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Abstract. The paper presents the application of soft 
computing methodology in medicine. Applied to 
micro array data analysis one may introduce soft 
computing as part of sensitive networks and classi-
fiers. While sensitized nets enable the conditioning 
of case study specific classifiers, scientists are able 
using specific linguistic IF-THEN rules to create 
appropriate fuzzy sets, that can be helpful for use in 
micro array data analysis. Henceforth, scientists 
will be empowered handling this classifiers in situ, 
phased to their measuring equipment and/or case 
study specific parameters, under case investigation. 
 
 
1.   Introduction 

 
We live in a world of an imposing complexity and 
variety, a world where events more or less never re-
peat exactly. Human-world interaction based on a 
scientific approach seems to have a normalisation 
in models, an abstract representation, as a powerful 
tool to understand real world phenomena. There-
fore a big part of scientific work consists in formal-
ization, which yields models of real world systems 
studied. This task clearly is scientifically oriented, 
in the sense to gain sufficient understanding of real 
world phenomena, generating respective represen-
tations, based on experiments and observations. 
Because the scientist attempts to create representa-
tions and laws that formalize verified hypothesis 
concerning real world phenomena.  

The formalizations are only useful if they suc-
ceed in seizing the essential features of the real 
world. They permit extrapolation, that allows to 
generalise, often correctly, from past experience to 
future events from which we can learn how the real 
world system can be manipulated for own purposes, 
which is a kind of uncertainty. In our world which 
is more or less precise understandable or predict-
able, we are more conscious of uncertainty, that 
appears in form of imprecision, vagueness and ill 
defined, ill separable, and doubtful data. For this 
kind of uncertainty, or better soft information, we 
have to learn to understand the intrinsic systems 
dynamic. 

Keeping formalizations running or doing extra-
polation, deals with effectively information proc-
essing, which is a task, done by computing machi-
nes, has been directly introduced as a suitable tool 
of the scientific approach. But using non-precise in-
formation, which is called soft information, e.g. the 
blood pressure is lower than normal, represented by 
linguistic terms such as low, high, small, medium, 
large, big and so on, needs a specific form of com-
putation, which is called soft computing. Soft com-
puting, deals with fuzzy sets, neuronal nets, genetic 
algorithms, evolution strategy, probabilistic meth-
ods etc. Usually, these approaches in uncertainty, 
combining soft information with conventional sci-
entific methods in a so called ad hoc manner, can 
be investigated using computation to show the vali-
dity of the approaches in relation to the specific 
case study. Therefore, during the past years, proc-
essing of uncertainty or soft information processing 
had been applied by different disciplines for a large 
variety in formal representations in the several sci-
entific application domains. Applying soft comput-
ing techniques for those formalizations, one can im-
part an understanding that the formalization itself 
can not provide. Because soft computing is a col-
lection of methods which can be expressed in terms 
of algorithms, belonging to the respective disciple-
nes, that has been proved to be of vital importance 
to progress in all fields of endeavor. 

Applying soft information in formalization of 
complex non-linear real world systems may call for 
the integration of soft computing system correspon-
dings such as fuzzy sets or neuronal nets, to meet 
the challenge modeling complex non-linear dy-
namic systems. 

In general, the common problems arising from 
formalization in science, and especially the possi-
bility of applying in a wide range of scientific re-
search the same methods while solving problems, 
has improved the co-operation between different 
disciplines and removed the rigid barriers of the 
past between them. However, although it seems that 
engineers and scientists, like physicians, will have 
the same goals in studying their systems. But there 
is still an essential difference between them, for-



malizing a real world research problem. For in-
stance, the engineer is interested in system formal-
ization reflecting normal operating conditions. His 
aim is to use the model in case of normal operating 
conditions, e.g. for optimized system control, or at 
least to keep it in a relative close vicinity of safe 
operating conditions and avoid the danger resulting 
from the formalized system running out of control. 
Anyhow there is no outstanding interest for engi-
neers formalizing plants behavior outside its allo-
wable operating conditions range. 

In contrast, the scientist, like the physician, is 
not solely interested in formalization a real world 
problem under normal conditions. He would prefer 
that the formal description adequately describes the 
systems un-nominal behavior, i.e. the systems be-
havior outside of normal limitations, like pathologi-
cal states in case of hypertension versus normoten-
sion, or gene expression analysis in relation to the 
type or growth of a tumor, and there are serious li-
mitations. But engineering techniques dealing with 
uncertainty are sometimes as much statements com-
parable to cognitive and linguistic sciences as they 
are about engineering, and hence they are compara-
ble to science, like medicine. 

In practice, the formalization of models itself is 
an iterative process, consisting of measurements at 
the real world system –if possible–, and computing 
strategies by changing the structure of the formal 
description in an effort to closely match the com-
plex dynamic systems behavior. The computing 
strategy may be based on the category in the nearest 
neighbor sense, if the adapted representation is clo-
se enough to the previous one. In fact the formal-
ization has served its purpose when an optimal ma-
tch is obtained between computed results and data 
obtained from the real world system under test.  

Soft information processing generate the basic 
insight that categories are not absolutely clear cut, 
they belong to lesser or greater degree to that cate-
gory. Hence soft computing systems break with the 
tradition, that real world phenomena can be precise-
ly and unambiguously characterized, which means 
divided into categories, and then manipulated ac-
cording to precise and formal rules. From the ma-
thematical point of view soft computing means 
multi-valuednes or multi-valence. Logical parado-
xes and the Heisenberg uncertainty principle led to 
the development of multi-valence, and in the 1930s 
quantum theorists allowed for indeterminacy by in-
cluding a third truth value in the bivalent logical 
framework. Systems scientist Zadeh in 1965 intro-
duced the term fuzzy into the technical literature, 
and inaugurated a second wave of interest in multi-
valued structures –from systems to topologies–  ex-
tending a bivalent indicator function iA of non-
fuzzy subset A of X to a multi-valued indicator or 

membership function mA: X→[0,1]. This allows to 
combine multi-valued or fuzzy sets with point-wise 
operators of indicator functions for the large variety 
of fuzzy systems. 

 
2.   Soft Computing Systems 

 
Soft computing systems is a name for systems with 
directly relationship to soft computing concepts like 
fuzzy sets, neuronal nets, genetic algorithms etc. 
The soft computing concepts based on fuzzy sets 
can be classified into pure fuzzy systems, Takagi 
and Sugeno fuzzy systems and fuzzy systems with 
fuzzification and defuzzification. 

 
2.1  Pure Fuzzy Systems 
 
The basic configuration of a pure fuzzy systems is 
based on a fuzzy rule base that consists of a collec-
tion of fuzzy IF-THEN rules, and the fuzzy infe-
rence engine that uses these fuzzy IF-THEN rules 
in order to determine a mapping output universe of 
discourse U ⊂ Rn to fuzzy sets in the output uni-
verse of discourse V ⊂ R based on fuzzy principles. 
Fuzzy IF-THEN rules are of the following form: 
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where Fi

(k) and G(k) are the respective fuzzy sets, x 
= (x1,...,xn)T∈ U and y ∈ V are input and output 
linguistic variables, respectively, and k = 1,2,...,m.  

Each fuzzy IF-THEN rule defines fuzzy set F1
(k) 

x...x Fn
(k) → G(k) in the product space  U x V. Let A 

be an arbitrary fuzzy set in U, then the output de-
termined by each fuzzy IF-THEN rule of equation 
(1) is a fuzzy set A o R(k) in V whose membership 
function is 

 
µA(k) o R(k) (µ) =  
sup x µU [µA(x) * µF1

(k) x...x Fn
(k) --> G(k) (x,y)] (2)                             

 
with * as operator such as MIN, MAX, PRODUCT, 
or others. µA is used to represent the membership 
function of a fuzzy set A.  

The final output of a pure fuzzy system is a fuz-
zy set A o (R(1),...,R(l)(k)) in V, a combination of 
the respective fuzzy set. Hence a pure fuzzy system 
constitutes the essential part of fuzzy systems as a 
general framework in which linguistic information 
is quantified and fuzzy principles are used to realize 
systematic use of linguistic information. 
 
 



2.2  Takagi and Sugeno Fuzzy System 
 
Instead considering fuzzy IF-THEN rules in form 
of equation (1), Takagi and Sugeno in 1985 propo-
sed using fuzzy IF-THEN rules in the form: 
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where Fi

(k)are fuzzy sets, ci are real-valued parame-
ters, y(k) is the Takagi-Sugeno fuzzy system output 
due the rule L(k), and k=1,2,...m. That is, they con-
sidered rules whose IF part is fuzzy but whose 
THEN part is crisp. For a real-valued input vector 
x=(x1,..., xn)T, the output y(x) of Takagi and Sugeno 
fuzzy systems is a weighted average of y(k): 
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where weight w(k) implies the overall truth value of 
the premise of rule L(k) for the input and is calcu-
lated as 
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which is shown in the following representation. 
 

L(1) : IF X1 IS AND...AND X1
1F n IS  1

nF
         THEN y1 = + +.....  1

0c 1
1
1xc nxc

1
1

 
               

     
                                                                         

A neural net consists of  input variables and weigh-
ting factors, activation layers and output variables. 
The physiological pendant of the inputs are the 
dendrites as part of the anterior motoneurons ex-
tend for one-half to one millimeter in all directions 
from the neuronal soma. Therefore, these dendrites 
can receive signals from a fairly spatial area around 
the motoneuron. This provides vast opportunity for 
summation of signals from many separate pre-
synaptic neurons. The weighting functions physio-
logical pendant are the synapses. The synapse could 
be interpreted as the juncture between one neuron 
and the next, based on three major parts, the soma, 
which is the main body of the neuron; a single 
axon, which extends from the soma into the periph-
eral nerve; and the dendrites, which are thin projec-
tions of the soma that extend up to one millimeter, 
into the surrounding areas of the cord. The output 
has its physiological pendant in the axon, which is 
the central core of a nerve fiber. The biological 
neuron and the artificial neuron are shown in  
Figure 2. 
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2.3 Fuzzy Systems with Fuzzification and De- 
       fuzzification 
 
Compared with the pure fuzzy system we may add 
a fuzzifier to the input and a defuzzifier to the out-

put of the pure fuzzy system. The fuzzifier maps 
crisp points in U to fuzzy sets in U, and the defuz-
zifier maps fuzzy sets in V to crisp points in V. The 
fuzzy rule base as well as the fuzzy inference en-
gine are the same as those in pure fuzzy logic sys-
tems, as shown in Figure 1. 
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Fig. 1:   Fuzzy system with fuzzifier and defuzzifier 
 

2.4  Neuronal Nets 
 

From Figure 2.b one can assume that the syn-
apses of an artificial neuron receive an activation xi 
with a specific strength wi from another artificial 
neuron, which will be part of the summing process 
of the output, the axon. The basic concept results in 
an input vector  x = (x1,...,xn)T, a weighting vector 
w = (w1,..,wn)T and the resulting activity as sum of 
the weighted input, which could be assigned as 
activity function z: 

X ∈ U;  y(x)∈V 

Defuzzifier Fuzzifier 

 
    Fuzzy Inference Engine 

y in V
x in U

Fuzzy sets in VFuzzy sets in U

 wikyk 
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The idea to condition a neural net first by well 
defined easy distinguishable data sets and then to 
deepen and to enlarge the stored information by 
sensitization can be learned from cognitive psy-
chology in the context of the chunking problem. 
Chunking is more or less the adaptation of a new 
fact or a so far unknown situation with the help of 
knowledge facts or models. Only out of old facts or 
acting strategies one can develop new strategies for 
understanding of so far unknown. Transforming 
this idea to the handling with neural nets means, 
that first a net has to learn a basic concept. To pre-
vent that the net used includes typical output ranges 
in its classification behavior due to the measured 
data for analysis, and therefore looks for measures 
with a high output, it is necessary to normalize the 
input data set by using an appropriate-processing 
method [3]. To handle changes in the global state of 
the case study it is favorable to use a pre-processing 
step that results in a gradient vector that is calcula-
ted by the difference between the data of a case 
study as requested when no pathological situation is 
present minus the present actual data. 

Fig.2:  Biological neuron (a) and artificial neuron (b); for  
            more details see text 

 
Often there exists a threshold, which has to be 

passed, to activate the output. Modeling the thresh-
old results in the relation 

 
z (w ,x ) = wT x - T 

 
where T indicates the threshold. Assuming 

 
x ---> x = (x1,...,xn,1)T 

and 
w --> w (w1,...,wn,-T)T 

 
we receive the scalar product 

 
z (w ,x ) = -T =  w xj j

j
∑

(w1,...,wn,-T) (x1,...,xn,1)T= wTx 
 
which can be rearranged as follows 

 

z i i
i

= + ∑w w( ) ( )0 1 x  

 
whereby the notation(k) indicates the correlation’s 
of the x components. 

Modeling high-order synapses then can be di-
rectly derived from the above equations as follows: 
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This type of artificial neurons are the so called 

sigma-pi-units. 

 
The output of an artificial neuron can be de-

scribed by the function S(.) depending on the inter-
nal activity z,  

 
y = S(z) 

 
The complete output of an artificial neuron 

hence can be stated as transfer function of type y 
 

y = f (x,w,z,S). 
 
 

3.  Theory of sensitization of neural nets 
 

 Once the neural classifier can separate all trai-
ned states which represent a basic concept in a suf-
ficient way the weaker evolutionary states of the 
different case study states should be trained. The 
definition of the basic concept can be called: “the 
worst cases of a case study behavior” can simply be 
defined as problem oriented data set representation 
of a satisfactory classification state. 

By presenting the weaker states after the basic 
concept is settled it can be ensured that the net will 
be forced to change its classification structure slig-
htly out of it's former structure, without destroying 
the older structure. This means that the net will be 
sensitized. Especially when a back propagation net-
work is used the learning rules force the net to sen-
sitize its structure in such a way that only the case 
study specific state representing structure is modi-
fied, as the classification results have to be the 
same over the whole sensitization period. If weaker 



and weaker states will be presented successively 
the classification structure will change accordingly, 
until the similarity of the different evolutionary 
state representations will be so little, that the net 
can not be forced to change it's structure anymore. 

 Figures 3.a and 3.b show the sensitized net 
working structure. Since the classification potential 
is changed locally, the net changes its classification 
behavior not in general by learning the evolutionary 
data sets, but shows the according adaptive behav-
ior. This local change surely can lead to the unifica-
tion of so far divided concepts, a fact which will 
open the door to a wide range of so far unknown or 
unnoticed intrinsic relations of the micro array data 
sets, representing the case study states. 

 

    

 
Fig. 3: Classification-potential a) E before  sen-

sitization and b) E' after sensitization 
 

Henceforth, sensitization in case of micro array 
data analysis can be introduced as intelligent pre-
processing for clustering analysis that means nor-
malization and filtering, that is necessary due to  
  

• Systematic experimental errors, 
• Uneven hybridization gel,  
• Background variations, 

• Wavelength dependency, 
• Intensity dependency.  
• Image processing algorithm-dependency 
• Etc. 
 
      Hence, the importance of using intelligent pre-
processing algorithms is really based on the hy-
pothesis underlying micro array analysis that the 
measured intensities for each arrayed gene repre-
sent its relative expression level. However, before 
the levels can be appropriately compared, one gen-
erally performs a number of transformations on the 
data to eliminate questionable or low quality data, 
to adjust measured intensities to facilitate compari-
sons, and to select those genes that are significantly 
differentially expressed, which explains the need 
for a pre-processing methodology beyond. 
 

The sensitized neuronal nets classifier in gen-
eral is able to separate all trained states representing 
a powerful concept of weaker evolutionary states of 
different case study situations, to be trained, as 
shown in Figures 4, 5 and 6. As shown in Figure 4 
the actual situation for a patient may change after 3 
sec from a normal state under anaesthesia to a criti-
cal  state, an actual auricular fibrillation (tachycar-
dia ventricular). The left column represents the pos-
sibilities in their special coded colours, indicated as 
stripes with different gay shadings. 
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Fig. 4:   Heart beat state change detected by a sensi- 

                 tized neural net 
 
Figure 5 shows the time differences between an 

early warning of a common neural classifier and a 
sensitized neural network. Both nets have had the 
same warning criteria, setting an alarm when the 
probability for an pathological state is higher then 
85%. It can be seen that a sensitized neural classi-
fier is able to decrease the alarm time by a factor 5, 
as the net classifies the evolutionary state of the be-
gin of an auricular fibrillation rather early.  
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Fig. 5:  Difference between early warning of a  
     sensitized and a normal neural net  

 
Another classification example is shown in Fig-

ure 6. The first line represents the pathological state 
of the patient, followed by the different pathologi-
cal and orthological states listed below. 
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Fig. 6:   GUI used to supervise patients states 
 

As clearly can be seen over the supervised time 
period the patient state changed from the first to the 
eight state, whereby the classifier is able to detect 
fast transients (< 0,5 sec), slow changes over hours, 
days, as well as very slow transients over weeks, 
months, etc. 

Due to the fact, that anaesthesiologists have a 
great interest in monitoring the depth of anaesthe-
sia, not only in critical cases but also during routine 
anaesthesia, expanding soft computing based algo-
rithms for anaesthesia monitoring is the state of the 
art for the challenge of more accuracy, more safety 
and more quality in anaesthesia, the vision of an 
physiologically gained monitoring.  

In practical terms this means adequate informa-
tion with respect to the depth of anaesthesia, which 
means very clearly show of depth changes that 
anaesthetic agents cause in the EEG, sensitivity 
with respect to artefacts, particularly induced by 
today’s modern electro surgery equipment, sensitiv-
ity on the frequency below which the bulk of EEG 
activity occurs, called the spectral edge frequency, 
which is related to the end tidal concentrations of 
various anaesthetic agents, including halothane and 

enflurane, as well as to blood levels of thiopental 
and fentanyl etc. 

In case of micro array data analysis sensitized 
nets can be developed for usage in  

 
• Total Intensity normalization, 
• Iterative linear regression normalization, 
• Standard deviation regularization, 
• Cross Slide Replicates T-test, 
• Signal/Noise checking, 
• Slice analysis, 
• Etc. 

 
      As an measure example one can assume that 
two factors contributed to the gene X, the biologi-
cal factors one is interested in, and experimental 
factors, one is not interested in. This requests for a 
possibility to extract the experimental factors which 
can be done initializing the pre-processing task of 
the statistical analysis. The statistical analysis be-
hind can be  
• Pre-processed local linear regression model, 
• Pre-processed least squares, 
• Etc. 
 
 
4.   Conclusions 

 
The potential of soft computing for micro array 
data analysis is huge. We only scratched the surface 
of the complex due to a brief view insight possible 
medical application domains. The potentially of 
soft computing and pre-processing  contains an in-
credible number of solutions to the several problem 
depending domains.   
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