWorld
is being simulated.

BLACKBOARD

Agent 1
KS

Initiator KS Display
Tileworld KS

. . . . Agent n
KS

 Careful organisation of the data on the blackboard is
required to make sure that the agents and all other KSs
can interact with each other properly through the
blackboard. The organisation of the data also needs to
minimise the number of partitions with which a
particular KS works. This is to reduce the number of
times the KS needs to restart, since a KS restarts
whenever a partition that is it working with has changed.
As mentioned earlier, the format of the data on the
blackboard also needs to be carefully constructed so that
queries from the KS clients are as easy, efficient and
legible as possible. With these criteria in mind, the
blackboard was partitioned as shown in Figure 3. The
most important data string format is the one on the
TileWorld Environment partition, for example:

[Location 1 , 4 contains Agent 1 , NO HOLE , NO
OBSTACLE , NO TILE]
[Location 1 , 5 contains NO AGENT , Hole 1 , NO
OBSTACLE , NO TILE]

[Location 1 , 6 contains NO AGENT , NO HOLE ,
Obstacle 1 , NO TILE]
[Location 2 , 4 contains NO AGENT , NO HOLE , NO
OBSTACLE , Tile 1]

 The order of objects is fixed as Agent-Hole-Obstacle-
Tile to facilitate queries from the KSs. If the location
contains an agent then “Agent x” where x is the number
of the agent would replace “NO AGENT”, and similarly
for holes, obstacles and tiles.

 As can be seen in Figure 3, all Agent KSs can access
the TileWorld Environment partition and, in theory, can
see the whole TileWorld. This could be argued to be an
incorrect implementation of the TileWorld test-bed, but
it is assumed that all agents are benevolent and will only
access those areas of the TileWorld Environment
partition that they are intended to.

General content of partition

BLACKBOARD PARTITIONS Access by
General control status of KSs in TileWorld TileWorld Control Status Access by Initiator

KS, Display
TileWorld KS, all
Agent KS.

Overall parameters of TileWorld TileWorld Parameters
The actual contents of the TileWorld TileWorld Environment

Access by Display
TileWorld KS

List of objects that the display KS is
currently displaying

Objects display in TileWorld

Agent1 state of mind Overall status of Agent1

Contents of what Agent1 can see on the
TileWorld

Agent1 view

Agent1 possible moves Access by Agent1List of possible and valid moves of agent

List of tiles within agent1’s view and its
location & distance

Agent1 tile calculation
List of holes within agent1’s view and its

location & distance
Agent1 hole calculation

.

.

.
Agentx state of mind Overall status of Agentx

Contents of what Agentx can see on the
TileWorld

Agentx view

Agentx possible moves Access by AgentxList of possible and valid moves of agent

List of tiles within agentx’s view and its
location & distance

Agentx tile calculation
List of holes within agentx’s view and its

location & distance
Agentx hole calculation

Figure 3: Partitions on the Blackboard

3. IMPLEMENTING THE TILEWORLD

 Three types of KSs were implemented in DARBS for
this TileWorld test-bed: Initiator KS, Display TileWorld
KS, and Agent KS. A screen capture of the TileWorld
running on DARBS is shown in Figure 4. Each is
implemented as a rule-based KS, described below.

Figure 4: Screen Capture of TileWorld on DARBS

3.1 Initiator KS

 The main purpose of the Initiator KS is to setup the
parameters of the TileWorld and to generate the world
from the parameters. The two main rules of this KS and
their functions are:

• Init_TileWorld
o Set the size of the TileWorld
o Set the number of agents in the TileWorld
o Set the number of holes in the TileWorld
o Set the number of obstacles in the

TileWorld
o Set the number of tiles in the TileWorld

• Create_TileWorld
o Generate a random position within the

TileWorld for each of the agents, holes,
obstacles, and tiles.

o Store this information on the blackboard.

 The FIRABILITY_FLAG of this KS is set to true,
which means that this KS will run only once unless a
change occurs in the partition in which it is interested.

3.2 Display TileWorld KS

 The main purpose of the Display TileWorld KS is to
display the content of the TileWorld in a graphical form.
This is done with the help of the Qt library from
Trolltech (Dalheimer 2002). The Qt library provides the
graphical function calls for drawing and updating the
graphical TileWorld with its agents, holes, obstacles and
tiles. The rules in this KS and their functions are as
follows:
Display_Initial_Screen

o Draw the TileWorld grid and label it

• Update_Agent_Display
o Find the location of all the agents in the

TileWorld from the blackboard and
display them accordingly.

• Update_Hole_Display
o Find the location of all the holes in the

TileWorld from the blackboard and
display them accordingly.

• Update_Obstacle_Display
o Find the location of all the obstacles in the

TileWorld from the blackboard and
display them accordingly.

• Update_Tile_Display
o Find the location of all the tiles in the

TileWorld from the blackboard and
display them accordingly.

• Update_Total_Objects_Display
o Find the objects that are currently being

display in the TileWorld.
• Update_Deleted_Tile

o Delete the objects that are no longer on the
blackboard from the displayed TileWorld.

 The FIRABILITY_FLAG of this KS is also set to true.

3.3 Agent KS

 The Agent KSs control the agents in the TileWorld.
There is a set of 31 rules for each agent in the TileWorld.
The behaviour and intelligence of the agent are coded in
the following rules (all rules are listed here, and the
function of selected rules is explained):

• Initialise_Agent
• Update_Internal_Status
• Generate_SearchSpace_State
• Look_At_Environment_State1
• Look_At_Environment_State2
• Is_It_Exploring_State

o Change the agent state to Exploring state if
the agent is in Thinking state and the agent
is currently carrying no tile and there is no
tile within the viewing range OR

o Change the agent state to Exploring state if
the agent is in Thinking state and the agent
is currently carrying a tile and there is no
hole within the viewing range.

• Is_It_Moving_To_Tile_State
o Change the agent state to Moving To Tile

state if the agent is in Thinking state and
the agent is not carrying a tile and there is
a tile within the viewing range and the tile
is not on the same grid as the agent.

• Is_It_Hole_Filling_State
• Is_It_Moving_To_Hole_State

o Change the agent state to Moving To Hole
state if the agent is in Thinking state and
the agent is carrying a tile and there is a
hole within the viewing range and the hole
is not on the same grid as the agent.

• Is_It_Picking_Up_Tile_State

• Generate_Possible_Moves
• Is_North_Move_Valid
• Is_North_Move_NotValid
• Is_East_Move_Valid
• Is_East_Move_NotValid
• Is_South_Move_Valid
• Is_South_Move_NotValid
• Is_West_Move_Valid
• Is_West_Move_NotValid
• Exploring_State

o Generate a random step based on the
possible moves and the last made move.
Store the random generated step on the
agent’s state of mind partition. Change
agent’s Exploring state to Making A Move
state.

• Moving_To_Tile_State
• Moving_To_Hole_State
• Get_Tile_Distance_State
• Get_Hole_Distance_State
• Find_Closest_Tile_State
• Find_Closest_Hole_State
• Generate_Step_Closer_To_Tile_State
• Generate_Step_Closer_To_Hole_State
• Pick_Up_Tile_State
• Hole_Filling_State

o Drop the tile it is carrying into the hole it
is standing on and recalculate the agent’s
score. Change agent’s state back to
Generate Searchspace state.

• Making_Move_State

 The FIRABILITY_FLAG of this KS is set to
true_always, which means that this KS runs
continuously and restarts if a change occurs in the
partition in which it is interested.

4. TESTS AND RESULTS

 A preliminary test has been carried out on a single
Intel Pentium 4 2.8GHz processor with 1GB of DDR
RAM running the Red Hat 9 Linux operating system.
All the agents in the TileWorld have a viewing radius of
two cells. An 18 × 18 TileWorld was run with 30
obstacles, 15 tiles, and 25 holes. The position of the
obstacles, tiles, and holes, and the initial position of the
agents were all randomly generated using the C++
standard random number generator function, rand() with
a seed of 10. The TileWorld test-bed was run with one,
two, three, four, and five agents. For all the runs, the
average time taken for an agent to make a move was
calculated over 10 moves. The time per move was
calculated by subtracting the time of an agent’s move
from the time of its subsequent move. An agent is
considered to make a move when it has changed the
TileWorld environment (i.e. moved to another cell,
picked up a tile, or dropped a tile into a hole). Restarts
due to the TileWorld being changed by other agents are
not considered as moves. Figure 5 shows the average

time per move normalised to a single-agent TileWorld’s
average time per move.

Single processor speed down factor

16.737

1.000
5.000

35.579

7.842
0

10

20

30

40

50

60

1 2 3 4 5 6

Number of agents

N
or

m
al

is
ed

 s
pe

ed
 d

ow
n

fa
ct

or

Figure 5: Normalised Single Processor Slow-down

Factor

 In Figure 5, an exponential function is fitted to the
results of the agent simulation on the TileWorld. This
shows that the slow down is approximately exponential
as the number of agents being simulated increases. This
is as expected, as the single processor has to time-slice
between more processes as the number of agents
increases. Another reason for the slow down is that as
the number of agents increases, the number of restarts
each agent has to make increases, thus increasing the
time required for each agent to make a move. This can
be improved by having more intelligent restarts, for
example by checking whether changes to the partition
affect the current thinking of the agent, and if so to what
extent, before deciding to restart again.

 A multi-processor test is currently in preparation. This
is expected to show a less marked slow down in
simulation as the number of agents increases. It is
inevitable that there will be some slow down as the
number of agents increases because there will be
communication overheads and access contention
between agents for the blackboard. One way of reducing
this is to reduce the amount of information stored on the
blackboard. However, this would conflict with the
concept of openness of information on the blackboard,
which provides upgradeability and helps users to
understand what is happening in the simulation.
Therefore a balance needs to be struck between the
amount of information to be stored on the blackboard
and the speed of the simulation.

5. CONCLUSIONS AND FUTURE WORK

 The TileWorld test-bed has been successfully
implemented on DARBS running on a single PC using
the Linux operating system. It is expected that the slow
performance will improve when this system is run in
parallel on separate PCs connected together via TCP/IP
as the load of the extra agents would be distributed over

the separate PCs. The speedup factor between n agents
in a single processor and n agents in multi-processors
can then be compared and evaluated. Further tests will
be carried out to investigate the causes of slowness and,
where possible, improvements to the system will be
made. One cause of slowness is that the KS tries to fire
all the rules even when certain rules are known
beforehand to be dependent on other rules. A rule
dependency table (Hopgood 1994) can be created before
runtime to prevent the KS from trying to fire any rule
until the rules upon which it depends have fired.

 An improvement for this TileWorld test-bed would be
to have another KS that relays what the agent sees from
the TileWorld Environment partition onto the Agent
View partition. In this way, the agent would have no
direct access to the TileWorld Environment partition
other than making a move on the TileWorld. This
would make it easier to implement intelligent restarts as
the Agent KS would only need to restart on changes to
the Agent View partition and could ignore changes to
the TileWorld Environment partition.

 Another consideration is the way the KS checks
whether a rule’s condition is met. The current
implementation checks every sub-condition before
evaluating whether the composite condition is true.
This can be improved on by evaluating the composite
condition as it checks each sub-condition. Consider the
following example:
IF
[
 condition1
 AND
 condition2
 AND
 condition3
]
THEN
[
 actions
]

 The KS can stop checking condition2 and condition3
if condition1 is false because the composite condition
will be false. This type of on-the-fly evaluating would
reduce the number of messages sent to the blackboard
as each condition-check requires the KS to send a
message to the blackboard. The use of on-the-fly
evaluation can reduce the communication traffic, thus
allowing other KSs to send and receive messages faster.

REFERENCES
Dalheimer, M.K. 2002. “Programming with Qt”. Germany:

O’Reilly.
Engelmore, R.; Morgan, T.; ed. 1988. “Blackboard Systems”.

Great Britain: Addison Wesley, pp. 2-15.
Ephrati, E.; Pollack, M. E.; Ur, S. 1995. "Deriving multi-agent

coordination through filtering strategies" Proceedings of
the Fourteenth International Joint Conference on Artificial
Intelligence, pp. 679-685.

Hopgood, A.A. 1994. "Rule-based control of a
telecommunications network using the blackboard model",
Artificial Intelligence in Engineering, 9, pp 29-38.

Hopgood, A.A.; Phillips, H.J.; Picton, P.D.; Braithwaite,
N.St.J. 1998. “Fuzzy logic in a blackboard system for
controlling plasma deposition processes” Artificial
Intelligence in Engineering, 12, pp. 253-260.

Jennings, N. R.; Wooldridge, M. J.; ed. 1998. “Agent
Technology: Foundations, Applications, and Markets”.
Germany: Springer, 1998. pp. 32-34.

Kinny, D.; Georgeff, M.; Hendler, J. 1992. "Experiments in
Optimal Sensing for Situated Agents", Proceedings of the
Second Pacific Rim International Conference on Artificial
Intelligence, PRICAI'92, pp. 1176-1182.

Lees, M.; Logan, B.; Theodoropoulos, G. 2003. "Adaptive
Optimistic Synchronisation For Muti-Agent Distributed
Simulation", Proceedings 17th European Simulation
Multiconference, pp. 77-82.

Nolle, L.; Wong, K. C. P.; Hopgood, A. A. 2001. “DARBS: A
Distributed Blackboard System”, Research and
Development in Intelligent Systems XVIII, Bramer, Coenen
and Preece (eds.), Springer, pp 161–170.

Pollack, M. E., and Ringuette, M. 1990. "Introducing the
Tileworld: Experimentally Evaluating Agent
Architectures", Proceedings of the Eighth National
Conference on Artificial Intelligence, AAAI Press, pp.
183-189.

Uhrmacher, A.M.; Schattenberg, B. 1998. "Agents in Discrete
Event Simulation", In: Andre Bargiela and Eugene
Kerckhoffs (eds.) Proceedings of the 10TH European
Simulation Symposium ``Simulation in Industry –
Simulation Technology: Science and Art'' (ESS'98), SCS
Publications, Ghent, pp. 129-136.

AUTHOR BIOGRAPHIES

KUM WAH CHOY is a PhD student at

S
f
b

U
s
w
B
o
C
s

the Nottingham Trent University. He
obtained his BEng (Hons) in Electronics &
Computing in 2001. He has spent a
placement year with Xerox Ltd as a

oftware/Test Engineer. His current research is in the
ield of distributed embedded systems, agent system,
lackboard systems, and artificial intelligence.

ADRIAN HOPGOOD is professor of

computing and head of the School of
Computing and Technology at the
Nottingham Trent University, UK. He is
also a visiting professor at the Open

niversity. His main research interests are in intelligent
ystems and their practical applications. He graduated
ith a BSc (Hons) in physics from the University of
ristol in 1981 and obtained a PhD from the University
f Oxford in 1984. He is a member of the British
omputer Society and a committee member for its

pecialist group on artificial intelligence.

 LARS NOLLE graduated from the
University of Applied Science and Arts in
Hanover in 1995 with a degree in
Computer Science and Electronics. After
receiving his PhD in Applied

Computational Intelligence from The Open University,
he worked as a System Engineer for EDS. He returned
to The Open University as a Research Fellow in 2000.
He joined The Nottingham Trent University as a Senior
Lecturer in Computing in February 2002. His research
interests include: applied computational intelligence,
distributed systems, expert systems, optimisation and
control of technical processes.

BRIAN O’NEILL graduated in 1968
from Trinity College, University of
Dublin and obtained his PhD from
Liverpool University in 1972. Before
taking up the lecturing post at

Nottingham Trent in 1977, he held research posts at
Glasgow and Southampton Universities. His research
activities originated from work on electronic
instrumentation for powder flow control. This work
required the development of fast real-time control and
processing, using parallel processing, for its
implementation. From this start he has widened his area
of research to the design of hardware packet routing
switches for inter-processor communication.

	KEYWORDS
	ABSTRACT
	INTRODUCTION
	TileWorld Test-bed
	DARBS
	Design criteria

	DESIGNING TILEWORLD ON DARBS
	IMPLEMENTING THE TILEWORLD
	Initiator KS
	Display TileWorld KS
	Agent KS

	TESTS AND RESULTS
	CONCLUSIONS AND FUTURE WORK
	REFERENCES
	AUTHOR BIOGRAPHIES

	c0: Proceedings 18th European Simulation Multiconference
Graham Horton (c) SCS Europe, 2004
ISBN 3-936150-35-4 (book) / ISBN 3-936150-36-2 (CD)

