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ABSTRACT 

   This paper examines and discusses the effects of 
different step width selection schemes on the 
effectiveness of stochastic local search strategies. It is 
shown that the success of these search strategies 
depends, among other things, heavily on the chosen 
neighbourhood definition for a particular application. 
Simulations have shown that the use of randomly 
selected steps with a defined upper limit increases the 
probability of finding the global optimum, in contrast 
of using a constant step width. It has also been 
demonstrated that the efficiency of stochastic local 
search strategies can be improved by reducing the 
maximum step width over time. 
 
INTRODUCTION 

   Stochastic local search algorithms, like Hill-
Climbing (Hopgood 2001) or Simulated Annealing 
(Metropolis  et. al. 1953) (Kirkpatrick et. al. 1983), are 
a class of search strategies that start from a random 
point in the search space and that test new potential 
candidate solutions that are randomly selected from the 
‘neighbourhood’  of the current solution. If the 
candidate solution has a higher fitness than the current 
solution it replaces the current solution. 
 
   For continuous parameter optimisation, it is 
practically impossible to choose direct neighbours, 
because of the vast number of points in the search 
space. In this case, it is necessary to choose new 
candidate solutions from a wider neighbourhood, i.e. 
from some distance of the current solution, in order to 
travel in an acceptable time through the search space. 
 
  In principle, there are two ways to traverse through 
the search space, firstly using equidistant steps and 
secondly, using steps of random length.  
 
Equidistant vs. Random Length Steps 

   The distance between the current solution P1 and a 
candidate solution P2 could either be a fixed step width 
sconst or it could have an upper limit smax. In the first 
case, the neighborhood would be defined as the surface 
of a hypersphere around the current solution P1  

(Figure 1a), in the second case the neighborhood would 
be defined as the volume of the hypersphere and hence 
a candidate solution would be drawn randomly from 
within these hypersphere (Figure 1b).   
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Figure 1: Possible Neighbourhood Definitions 

Vector  vs. Component Selection 

   In case of a constant step width, the displacement 
vector between P1 and P2 needs to be calculated for 
each step. One problem associated with this calculation 
is, that for dimensions of the input space with unequal 
ranges, the neighbourhood becomes distorted  
(Figure 2a). As a consequence to that, the input space 
will be sampled with a higher resolution in one 
dimension compared with the other one. To overcome 
this problem, one could determine the displacement for 
each input dimension separately using a scaling factor 
to compensate for the different resolution (Figure 2b). 
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Figure 2: Effect of Distortion Due To Unequal 
Resolutions of Input Space Dimensions and the 

Compensation by Component Selection 

 
Aim of Research 

   The aim of this work was not to compare different 
search algorithms in order to find the most efficient 
one to solve a set of test functions. Instead, the aim was 
to examine the effects of different step width selection 
schemes on the effectiveness of stochastic local search 
strategies. Therefore, the basic hill-climbing algorithm 
was used to find the minimum of two different test 



functions, a high dimensional one and a multi-modal 
one.  
 
TEST FUNCTIONS USED 

   For the simulations, two well established test 
functions were used, DeJong’s first test  
function (DeJong 1975) and Schwefel’s function  
(Schwefel 1981). Figure 3 shows a graphical 
representation of a two dimensional version of 
DeJong’s 1st function, whereas Figure 4 depicts a two 
dimensional version of Schwefel’s function.  
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Figure 3 – DeJong’s 1st Function (2D) 

   DeJong’s 1st function, also known as sphere model, 
has a minimum cost value of zero within the defined 
range [-5,+5] for each input dimension. For the 
experiments a 10 dimensional version was used. 
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Figure 4 –Schwefel’s Function (2D) 

   Schwefel’s function has also a minimum cost value 
of zero within the defined range [-500,+500] for each 
input dimension. In this research a two dimensional 
version was used. 
 
EQUIDISTANT VS. RANDOM LENGTH STEPS 

In this set of experiments, the effect of using a random 
step width instead of a fixed step length has been 
examined. For both test functions, the step width, i.e. 
either constant or random, was varied and 1000 
simulations per step width were carried out.  
 

DeJong’s 1st Function 

   For the 10 dimensional version of DeJong’s 1st 
function, 2000 iterations were allowed per run. Figure 
5 shows the results of the simulations. The dots 
represent the average costs achieved during the 
experiments and the error bars represent the standard 
deviation achieved. 
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Figure 5: Average Costs vs. Step Width for DeJong’s 
1st Test Function 

   It can be seen that the average costs achieved using 
the smax selection scheme where significant lower 
compared to the sconst selection scheme. On the other 
hand, Figure 6 shows that it took the smax selection 
scheme longer to converge. 
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Figure 6: Average Time in Iterations for Finding the 
Best Solution During a Search for DeJong’s Function 

   However, this is not a disadvantage, this only 
indicates that the sconst selection scheme simply failed to 
further improve the solutions found whereas the smax 

selection scheme achieved a constant improvement 
even towards the end of the search runs. 
 
Schwefel’s Function 

   For the two dimensional version of Schwefel’s 
function, 2000 iterations were allowed per run. Figure 
7 shows the results of the simulations. The dots 
represent the average costs achieved during the 
experiments and the error bars represent the standard 
deviation achieved. 
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Figure 7: Average Costs vs. Step Width for Schwfel’s 
Test Function 

   It can be seen from Figure 7 that small values for smax 

result in relatively high costs, similar to the costs 
achieved using the sconst selection scheme. But these 
costs dropped dramatically when smax reached 180 in 
this experiments, whereas the average costs achieved 
using sconst increased with increasing values for sconst.  
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Figure 8: Average Time in Iterations for Finding the 
Best Solution During a Search for Schwefel’s Function 

   Figure 8 shows the average time (in iterations) that 
was needed to reach the optimum for both selection 
schemes.  Again, it can be seen that the smax scheme 
found its best solutions after approximately 1000 
iterations, in contrast to sconst, which converged 
significantly faster. 
 
Discussion 

   Figure 9-Figure 13 show steps in typical search runs 
using the different selection schemes to minimise 
Schwefel’s function. Each dot represents an accepted 
solution, i.e. the rejected solutions are not shown. The 
starting point for all experiments is on top of the local 
hill at about –200. Figure 9 and Figure 10 show the 
results for using a constant step width, Figure 11,  
Figure 12 and Figure 13 show the results for 
experiments using a maximum random step width. 
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Figure 9: Constant Step Width sc = 20 
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Figure 10: Constant Step Width sc = 200 

   As it can be seen from Figure 9, if sconst is chosen to 
be too small, the algorithm gets trapped in an adjacent 
local optimum. If sconst is large enough, it is capable of 
jumping over local optima (Figure 10), but because the 
steps are of constant length, the number of points, 
which can be reached from a certain position, is 
limited. For example, in Figure 10, it is not possible to 
jump from the last point (near +400) to a point with 
lower associated costs, because all these points are 
within the constant step width. 
 
   When using a random step length smax, the effect for 
choosing small values is similar to that for using a 
constant step width (Figure 11), but with increasing 
smax, the ability to reach points with a better cost value 
increases. In Figure 12 for example, the algorithm was 
able to jump out of the valley on the right hand side of 
the start point into the valley of the left hand side, and 
it was also able to decent into the valley on the left 
hand side. However, because the maximum step width 
was not large enough to jump into the right hand side 
of the search space, which contains the global 
minimum, the algorithm only exploited the local 
optimum. In  
Figure 13, the maximum step length is large enough to 
jump into the right hand side of the search space, but 
this time, because of the large steps that are possible, it 
jumps back into a local optimum.  
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Figure 11: Maximum Step Width smax = 20 
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Figure 12: Maximum Step Width smax = 200 
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Figure 13: Maximum Step Width smax = 1000 

   Conclusion 

   The results given above show, that, if the step width 
is chosen to be too small, both selection schemes will 
eventually get trapped in the nearest local optimum, 
whereas using a larger step width increases the ability 
to overcome local optima. However, for a constant step 
width it is more difficult to reach the global optimum, 
because of the limited number of possible search points 
that can be reached from a certain position.  
 

  This is overcome by using a maximum random step 
length, but this needs to be carefully selected: if it is 
chosen to be too large, the algorithm will lose its 
ability to exploit a potential region, which can also be 
seen in Figure 5, which documents the results for 
DeJong’s 1st function, which only has one optimum.  
 
   But if the step width is chosen to be too small, it is 
not guaranteed that the algorithm can jump over local 
optima in order to reach the region that contains the 
global optimum. Therefore, the careful selection of 
appropriate values for smax seems to be crucial for the 
success of the algorithm for a particular application. 
 
REDUCING SMAX OVER TIME 

   The findings above indicated that a large value for 
smax supports exploration of the search space, whereas 
small numbers for smax increase the exploitation 
capabilities of the search algorithm. It would be 
advantageous if an algorithm would explore the search 
space at the beginning of a search and exploit the most 
promising region in the later stages of the search.  
 
   Therefore, in the next set of simulations, three 
different scaling functions have been used to 
subsequently reduce smax during the run, starting with a 
relatively large start value. Equation (1) achieves a 
linear reduction, equations (2) and (3) reduce smax 
exponentially. Figure 14 shows a graphical 
representation of the three functions. 
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Where: 
 
i: iteration 
imax: maximum number of iterations  
s0: initial maximum step width 
smax(i): maximum step width at iteration I 
α: constant, determines the degree of 

non-linearity 
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Figure 14: Scaling Functions Used 

   Each scaling function was used 1000 times and the 
results are compared with the best results obtained 
using a non-scaled maximum step width (see Figure 7).  
 
Compar ison of Results 

   Table 1 shows the result of the experiments for the 
non-scaling algorithm and the three algorithms using 
scaling functions, in Table 2 the performance of the 
algorithms are compared with the standard non-scaling 
one.  

Table 1 – Results 

 
 

Constant L inear  Exp1 Exp2 

Average 
costs 

132.90 124.29 121.99 125.22 

Standard 
deviation 

83.38 85.17 87.98 86.13 

Average 
time 

1105.9 1984.3 1800.3 1981.9 

Standard 
deviation 

578.0 69.9 211.8 117.1 

 

Table 2 – Improvements by Algorithms 

 
 

Linear  Exp1 Exp2 

Average 
costs 

6.48% 8.21% 5.78% 

Standard 
deviation 

-2.15% -5.52% -3.30% 

Average 
time 

-79.43% -62.79% -79.21% 

Standard 
deviation 

87.91% 63.36% 79.74% 

 
   It can be seen that by using the scaling function 
EXP1 the average costs could be further reduced by up 
to 8.21%. The standard deviation of the average costs, 
on the other hand, increased by 5.52%. This, and the 
fact that the average time until the algorithm found the 
best solution increased by 62.79%, is probably an 

indication that the algorithm converges slower because 
of the – now reduced – speed with that the algorithm is 
traversing over the fitness landscape. 
 
CONCUSIONS 

   In this work it was shown that the definition of the 
neighbourhood is crucial to the success of the 
algorithm. Two different selection schemes are 
compared in this work: equidistant steps and random 
steps with an upper limit. It has been demonstrated that 
random steps with an upper limit outperform 
neighbourhood selection schemes with a constant step 
length.  
 
  It was also shown that using a scaling function to 
reduce the maximum step with over time could again 
increase the performance of the algorithm.  
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