

MULTI AGENT BASED SIMULATION FOR DATABASE SECURITY:
A FRAMEWORK

Marco Remondino

Department of Computer Science
University of Turin
10149 Turin, Italy

E-mail: remond@di.unito.it

ABSTRACT

Agent Based Simulation is successfully applied to
enterprise modeling and social sciences, and is
considered as a third way to represent models,
alternative to the verbal argumentation and the strictly
mathematical approach. The advantage over the other
two is its high portability on a computer, in order to be
executed, and its flexibility, which makes it the optimal
tool to represent complex systems. The purpose of this
paper is to discuss the possibility of using the Multi
Agent paradigm to simulate a database, in regard to the
security policy applied; databases are very complex
objects, and thus an Agent Based approach should allow
to exploit the interactions among users and the results
deriving from a particular security policy. Besides, the
necessity of granting a certain security level for data
access often compromises the efficiency of data
retrieval, and thus the optimal balance of the two is a
difficult task to accomplish. The creation of an Agent
Based simulation, which models a database security
environment, allows what-if analysis and case study, at
the variation of defined rules and parameters, without
trying to change the security policy in the real
environment. An operative framework with rules, to be
used for the creation of a model representing a generic
database, subject to a Discretionary Access Control
policy, is then proposed and studied, in order to
simulate the effect of security rules, through the
modification of some initial parameters.

INTRODUCTION

According to (Ostrom, 1988), simulation can be
considered a third way to represent social models; in
particular, it can be a powerful alternative to other two
symbol systems, the verbal argumentation and the
mathematical one. Simulation has a great advantage
over the other two, which is its high portability on a
computer, through a program or a particular tool. In
particular, Agent Based Simulation is optimal for
modeling complex systems, which couldn’t be ported to
a computer in any other way. This approach allows to
observe the emergence of complex behaviour, through
the creation and study of models, known as Artificial
Societies. Thanks to the ever increasing computational
power, it has been possible to use these concepts to
create software models, based on intelligent agents,
which aggregate behaviour is often difficult to predict

just studying the single parts, without considering the
interaction among them and with the environment.

In this paper we’ll propose an operative framework for
the creation of a Multi Agent Based Model of a generic
database, to simulate the security rules applied to it, and
to verify the various effects they have on efficiency,
time and data corruption, by modifying some core
parameters. A database is always a very complex object,
managed by many different rules, hence the idea of
simulating the security environment using a Multi
Agent Based Model. Besides, the necessity of granting a
certain security level for data access often compromises
the efficiency of data retrieval, and thus the optimal
balance of the two is a difficult task to accomplish. The
creation of an Agent Based Simulation, which models a
database security environment, can give answers to
what-if situations, at the variation of defined rules and
parameters, without trying to change the security policy
in the real environment.

MULTI AGENT SYSTEMS

A software agent can be described as a flexible system,
capable of dynamic, autonomous actions, in order to
meet its design objectives, that is situated in some
environment. The main features for a software agent
are: situatedness, that is ability to perform actions
according to a particular input received from outside,
and which can, in turn, change the environment itself;
autonomy in performing actions, without intervention of
humans; flexibility and adaptability. Some particular
agents can also be proactive, which means they are
goal-directed, and social, in the way they can interact
with other artificial agents, robots, and humans. Such an
intelligent agent can be referred to as a Belief-Desire-
Intention (BDI) one. There are many agent based
paradigms that can be applied to simulation:

• Symbolic: highly structured agents, described

through expressions of modal logic. This paradigm
is perfect when there is a single agent, which must
interact with the environment, but it's not versatile
when used to simulate big communities

• Sub-symbolic: simple agents, which can be
described through metaphors. Here the stress is on
interaction and cooperation and not on the single
entities. A multi-agent context of this kind allows
the emergency of complex behaviour and self-

organization. Intelligent behaviour is a product of
the interaction among agents and environment, and
of the interaction among many simple behaviours. It
can be really hard to describe the real world under
every aspect: on the single agents can thus be
defined some fundamental macro-actions, which
allow cooperation with the environment and with
other agents. The concept of Multi Agent System for
Simulation of Complex Systems is thus introduced:
the single agents have a very simple structure. Only
few details and actions are described for the entities:
the behaviour of the whole system is a consequence
of those of the single agents, but it's not necessarily
the sum of them. This can bring to unpredictable
results, when the simulated system is studied.

• Hybrid Architectures: at the lower levels, we find
reactive agents, like the ones described above, while
at the upper levels there are more complex and
structured agents. In this way, we can combine
reactive capabilities with planning.

DATABASE SECURITY

A Data Base Management System (DBMS) is defined
as a software package, designed to store and manage
databases, which are very large, integrated collections
of data. A DBMS allows to reach the following
objectives:

• Data independence and efficient access
• Reduced application development time
• Data integrity and security
• Uniform data administration
• Concurrent access, recovery from crashes

It is then obvious that one of the fundamental goals of a
DBMS is to reach a security level which could prevent
users with no specific grants to read data. It’s also very
important to reach a satisfying level for data integrity,
by preventing users without an authorization to modify
them. On the other side, it’s necessary to reach an high
efficiency for data retrieval, when the users have the
specific rights. A security policy applied to a database
must specify who is authorized to do what, and a
security mechanism allows to enforce a chosen security
policy. There are two main mechanisms at the DBMS
level: Discretionary Access Control (DAC) and
Mandatory Access Control (MAC).

The former is based on the concept of access rights or
privileges for objects (i.e. tables and views), and
mechanisms for giving and revoking users privileges; in
this model, the creator of a table or a view automatically
gets all privileges on it. The DMBS keeps track of who
subsequently gains and
loses privileges, and ensures that only requests from
users who have the necessary privileges, at
the time the request is issued, are allowed. The
fundamental command, in this paradigm, is GRANT:

GRANT privileges ON object TO users [WITH
GRANT OPTION]

In this way, the specified users get the privileges on the
object belonging to the DB; usually, the privileges are
the following ones:

• SELECT: Can read all columns (including those
added later via ALTER TABLE command).
• INSERT(col-name): Can insert tuples with non-null
or non-default values in this column. Similarly,
UPDATE.
• INSERT means same right with respect to all
columns.
• DELETE: Can delete tuples.
• REFERENCES (col-name): Can define foreign keys
(in other tables) that refer to this column.

If a user has a privilege with the GRANT OPTION, he
can pass it on to other users, in turn with or without
passing also the GRANT OPTION. Privileges can of
course be lost, through the REVOKE command; if a
user looses his privileges on an object, also the ones
who had them from him will lose them. A user can
receive the same privileges from different subjects and,
in this case, he would loose them only if all these users
loose those privileges on the object.

While in SQL-92, privileges are assigned to
authorization ids, which can denote a single user or a
group of users, in SQL:1999, and in many current
systems, privileges are assigned to roles, that can then
be granted to users and to other roles. This approach
reflects how real organizations work and illustrates how
standards often catch up with de facto standards
embodied in popular systems.

Differently from the model described above, the MAC
is based on system-wide policies that cannot be changed
by individual users. Each object in the database is
assigned a security class and each subject, user or user
program, is assigned a specific clearance for a security
class. The rules based on security classes and clearances
govern who can read or write which objects. The MAC
was born to overcome a typical flaw of the discretionary
system, known as Trojan Horse. In fact, user A could
create a table, on which he has all the privileges, and
then can grant to user B the INSERT privileges on it.
User B has privileges on, and thus can access, another
table, containing secret data, which are forbidden to
user A; then, user A modifies the code of an application
program used by user B to additionally write those
secret data to the newly created table, and so user A can
now access these secret data. Bell-LaPadula model
defines the main rules for the management of MAC. In
this model we find:

• Objects (e.g., tables, views, tuples)

• Subjects (e.g., users, user programs)
• Security classes: Top secret (TS), secret (S),
confidential (C), unclassified (U)
• An order for the classes: TS > S > C > U
• Each object and subject is assigned a class:

- Subject S can read object O only if class(S)
class(O) (Simple Security Property)
- Subject S can write object O only if class(S)
class(O) (*-Property)

The main idea is to ensure that information can never
flow from a higher to a lower security level. This,
obviously, avoids the Trojan Horse problem. The MAC
rules are usually applied in addition to any discretionary
controls that are in effect.

AN AGENT BASED MODEL FOR DB SECURITY

In the following description of the model, we will
represent a database organized according to the DAC,
which is simpler and easier to port to a programming
language. The use of an Object Oriented Language
(OO) is assumed; this kind of languages (C++, Java)
allows the creation of many independent objects,
without having to write specific code for each of them.
Besides, in an OO language, there are proprieties such
as inheritance and polymorphism, useful for this model.

We can think of a set of agents, which are the users of a
database, organized into a hierarchy; in general, a
community of agents which can access data according
to specific rules. When the single agent needs a datum,
he first looks for it and, if he can’t access it directly, he
asks other agents, who have the specific permission on
it. Hierarchy and proximity relations are defined among
the agents: there are n levels, organized into a pyramid.
Level 1 is the upper one, while Level n is the bottom.
Besides, on the same level, proximity relations can be
defined: a list could also exist, called Project
Colleagues, containing the IDs of the agents working on
the same project, so that if one of those creates a table
or an object, the other agents will automatically have
the access to them. Data inside the database are
modelled as very simple objects, which have: a unique
number, so that they can be called and retrieved; an
identifier, signalling if the datum is corrupt or fine; the
ID of their creator. Besides, there is a variable,
associated with the datum, which signals whom
accessed it for the last time; this is used to keep track of
whom damaged it, if the datum is not fine anymore.
Each user agent has his own unique ID, representing the
name of the subject; a number, identifying the level to
which he belongs and a list of the privileges on data;
each element of the list is an array whit the following
elements:

1) datum number (code)
2) read privilege (yes/no)
3) ID of the subject that granted the privilege at point 2
4) write privilege (yes/no)

5) ID of the subject that granted the privilege at point 4
6) delete privilege (yes/no)
7) ID of the subject that granted the privilege at point 6

Besides, each agent has another list, containing the
privileges he granted to others. Again, each element of
the list is an array, with these elements:

1) datum number (code)
2) IDs of the subjects to whom read permission has
been granted
3) IDs of the subjects to whom write permission has
been granted
4) IDs of the subjects to whom delete permission has
been granted

Obviously, an agent can’t grant a privilege on a datum
if he hasn’t got it himself. When a subject creates an
object, an array is automatically inserted in his list, with
the new datum number (code) and all the privileges on
it. Besides, Colleagues List described above could be
implemented and in this case, when an object is created,
all the subjects in this list will automatically have the
privileges on it. Each user has also an unreliability
index, which is increased each time he damages data,
after a write operation. When an agent must complete
an operation on a certain datum, he tries to access it
directly, by looking in its list if he has the needed
privileges on it. If he has the privileges, he access the
datum in a single time unit, t. This process is shown in
Figure 2: the user B, belonging to the third level of the
pyramidal hierarchy, wants to access datum_8, in the
central database. When he contacts the DBMS (1), the
datum attributes (2a) are compared to the list of the
privileges of the user (2b). If the user has the needed
privileges, he can immediately access the datum (3),
and the operation is finished in a time t.

Figure 1 – access attempt, with privileges

If ha hasn’t got the needed privileges, he asks the datum
who its creator is; this requires a time equal to that of
retrieving the datum directly, that is t; as a reply, the
creator ID is returned. According to the adopted
security policy, which in the simulation can be changed
by the user, the agent will ask for the grant directly to
the creator or, in the most inflexible case, he will have
to move up in the hierarchy, asking for the grant to an
user at the lever which is immediately upper, and so on,
till when he meets one that has the needed privileges. In
the worst case he will need to go all the way up to the
creator; obviously, each request will consume some
time, which can be considered equal to t/2. When the
user meets an agent with the required privileges, he asks
him to pass them to himself, consuming again a time t/2.

According to the inflexibility of the security policy,
selectable before the simulation starts, and according to
the unreliability index of the subject, the privileges will
or won’t be granted. If they are granted, the user will be
able to access the datum, in a time t; again, according to
the security policy, the privileges can be kept by the
user or can be immediately revoked after the operation
has been completed. If the privileges are not granted,
the user which owns them will access the datum on
behalf of the requesting agent in a time 2t. Of course, if
the same user has to access the datum again, he will
have to pass again through all these steps. In Figure 3,
we show an example of the described case: user B must
access datum_8 (1), but after verification (2a and 2b),
he realizes he can’t do that directly. The datum then
returns the ID of its creator, that is user A (3), who is on
the same level as B can thus be contacted directly (4) by
B.

Figure 2 – access attempt, without privileges

With some simple calculations, we see that in the most
inflexible situation, if the agent accessing the datum is
not its creator, the access time, for each operation, is:







 +∆

+
2

13 tt

where ∆ is the distance between the level of the user
requesting privileges and the creator of the object that is
being accessed. This time must be compared to time 3t,
needed for data access in the most flexible situation, in
which privileges are always granted. When an agent has
the write privilege on a datum, there is a probability
function which determines the possibility that this
operation compromises its integrity. During the write
operation, the user could modify the flag variable of the
datum from 1 to 0.

The next time this datum will be necessary, the problem
will emerge: this will increase the index of system
unreliability and will waste a time 2t, to restore the
datum. The user who damaged it, whose ID is stored in
the Last Access variable of the datum, will have its
personal unreliability index increased and, according to
the security policy adopted, will loose or not the
privileges on that datum. When a user looses his
privileges on a certain datum, also the agents who had
the privileges from him will loose them. It could be
possible that an agent had received the same privileges
from more than one user: in this case, he will keep the
privileges, unless all the granting agents loose them.
The need of the users to access data is controlled by
random functions, and so it the probability function for
data corruption.

This probability increases with the growth of the delta
between the level of the creator and that of the user
accessing the data. During the execution of the
simulation, two real-time graphs will be created: one
will represent the average time for data retrieval; the
other one will represent the general unreliability index
of the system, derived from the average of corrupted
data. By varying the security policy, through the initial
parameters, it will be possible to compare different
situations, after the same number of simulation steps
and with the same random seed. The security policy
affects the probability for an agent to grant the
privileges to another user, on certain data. A probability
equal to 0 means that no agent will receive the
privileges, so that only the owners can access the data
they created. In this case, the general unreliability index
will be very low, but the time for data retrieval will
reasonably be very high. A probability equal to 1 means
that the privileges are always granted, no matter who
asks for them: of course this will bring to an opposite
situation. The intermediate cases, i.e. a probability
between 0 and 1, are the most interesting and difficult to
predict, but also the most useful to model real
situations.

Also the creation of new data is managed in a random
way, and at the beginning of the simulation some steps

will be dedicated to this activity. We can think of a
number of data with an inverse proportion in respect of
the level or, in alternative, we can put in the simulation
the exact situation that we observe in the organization
we want to model.

The last case that needs to be considered is the request
of privileges on certain data by an user who is at an
upper level than their creator; there could be an
automatic grant or, if we want to be more realistic, the
request could be addressed directly to the creator,
without needing to move down in the hierarchy, but
using the rules defined in the security policy, that
consider the personal unreliability of the requesting
agent.

A BASIC IMPLEMENTATION

While the research is still in progress, we created a
working example of the “worst possible case”, to show
that the simulation is feasible and that Agent Based
Technology can be successfully applied to database
security simulation. In this first implementation, we had
to simplify several rules, when compared to the ones
described in the previous paragraphs; these will be
added in future implementations of the model.

The implementation is an agent based simulation
realized with Java Agent-Based Simulation library
(http://jaslibrary.sourceforge.net), by Alessandro
Cappellini (cappellini@econ.unito.it). This simulation
can represent an ordinary un-secure database, or a
normal data warehouse, (e.g. a “soho” fileserver and its
directories); in fact we haven’t got any restriction, and
everybody can access everyone’s data. This is not the
only simplification introduced in this first
implementation: there is just a single level of agents (no
hierarchy); just two basic operations are defined on data
(read and write); no new data are created; damage data
are not repaired; no access policy is defined.

The results are quite straightforward, since even if the
probability to corrupt data is very low, sooner or later
the database will collapse (100% failures, as shown in
Figure 4).

Though, this simple model is just the basis to implement
all the other rules described above. At each "tick" the
agents access a random datum inside the db; they can
access the datum to read it (probability 70%) or to
modify it (probability 30%). They check the owner of
the datum and its integrity; if the datum is corrupt, the
access fails. When they access the datum to modify it,
there's a probability (10%) that they can corrupt it.

 Figure 3 – The Basic Case being Simulated

CONCLUSION AND FUTURE DIRECTIONS

In this paper, we have described a complete framework
with rules, for the creation of a software Agent Based
Model, to be used to simulate the behaviour of a
DBMS, with regards to database security under a DAC.
Three are the fundamental features, considered for the
simulation: data integrity, time for retrieval and
flexibility of the security policy used. While the first
two are the dependant variables, the last one is the
independent variable, which is the one that can be set by
the user, through some parameters, before the
simulation starts. The main purpose of this work is to
demonstrate the feasibility of an agent based software
simulation of database security, which would allow a
what-if analysis for designers and users. A simplified
working model is then shown, in which many rules
described in the theoretical framework are not yet
implemented. This is already interesting, since it shows
that an agent based model of a database is indeed
feasible. Since the research is still in progress, we
intend to further develop the simulation tool, by adding
all the features described in the theoretical framework,
thus converting it into an operative model of a real
database.

REFERENCES

Bertino E. et al. 2001. “Intelligent Database Systems”,

Addison Wesley Professional
Huhns, M. and Singh, M. 1997. “Readings in Agents”,

Morgan Kaufmann
Gilbert, N. and Terna, P. 2000. “How to build and use agent-

based models in social science”, Mind & Society 1, 57-72

Gilbert, N. and Troiztsch K.G. 1999. “Simulation for the
Social Scientist”, Open University Press

Khalil E.L 1996. "Social Theory and Naturalism" in Khalil
E.L. and Boulding K.E. [Eds.] 1996. "Evolution, Order
and Complexity". Routledge Publ., London

Ostrom T. M. 1988. "Computer simulation: The third symbol
system", Journal of Experimental Social Psychology,
24:381-392.

Ramakrishnan R. and Gehrke J. 2000. “Database Management
Systems” (2nd Edition), McGraw-Hill

AUTHOR BIOGRAPHY

MARCO REMONDINO was born
in Asti, Italy, and studied Economics
at the University of Turin, where he
obtained his Master Degree in
March, 2001 with 110/110 cum
Laude et Menzione and a Thesis in
Economical Dynamics. In the same
year, he started attending a PhD at

the Computer Science Department at the University of
Turin, which will last till the end of 2004. His main
research interests are Computer Simulation applied to
Social Sciences, Enterprise Modeling, Agent Based
Simulation and Multi Agent Systems. He has been part
of the European team which defined a Unified
Language for Enterprise Modeling (UEML). He is also
participating to a University project for creating a
cluster of computers, to be used for Social Simulation.

ALESSANDRO CAPPELLINI, author of the basic
implementation in JAS, is a PhD Student in Simulation,
University of Turin, Italy.

	c0: Proceedings 18th European Simulation Multiconference
Graham Horton (c) SCS Europe, 2004
ISBN 3-936150-35-4 (book) / ISBN 3-936150-36-2 (CD)

