

BOOLEAN SYMMETRY FUNCTION SYNTHESIS BY
MEANS OF ARBITRARY EVOLUTIONARY ALGORITHMS -

COMPARATIVE STUDY

Ivan Zelinka, Zuzana Oplakova Lars Nolle
Institute of Control Processing and

Information Technologies
Faculty of Technology

Tomas Bata University in Zlin
Mostni 5139 Zlin, Czech Republic

{zelinka,oplatkova}@ft.utb.cz

School of Computing and Mathematics
The Nottingham Trent University

Burton Street
Nottingham, NG1 4BU, UK

Lars.nolle@ntu.ac.uk

KEYWORDS
symbolic regression, genetic programming, grammar
evolution, analytic programming, optimisation, SOMA

ABSTRACT

This contribution introduces analytical programming, a
novel method that allows solving various problems
from the symbolic regression domain. Symbolic
regression was firstly proposed by J. R. Koza in his
genetic programming and by C. Ryan for grammatical
evolution. This contribution explains the main
principles of analytic programming, and demonstrates
its ability to synthesise suitable solutions, called
programs. It is then compared with genetic
programming and grammatical evolution. This
comparative study is concerned with three Boolean k-
symmetry problems from Koza’s genetic programming
domain, which are solved by means of analytical
programming. Here, two evolutionary algorithms are
used with analytical programming: differential
evolution and self-organizing migrating algorithm.

INTRODUCTION

The term symbolic regression (SR) represents a process
in which measured data is fitted by a suitable
mathematical formula like x2 + C, sin(x)+1/ex, etc.
Amongst mathematicians, this process is quite well
known and can be used when data of an unknown
process can be obtained. For long time, SR was only the
domain of humans but for the few last decades it has
also become the domain of computers. Today there are
two methods, which can be used for SR by means of
computers. The first one is called genetic programming
(GP) (Koza 1998), (Koza et al 1999) and the second
one is grammatical evolution (O'Neill and Ryan 2002),
(Ryan et al.1998).

The idea of how to solve various problems using SR by
the means of evolutionary algorithms (EA) was
introduced by from John Koza who used genetic
algorithms (GA) for GP. Genetic programming is
basically a symbolic regression, which is done by using
evolutionary algorithms instead of a human being. The
ability to solve really hard problems was proved many

times, and hence, GP today performs so well that it can
be applied, e.g. to synthesise highly sophisticated
electronic circuits (Koza et al. 2003).

In the last decade of the 20th century, a novel method
for SR was developed by C.Ryan, which is called
grammatical evolution (GE). Grammatical evolution can
be regarded as an unfolding of GP, because of some
common principles, which are the same for both
algorithms. One important characteristics of GE is, for
example, the fact that GE can be implemented in any
arbitrary computer language compared with GP, which
is usually done in LISP. In contrast to other
evolutionary algorithms, GE was used only with a few
search strategies, with a binary representation of the
populations (O'Sullivan and Ryan, 2002). Another
interesting investigation using symbolic regression was
carried out by (Johnson) working on Artificial Immune
Systems.

In this paper, a novel method is presented which was
developed, called analytical programming (AP)
(Zelinka 2002 a), (Zelinka 2002 b), (Zelinka and
Oplatkova, 2003) and (Zelinka and Oplatkova, 2004).
AP is also a tool for symbolic regression, based on
different principles compared to GP and GE. The
important principles of AP, together with tests and a
comparison with GP, are documented in this
contribution.

ANALYTIC PROGRAMMING

Term analytic programming was coined by the authors
of this article as a matter of simplicity: Because it is
possible to use almost any evolutionary algorithm for
AP, each EA used for the new approach would add its
name to the emerging algorithm, e.g. SOMA
programming, DE programming, SA programming etc.
This clearly would be confusing and complicated.
Analytic programming indicates the use of an EA for
analytic solutions synthesis (i.e. symbolic regression).
That is the main reason for choosing the term ‘analytic
programming’.

Analytic programming was inspired by the methods
of variations in Hilbert spaces and by GP. The

principles of AP are somewhere between these two
philosophies: From GP stems the idea of the
evolutionary creation of symbolic solutions, whereas
the ideas of functional spaces and the building of
resulting function by means of search process (usually
done by numerical methods like the Ritz or Galerkin
method) is adopted from Hilbert spaces. AP is based, as
well as GP, on a set of functions, operators and so-
called terminals, which are usually constants or
independent variables, for example:

• functions: Sin, Tan, Tanh, And, Or
• operators: +, -, *, /, dt,…
• terminals: 2.73, 3.14, t,…

All these ‘mathematical’ objects create a set from which
AP tries to synthesise an appropriate solution. The main
principle of AP is based on discrete set handling,
proposed in (Zelinka 2004) (see Figure 1 and Figure 2).
Discrete set handling itself can be seen as a universal
interface between EA and the problem to be solved
symbolically. That is why AP can be carried out using
almost any evolutionary algorithm. Analytical
programming, together with a few basic examples, is for
example discussed in more detail in (Zelinka and
Oplatkova, 2003).

x2 {-1.2, 2.69, 110, 256.3569, …..}

{1, 2, 3, 4, …..}

Discrete (original) parameter of individual…

…and its integer index
– alternate parameter used
in evolution process

Fcost(x1,x2,….xn)

no

yes

Figure 1: Discrete set handling.

{1, 6, 7, 8, 9, 9}

GFSall = {+, -, /, ^, d/dt, Sin, Cos, Tan, t, C1, Mod, ...}

Sin(Tan(t))+Cos(t)

Individual in population =

Resulting function by AP =

Mapping by AP

Figure 2: Main principle of AP.

Briefly said, in AP, individual consist of non-numerical
expressions (operators, functions,…) as described
above, which are in the evolutionary process
represented by their integer indexes (Figure 1 and 2).
This index then serves like a pointer into the set of
expressions and AP uses it to synthesise the resulting

function-program for cost function evaluation (Zelinka
2004). Analytic programming exists so far in three
versions. All three versions use for program synthesis
the same sets of functions, terminals, etc., as Koza uses
in GP (Koza 1998), (Koza et al 1999). The second
version (APmeta, lets call first version APbasic) is
modified in the sense of constant estimation. For
example, Koza uses for the so-called sextic problem
(Koza 1998) randomly generated constants, whereas AP
here use only one, called K which is inserted into a
formula at various places by the evolutionary process.
When a program is synthesised, then all K’s are indexed
so that K1, K2, …, Kn, are in the formula obtained, and
then all Kn are estimated using a second evolutionary
algorithm. Because EA (slave) “works under” EA
(master, i.e. EAmaster ► program ► K indexing ►
EAslave ► estimation of Kn) then this version is called
AP with metaevolution - APmeta. Because this version is
quite time consuming, APmeta was modified to the third
version, which differ from the second one in the
estimation of K. This is done by using a suitable method
for non-linear fitting (APnf). This method has shown the
most promising performance when unknown constants
are present, results of some comparative simulations can
be found in (Zelinka and Oplatkova, 2003). For the
simulations described here, APbasic was used.

PROBLEM DESIGN

Problem selection

The class of booleans k-symmetry problems was chosen
for this comparative study, based on case studies
reported in (Zelinka and Oplatkova 2003) and (Zelinka
and Oplatkova 2004), namely 3-symmetry, 4-symmetry
and 5-symmetry problems. In general, boolean
symmetry problems mean that if input values to a
system are symmetric, then the output is True. If the
input is not symmetrically then the output is False. The
number of all possible inputs (combinations) is 8 (3-
symmetry), 16 (4-symmetry) and 32 (5-symmetry). An
example of the truth table for 3-symmetry problems is
given in Table 1. For truth tables for other problems
solved by AP see
www.ft.utb.cz/people/zelinka/ap.

Table 1: Truth table for Boolean 3-symmetry
problem according to (Koza 1998)

Input 1 Input 2 Input 3 Output
True True True True
True True False False
True False True True
False True True False
True False False False
False True False True
False False True False
False False False True

All simulations were based on a set of logic functions
And, Nand, Or, Nor, and the needed number of inputs
A, B, C, ...

The Fitness Function

The fitness (cost function) has been calculated using the
Hamming distance between truth table output and
synthesised candidate program (1). The theoretical
maximum value (the worst solution of all) of this cost
function is 8 for a 3-symmetry problem, 16 for a 4-
symmetry problem, and 32 in case of 5–symmetry
problems. The minimal value (the best solution) is 0 for
all k-symmetry problems. The aim of all the simulations
was to find the best solution, i.e. a solution that returns
the cost value 0. For numerical calculations, False and
True were replaced by 0 and 1.

program dsynthesise ofoutput i - P

le truth tabofoutput i - TT
th

i

th
i

2

1
cos ∑

=

−=
n

i
iit PTTf

 (1)

Optimisation Algorithm Used

For the experiments described here, stochastic
optimisation algorithms, such as Differential Evolution
(DE) (Price 1999) and SelfOrganizing Migrating
Algorithm (SOMA) (Zelinka 2004), had been used.
Alternative algorithms, like Genetic Algorithms (GA)
and Simulated Annealing (SA), are now in process, and
results are hoped to be presented soon. For an exact
description of the algorithms use see (Price 1999) for
DE and (Zelinka 2004) for SOMA.

EXPERIMENTAL RESULTS

Both algorithms (SOMA, DE) have been applied 50
times in order to find the optimum of all boolean k-
symmetry problems. The primary aim of this
comparative study is not to show which algorithm is
better and worst, but to show that AP can be really used
for different problems of symbolic regression by
different EAs (based also on previous comparative
studies and case studies (Zelinka 2002 a), (Zelinka 2002
b), (Zelinka and Oplatkova, 2003) and (Zelinka and
Oplatkova, 2004)).
The control parameter settings have been found
empirically and are given in Table 2 (SOMA) and Table
3 (DE). The main criterion for this setting was to keep
the same setting of parameters as much as possible and
of course the same number of cost function evaluations
as well as population size (parameter PopSize for
SOMA, NP for DE).
Outputs of all simulations are depicted in Figures and
numerically reported in Tables 4 - 9. Figures 3, 4, 6, 7,
9 and 10 show results of all 50 simulations for each k-
symmetry problem. Figures 5, 8 and 11 show a mutual
comparison of algorithm performance in the point of

view of the number of cost function evaluations. Length
of synthesised programs is in tables marked as ‘leaf
count’ (LC) – leafs are the elements of a program, i.e.
And, Nor, Or, Input_A, etc.
Examples of typical solutions synthesised by both
algorithms is represented by formulas (2) for
a 3-symmetry problem, (3) for a 4-symmetry problem,
and (4) for a 5-symmetry problem.

(2)

(3)

(4)

Table 2: SOMA setting for Boolean k-symmetry
problems, k=3,4,5

 3 4 5
PathLength 3 3 3
Step 0.11 0.11 0.3
PRT 0.1 0.1 0.1
PopSize 300 300 300
Migrations 30 30 85
MinDiv -0.1 -0.1 -0.1
Individual Length 30 30 30

Table 3: DE setting for Boolean k-symmetry
problems, k=3,4,5

 3 4 5
NP 300 300 300
F 0.8 0.8 0.8
CR 0.2 0.2 0.2
Generations 800 800 2000
Individual Length 30 30 30

Table 4: Boolean 3-symmetry problem by SOMA

 Cost Function
Evaluations

Leaf Count

Minimum 202 31
Average 4769 81
Maximum 14991 165

Table 5: Boolean 3-symmetry problem by DE

 Cost Function
Evaluations

Leaf Count

Minimum 79 28
Average 2439 83
Maximum 8130 142

Figure 3: 3-symmetry by SOMA for 50 successful hits

out of 50.

Figure 4: 3-symmetry by DE for 50 successful hits

out of 50.

Figure 5: Algorithm performance of 3-symmetry by
SOMA and DE.

Table 6: Boolean 4-symmetry problem by SOMA

 Cost Function
Evaluations

Leaf Count

Minimum 23427 81
Average 84872 130
Maximum 185732 230

Table 7: Boolean 4-symmetry problem by DE

 Cost Function
Evaluations

Leaf Count

Minimum 13696 50
Average 47790 133
Maximum 114709 206

Figure 6: 4-symmetry by SOMA for 49 successful hits

out of 50.

Figure 7: 4-symmetry by DE for 50 successful hits out

of 50.

Figure 8: Algorithm performance of 4-symmetry by
SOMA and DE

Table 8: Boolean 5-symmetry problem by SOMA
 Cost Function

Evaluations
Leaf Count

Minimum 40029 48
Average 119903 170
Maximum 225972 284

Table 9: Boolean 5-symmetry problem by DE

 Cost Function
Evaluations

Leaf Count

Minimum 58273 70
Average 172084 176
Maximum 363432 369

Figure 9: 5-symmetry by SOMA for 50 successful hits

out of 50.

Figure 10: 5-symmetry by DE for 50 successful hits out

of 50.

Figure 11: Algorithm performance in 5-symmetry by

SOMA and DE

CONCLUSIONS

The method of analytic programming described here is
relatively simple, easy to implement and easy to use.
Based on its principles and its universality (it was tested
with 4 evolutionary algorithms – SA, GA, SOMA and
DE) it can be stated that AP is a metha algorithm rather
than an algorithm itself.
The main aim of this paper was to show how various
boolean k-symmetry problems were solved in the past
(using GP), and how they can be solved by means of
evolutionary algorithms applied in AP. Analytic
programming was used here in three basic comparative
simulations. Each comparative simulation was 50 times
repeated and all 450 results (50 simulations for each
algorithm and for each problem) were used to create
graphs and tables for AP performance evaluation.

For the comparative study two algorithms were
used - DE (Price 1999) and SOMA (Zelinka 2004).
Using a wide variety of optimisation algorithm, i.e. with
different structure and their different ability to locate
global extreme, were chosen to prove that AP can be
regarded as an equivalent to GP, and that it can be
implemented using arbitrary evolutionary algorithms.
As a conclusion the following statements are presented:

1. Reduction of cost function evaluation.
During the simulations described here, a
significant low number of cost function
evaluations, needed to reach the optimal
solution, were observed. While for GP usually
600000 cost function evaluations were needed,
as reported in (Koza 1998) for 5-symmetry,
AP usually needed 40029 – 363432
evaluations (see Table 8 and 9).

2. Reduction of population size. In all
simulations only 300 individuals were used.
When comparing the population size (4000 and
16000), used in GP as mentioned in (Koza
1998), then AP uses population with 133 - 533
times less individuals. This is probably another
reason for the low number of cost function
evaluations (see previous point).

3. Reached results. Based on results reported in
Tables 2 – 9 and Figures 3 - 11 it can be stated
that all simulations give satisfactory results and
thus AP is capable of solving this class of
problems.

4. Mutual comparison. When comparing both
algorithms, then it is visible that both
algorithms give good results. Parameter setting
for both algorithms were based on heuristically
approach and thus there is a possibility that
better settings can be found there.

5. Universality. AP was used to solve differential
equations (Zelinka 2002 b), trigonometrically
data fitting (Zelinka 2002 a), four polynomial
problems from (Koza 1998) (Sextic, Quintic,

Sinus Three, Sinus Four) by four EAs in
(Zelinka and Oplatkova, 2003) and Boolean
even-k-parity functions synthesis (Zelinka and
Oplatkova, 2004). Together with the results for
Boolean k-symmetry functions reported here it
can be stated that AP is a universal method for
symbolic regression by means of arbitrary
EAs.

Future research is one of the key activities in the frame
of AP. According to all results obtained during time it is
planned that the main activities would be focused
expanding of this comparative study for genetic
algorithms and simulated annealing.

ACKNOWLEDGEMENT

This work was supported by grant No. MSM 26500014
of the Ministry of Education of the Czech Republic and
by grants of the Grant Agency of the Czech Republic
GACR 102/03/0070 and GACR 102/02/0204.

REFERENCES

Johnson Colin G., Artificial immune systems programming
for symbolic regression, In C. Ryan, T. Soule, M. Keijzer,
E. Tsang, R. Poli, and E. Costa, editors, Genetic
Programming: 6th European Conference, LNCS 2610, p.
345-353

Koza J. R., M. A. Keane, M. J. Streeter, 2003, Evolving

Inventions, Scientific American, February 2003,
p. 40-47, ISSN 0036-8733

Koza J.R. 1998, Genetic Programming II, MIT Press,

ISBN 0-262-11189-6, 1998

Koza J.R.,Bennet F.H., Andre D., Keane M., 1999, Genetic

Programming III, Morgan Kaufnamm pub.,
ISBN 1-55860-543-6, 1999

O'Neill M. and Ryan C. 2002, Grammatical Evolution.

Evolutionary Automatic Programming in an Arbitrary
Language. Kluwer Academic Publishers,
ISBN 1402074441

O'Sullivan John, Conor Ryan, 2002, An Investigation into the

Use of Different Search Strategies with Grammatical
Evolution Proceedings of the 5th European Conference
on Genetic Programming, p.268 - 277, 2002, Springer-
Verlag London, UK, ISBN:3-540-43378-3

Price K. 1999, An Introduction to Differential Evolution, in

New Ideas in Optimization, D. Corne, M. Dorigo and F.
Glover, Eds., s. 79–108, McGraw-Hill, London, UK,
1999. ISBN 007-709506-5

Ryan C., Collins J.J., O'Neill 1998, M. Grammatical

Evolution: Evolving Programs for an Arbitrary Language.
Lecture Notes in Computer Science 1391. First European
Workshop on Genetic Programming 1998

Zelinka I., 2002 a, Analytic programming by Means of Soma

Algorithm. Mendel ’02, In: Proc. 8th International

Conference on Soft Computing Mendel’02, Brno, Czech
Republic, 2002, 93-101., ISBN 80-214-2135-5

Zelinka I., 2002 b, Analytic programming by Means of Soma

Algorithm. ICICIS’02, First International Conference on
Intelligent Computing and Information Systems, Egypt,
Cairo, 2002, ISBN 977-237-172-3

Zelinka I., Oplatkova Z., 2003, Analytic programming –

Comparative Study. CIRAS’03, The second International
Conference on Computational Intelligence, Robotics, and
Autonomous Systems, Singapore, 2003, ISSN 0219-6131

Zelinka I., Oplatkova Z., 2004, Boolean Parity Function

Synthesis by Means of Arbitrary Evolutionary Algorithms
- Comparative Study", In: 8th World Multiconference on
Systemics, Cybernetics and Informatics (SCI 2004),
Orlando, USA, in July 18-21, 2004, in print

Zelinka Ivan, 2004, SOMA – Self Organizing Migrating

Algorithm“,Chapter 7, 33 p. in: B.V. Babu, G. Onwubolu
(eds), New Optimization Techniques in Engineering,
Springer-Verlag, ISBN 3-540-20167X

AUTHOR BIOGRAPHIES

IVAN ZELINKA was born in Czech
Republic, and went to the Technical
University of Brno, where he studied
technical cybernetics and obtained his
degree in 1995. He obtained Ph.D. degree
in technical cybernetics in 2001 at Tomas
Bata University in Zlin. Now he is senior

lecturer (artificial intelligence, theory of information) and
head of department. His e-mail address is:
zelinka@ft.utb.cz and his Web-page can be found at
http://www.ft.utb.cz/people/zelinka.

ZUZANA OPLATKOVA was born in
Czech Republic, and went to the Tomas
Bata University in Zlin, where she studied
technical cybernetics and obtained her
degree in 2003. She is now Ph.D. student.
Her e-mail address is :
oplatkova@ft.utb.cz and her Web-page

can be found at www.zuzkaoplatkova.webz.cz

LARS NOLLE graduated from the
University of Applied Science and Arts

O
E
F
U
F
c
s
p

in Hanover in 1995 with a degree in
Computer Science and Electronics.
After receiving his PhD in Applied
Computational Intelligence from The

pen University, he worked as a System Engineer for
DS. He returned to The Open University as a Research
ellow in 2000. He joined The Nottingham Trent
niversity as a Senior Lecturer in Computing in
ebruary 2002. His research interests include: applied
omputational intelligence, distributed systems, expert
ystems, optimisation and control of technical
rocesses.

http://www.zuzkaoplatkova.webz.cz/

	c0: Proceedings 18th European Simulation Multiconference
Graham Horton (c) SCS Europe, 2004
ISBN 3-936150-35-4 (book) / ISBN 3-936150-36-2 (CD)

