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ABSTRACT 

Lookahead is a key issue in distributed discrete event 
simulation. It becomes explicit in conservative 
simulation algorithms, where the two major approaches 
are the asynchronous null-message (CMB) algorithms 
and the synchronous window algorithms (CTW). In this 
paper we demonstrate how a hybrid algorithm can 
maximize the lookahead capabilities of a model by 
lookahead accumulation. Furthermore, per processor 
aggregation of the logical processes allows for tuning of 
the granularity. A qualitative performance analysis 
shows that in case of no hop-models our algorithm 
outperforms the traditional conservative algorithms. 
This is due to reduced synchronization overhead caused 
by longer independent computation cycles, that are 
generated by the lookahead accumulation across the 
shortest lookahead path. 

INTRODUCTION

This paper deals with parallel discrete event simulation 
(PDES) (Ferscha 1995, Fujimoto 1990) of logical 
process based models. There are 2 main approaches in 
conservative parallel simulation algorithms: the 
asynchronous approach, called CMB (after Chandy, 
Misra and Bryant), using null messages for 
synchronisation (Misra 1986, Lin 1995 & Ferscha 
1995), and the synchronous window approach, CTW, 
(Conservative Time Windows) (Lubachevsky 1989, 
ayani 1992), which uses a window ceiling for 
synchronisation. 
The algorithm that we developed is based on the 
deadlock avoidance CMB algorithm, and incorporates 
the concepts of the CTW approach. Our algorithm tries 
to maximize the performance by optimally tuning two 
attributes of the model: granularity and lookahead. 
Granularity or grain size is defined as 'amount of 
computations between communication points' (Choi 
1995). Our algorithm tries to get better performance by 
maximizing the granularity and thus attaining less 
communication overhead. This is done by per processor 
aggregation of all its dedicated logical processes 
forming a multiprocess, which can be simulated 

sequentially on each processor (Brissinck 1995, 
Praehofer 1994). 
Next to granularity, our algorithm exploits maximally 
the performance gain coming with the lookahead 
capacities of the model. Better lookahead leads to less 
synchronisation overhead and better load (Preiss 1990, 
Peterson 1993, Fujimoto 1988). Our algorithm tries to 
accumulate lookahead while calculating the global 
lookahead of the multiprocess. 

The next section explains the algorithm, section 3 
discusses the various aspects of the algorithm and 
compares it with the traditional conservative algorithms. 
Section 4 analyses the performance on a qualitative 
basis and compares it with CMB & CTW performance. 
Section 5 finally shows the impact on 2 example 
models. 

THE SYNCHONIZATION ALGORITHM 

At first, the model is partitioned among the available 
processors and all logical processes on the same 
processor are aggregated to form a multiprocess. 
Parallel simulation happens in cycles of independent 
simulation alternated with communication of the events 
that travel through the channels connecting the 
multiprocesses. The independent simulation phase on 
each processor is based on the chronological processing 
of all events that are ordered in an event queue. This 
corresponds with ‘normal’ sequential simulation. 
Since we use the conservative approach, simulation is 
only continued when all events are known until that 
time. The synchronization algorithm will calculate this 
safe time. Our algorithm therefore needs to synchronize 
the multiprocesses and the simulation inside each 
multiprocess. 
Synchronization of the multiprocesses is based on the 
CTW approach. After a phase of independent 
simulation, a multiprocess will send outgoing events to 
the other multiprocesses. It then waits for receiving 
incoming events at the incoming channels from the 
neighbor multiprocesses. All events come together with 
a time window. The window assures that all events 
during that time period are known, so that simulation 
can advance. Figure 1 shows a multiprocess consisting 
of 5 logical processes. It has 2 input channels I1 and I2
at which it receives 2 windows with ceiling t1 and t2.



Figure 1: Synchronization Inside the Multiprocess 
(assume that t2 + lkhD + lkhE  < t1 + lkhA + lkhB + lkhC)

Synchronization inside each multiprocess is based on a 
deadlock avoidance CMB approach that uses null 
messages to indicate safe simulation. Null messages or 
null events are defined as 'a promise not to send any 
other message with smaller timestamp in the future’ 
(Ferscha 1995). At start of each simulation cycle, null 
messages are scheduled for all global inputs of the 
multiprocess at the time of the incoming window 
ceiling. After a null message has arrived in a process, 
conditional events are possible, because it is not sure 
that all events are known in the local queue for that 
time. In our algorithm, a logical process will simulate 
until a first null message appears at one input, whereas 
in CMB algorithms a process has to wait for null 
messages at all inputs before it can simulate. This is 
possible because inside a multiprocess normal and null 
events are processed in chronological order, sharing the 
same event queue. When a null message enters a 
process, this process is killed, stopping the simulation of 
that process for that cycle. Since future events are 
conditional and may not be processed during the 
present cycle. They are scheduled in the conditional 
queue to be processed in the next cycle. Next, when the 
process is killed, null messages are scheduled for all 
output channels at the local virtual time plus the 
processes’ lookahead. They will kill the succeeding 
processes (Figure 2). The first null message arriving at 
an outgoing channel of the multiprocess determines the 
window ceiling of the window that will be sent (O2 in 
Figure 1). In the initialization phase of the simulation, 
the first windows are generated. A cycle of independent 
simulation is performed with empty windows at all 
inputs (ceiling time zero). The edge processes will be 
killed at time 0, generating lookahead-incremented null 
messages for the succeeding processes. In this way, the 
first global lookahead together with the first output 
events are generated at the processor outputs for the 
initial synchronisation of the multiprocesses (Fig. 2 at 
the  right). 
By construction, no event is simulated after a null 
message or outside a time window, hence the 
correctness of our synchronization algorithm is proven. 

Figure 2: Null Message Propagation 

Our algorithm can be seen as a window algorithm: each 
multiprocess receives a safe window to simulate. More 
precisely, each channel has a safe simulation window 
during each cycle. However, it is an asynchronous
algorithm. There is no global (barrier) synchronization 
as with CTW algorithms. Each multiprocess decides 
independently when and how much it can simulate, like 
in CMB algorithms. 

DISCUSSION OF THE CYCLE TIME 

The shortest lookahead-path 

Simulation takes place in cycles of communication and 
independent simulation. A simulation cycle on a 
processor lasts until the first output is reached by a null 
event. This null event is generated by a previously 
killed process, which on his turn is killed by another 
null event, etc. This chain of null events starts at a 
certain input and propagates through the model, 
forming what we call a lookahead path, and ending at 
an multiprocess output (Figure 1).  
Each global output will be killed by a lookahead-path. 
The shortest lookahead-path kills the first output and 
determines thus the cycle size. 

Fugre 3: Models with a Hop 

If the shortest lookahead-path passes through multiple 
processes we can speak about lookahead accumulation,
the global lookahead of the multiprocess is formed by 
the sum of the lookahead of all processes in the path. If 
on the contrary the shortest lookahead-path comes in 
and leaves the multiprocess out immediately, we talk 
about a hop (Figure 3). For those models, there is no 
lookahead accumulation and the global lookahead 
simply equals the lookahead of the edge process.  



The shortest lookahead-path is the largest possible safe 
simulation cycle. By construction, any larger cycle can 
cause conditional events. 

The cycle in CMB algorithms 

In a similar way, a cycle can also be defined for CMB 
algorithms. The cycle is defined as the frequency of 
event communication and null event generation. In the 
example of figure 4 (after Lin 1995), the process can 
simulate in cycles of the sum of the lookaheads. We see 
that it is also determined by the shortest lookahead path 
from a process output back to an input. Each process 
got its own shortest lookahead path, as opposed to our 
algorithm where it is calculated per multiprocess. 

Figure 4: Cycle in CMB algorithms 

The cycle in CTW algorithms 

For conservative time window algorithms, the window 
size is calculated with the minimal lookahead of the 
edge processes (connected with other multiprocesses). 
The main CTW algorithms define a distance (Ayani 
1992), an event horizon (Steinman 1994) or a mimimum 
propagation delay (static lookahead) with opaque 
periods (dynamic lookahead) (see the bounded lag 
algorithm, lubachevsky 1989). All these concepts reflect 
the lookahead of a process. For these algorithms, no 
lookahead accumulation takes place and thus is the 
cycle time the same as in our algorithm for hop-models. 

QUALITATIVE PERFORMANCE ANALYSIS 

This section discusses the performance of the algorithm 
and compares it qualitatively with the two traditional 
approaches. As a first order approximation, we assume 
the sequential simulation time SeqSimT to be 
proportional to the number of simulated events #evSim:

SimevCSeqSimT .#1                        (1) 

Parallel simulation on p processors is then the 
simulation of p times less events plus the overhead 
induced by the parallel nature of the simulation: 
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with ParSimT the parallel simulation time and 
overheadTi  the time of overhead i, ranging from 1 to 
#O, the number of overheads. The first term of the 
equation assumes equal distribution of the events 
among the processors, corresponding with an ideal 
parallel processing. The effect of unequal distributions 
must be seen as overhead and added to the right term. 
Performance is measured by the speedup, which is the 
ratio of sequential simulation time versus the parallel 
simulation time. The impact of the overhead on the 
speedup S is then the ratio of the overhead time with the 
ideal parallel simulation time: 
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The ratio overheadTi/ParSimT  is defined as the 
overhead ratio Ovhi of overhead i.
Our parallel simulation algorithm generates 3 main 
types of overhead: communication, synchronization and 
idle time. These result in 5 overhead ratios Ovhi and 5 
performance factors reflecting the impact of simulation 
statistics on the different overheads (Lemeire 2001), as 
shown in Table 1. 

Table 1: Overhead classification of the conservative 
simulation algorithm 

Overheads Overhead Ratios Performance 
factors

Commu-
nication 

Ovh1 per event overhead #evComm / #evSim

Ovh2 constant overhead #evSim / cycle 
Synchro-
nisation 

Ovh3 synchronization #evNull / #evSim

Ovh4 conditional queue #evCond/#evSim

Idle time Ovh5 load imbalance Differences in #evSim

per processor 

The communication overhead is the time not 
overlapping with computation for communicating the 
events. This can be split in the variable overhead 
(Ovh1), proportional to the data size, and the constant 
communication overhead (Ovh2), induced by setting up 



the communication link. The communication overhead 
ratio Ovh1 is proportional to the number of 
communicated events between the processors (#evComm)
versus the number of simulated events. This results in 
the first performance factor, namely #evComm/#evSim. The 
constant overhead ratio Ovh2 leads to #evSim/Cycle, the 
number of simulated events per cycle. This ratio is also 
called granularity or grain size (also event simultaneity 
in Peterson93). 
The synchronization overhead is the processing in each 
cycle of the synchronisation information. For CMB-
algorithms and our algorithm this is the null event 
processing, whereas for CTW-algorithms it is the 
window size calculation. The processing time for this 
depends in the first place on the number of null events 
#evNull. This results for Ovh3 in a performance factor 
#evNull/#evSim. Our algorithm induces an extra 
synchronization overhead (Ovh4) due to the conditional 
events #evCond that are queued to be processed in the 
next cycle. This leads to a constant overhead and one 
proportional to #evCond/#evSim.
Unequal simulation phases on the different processors 
lead to idling, when processors have to wait for 
incoming events. This is mainly caused by load 
imbalances, here unequal number of events to be 
simulated. This overhead ratio (Ovh5) is proportional to 
the relative deviation of the number of events simulated 
on each processor. 

The Lookahead Accumulation Benefit 

The synchronization algorithm influences all but the per 
event communication overhead Ovh1, which is only 
determined by the model partitioning. The other 
overheads depend on the cycle time (Peterson 1993, 
Choi 1995), which is determined by the lookahead 
properties of the model. In case of real lookahead 
accumulation (no-hop models), our algorithm gets 
larger cycles and will attain a better performance. There 
will be less constant communication overhead (Ovh2), 
less synchronisation overhead (Ovh3), discussed in the 
next section, and better elimination of temporal load 
imbalances (Ovh5).  

The Synchronization Overhead 

The per cycle synchronization calculation depends 
strongly on the algorithm. For CMB algorithms, it is the 
processing of one null event per channel, whereas for 
CTW, it is proportional to the number of edge-
processes. The synchronization information is thus the 
lowest for the CTW, and the highest for CMB 
approaches.  In our algorithm it is one null event per 
interconnection plus the depth of the null event 
propagation. In case of a hop model, our algorithm 
looses the lookahead accumulation advantage, the 
synchronisation overhead will be similar as with CTW 
(only the lookahead of the edge-processes is taken into 
account) and so the performance will be equal. 

The synchronization overhead is proportional to the 
cycle frequency. For CTW algorithms it is also 
proportional to the number of interconnections. 
Whereas for CMB, the number of null events per cycle 
equals the number of channels. Our algorithm performs 
in between both: the number of null events per cycle is 
proportional to the number of interconnections plus the 
depth of the lookahead propagation 
Note that a lot of modern algorithms optimize the 
synchronization overhead, like diverse null event 
reduction techniques in CMB algorithms (Ferscha 1995, 
etc) and for example, the bounded lag in Lubachevsky's 
CTW algorithm (Lubachevsky 1989).  

The overhead Ovh4 is specific for our algorithm. The 
cost for the extra lookahead of our algorithm is the 
conditional queue. In case of a hop, simulation will stop 
by the first killed process, no other processes were 
killed so far and thus, there are no conditional events 
and no conditional queue overhead. But in case of 
lookahead accumulation, conditional events of the 
killed processes must be stored in the conditional queue 
to be simulated in the next cycle. These extra operations 
cause the extra overhead: the check whether the process 
is killed and the queuing. These events come in 
chronological order out of the event queue and therefore 
sorting of the conditional queue is not necessary. This 
results in one extra operation for each event and one for 
each conditional event. In Figure 2 it can be seen that 
the number of conditional events could reach half of the 
number of processed events, as for lp D. But in most 
cases, it will be much less, because the last lookahead of 
the lookahead-path causes no conditional events. 
Moreover, deep processes (far from the edge) will not 
be killed soon. In total, the extra overhead is thus 
between 1 and maximally 1.5 extra operations (check 
and append) per simulated event, which will be much 
smaller compared to the time to simulate one event C1.
We can conclude that the extra overhead induced by our 
algorithm is small, as is confirmed by the experimental 
results. 

EXPERIMENTS 

Two models will demonstrate our claims. One gives 
good results by exploiting the lookahead accumulation, 
while the other fails due to low lookahead. Both are 
simulated on a cluster of 4 Pentium II processors of 
333MHz connected by a 100Mb/s non-blocking switch. 

Fpga

Field Programmable Gate Arrays (FPGAs) are 
prefabricated devices used to implement digital logic. 
They feature a matrix structure of logic cells 
interconnected by routing channels, and a periphery of 
I/O cells. FPGAs can be programmed by a stream of 
configuration bits to form a logic circuit. The simulation 
model consists of 2387 processes and 10978 channels 
(Bousis 2000). Geometrical partitioning (the dashed 



lines in Figure 5) gives best load balancing and least 
communication. However, the model is heavily 
interconnected and contains many hops (namely 453). 
The shortest lookahead path is only 8 ns, resulting in 
only 70 events simulated per cycle of 8ns. The 
performance results are shown in Table 2. 

Figure 5: FPGA Model with Partitioning 

Figure 6: ATM Switch Model with Partitioning and 
Shortest Lookahead Path 

ATM switch 

The high capacity ATM switch model (Geudens 2000) 
demonstrates the benefits of our algorithm (Figure 6). 
The model consists of a detailed 4 by 4 switch with 16 
entries. Each input receives IP-traffic by a simulated 
network.  

Table 2: Performance results for parallel simulation 
with 4 processors 

 FPGA ATM switch
Global Performance 
Speedup 0.74 3.5 
#evSim per realtime second 6592 events/s 44000 events/s 
Cycle time 8ns 50000ns 
Communication overhead 17.6% 0.6% 

Ovh1 #evCom / #evSim 18% 5.7% 
Ovh2 #evSim / Cycle 70 10100 

Synchronisation overhead 
Ovh3 #evNull / #evSim 470% 0.45% 
Ovh4 #evCond / #evSim 0 1.6% 
Ovh5 Idle time 9.4% 11% 

Here again, a geometrical partitioning (horizontal) is the 
only plausible one (dashed lines in Figure 6). The 
model can accumulate the lookahead along a path that 
leaves the switch, passes the network, enters the server 
and returns back to the switch. This results in long 
cycles giving an quasi ideal speedup of 3.5 as shown in 
Table 2. 

CONCLUSION 

In this paper, we demonstrated the benefit of 
accumulating lookahead with a hybrid conservative 
parallel simulation algorithm, based on per processor 
aggregation of its processes. The processors’ global 
lookahead is determined by lookahead accumulation 
across the shortest lookahead path, which results in 
longer simulation cycles.  
A qualitative performance analysis showed that our 
algorithm gets a performance benefit over the 
traditional (non-optimized) conservative algorithms 
CMB (asynchronous null-message algorithms) and 
CTW (synchronous window algorithms) in case of 
partitioned models without ‘hops’.  
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