
LOOKAHEAD ACCUMULATION IN CONSERVATIVE PARALLEL
DISCRETE EVENT SIMULATION

Jan Lemeire, Erik Dirkx
Parallel Systems lab,

Vrije Universiteit Brussel (VUB)
Brussels, Belgium

{jlemeire, erik }@info.vub.ac.be

KEYWORDS
Discrete event simulation, Parallel simulation,
Conservative algorithms, Lookahead.

ABSTRACT

Lookahead is a key issue in distributed discrete event
simulation. It becomes explicit in conservative
simulation algorithms, where the two major approaches
are the asynchronous null-message (CMB) algorithms
and the synchronous window algorithms (CTW). In this
paper we demonstrate how a hybrid algorithm can
maximize the lookahead capabilities of a model by
lookahead accumulation. Furthermore, per processor
aggregation of the logical processes allows for tuning of
the granularity. A qualitative performance analysis
shows that in case of no hop-models our algorithm
outperforms the traditional conservative algorithms.
This is due to reduced synchronization overhead caused
by longer independent computation cycles, that are
generated by the lookahead accumulation across the
shortest lookahead path.

INTRODUCTION

This paper deals with parallel discrete event simulation
(PDES) (Ferscha 1995, Fujimoto 1990) of logical
process based models. There are 2 main approaches in
conservative parallel simulation algorithms: the
asynchronous approach, called CMB (after Chandy,
Misra and Bryant), using null messages for
synchronisation (Misra 1986, Lin 1995 & Ferscha
1995), and the synchronous window approach, CTW,
(Conservative Time Windows) (Lubachevsky 1989,
ayani 1992), which uses a window ceiling for
synchronisation.
The algorithm that we developed is based on the
deadlock avoidance CMB algorithm, and incorporates
the concepts of the CTW approach. Our algorithm tries
to maximize the performance by optimally tuning two
attributes of the model: granularity and lookahead.
Granularity or grain size is defined as 'amount of
computations between communication points' (Choi
1995). Our algorithm tries to get better performance by
maximizing the granularity and thus attaining less
communication overhead. This is done by per processor
aggregation of all its dedicated logical processes
forming a multiprocess, which can be simulated

sequentially on each processor (Brissinck 1995,
Praehofer 1994).
Next to granularity, our algorithm exploits maximally
the performance gain coming with the lookahead
capacities of the model. Better lookahead leads to less
synchronisation overhead and better load (Preiss 1990,
Peterson 1993, Fujimoto 1988). Our algorithm tries to
accumulate lookahead while calculating the global
lookahead of the multiprocess.

The next section explains the algorithm, section 3
discusses the various aspects of the algorithm and
compares it with the traditional conservative algorithms.
Section 4 analyses the performance on a qualitative
basis and compares it with CMB & CTW performance.
Section 5 finally shows the impact on 2 example
models.

THE SYNCHONIZATION ALGORITHM

At first, the model is partitioned among the available
processors and all logical processes on the same
processor are aggregated to form a multiprocess.
Parallel simulation happens in cycles of independent
simulation alternated with communication of the events
that travel through the channels connecting the
multiprocesses. The independent simulation phase on
each processor is based on the chronological processing
of all events that are ordered in an event queue. This
corresponds with ‘normal’ sequential simulation.
Since we use the conservative approach, simulation is
only continued when all events are known until that
time. The synchronization algorithm will calculate this
safe time. Our algorithm therefore needs to synchronize
the multiprocesses and the simulation inside each
multiprocess.
Synchronization of the multiprocesses is based on the
CTW approach. After a phase of independent
simulation, a multiprocess will send outgoing events to
the other multiprocesses. It then waits for receiving
incoming events at the incoming channels from the
neighbor multiprocesses. All events come together with
a time window. The window assures that all events
during that time period are known, so that simulation
can advance. Figure 1 shows a multiprocess consisting
of 5 logical processes. It has 2 input channels I1 and I2
at which it receives 2 windows with ceiling t1 and t2.

Figure 1: Synchronization Inside the Multiprocess
(assume that t2 + lkhD + lkhE < t1 + lkhA + lkhB + lkhC)

Synchronization inside each multiprocess is based on a
deadlock avoidance CMB approach that uses null
messages to indicate safe simulation. Null messages or
null events are defined as 'a promise not to send any
other message with smaller timestamp in the future’
(Ferscha 1995). At start of each simulation cycle, null
messages are scheduled for all global inputs of the
multiprocess at the time of the incoming window
ceiling. After a null message has arrived in a process,
conditional events are possible, because it is not sure
that all events are known in the local queue for that
time. In our algorithm, a logical process will simulate
until a first null message appears at one input, whereas
in CMB algorithms a process has to wait for null
messages at all inputs before it can simulate. This is
possible because inside a multiprocess normal and null
events are processed in chronological order, sharing the
same event queue. When a null message enters a
process, this process is killed, stopping the simulation of
that process for that cycle. Since future events are
conditional and may not be processed during the
present cycle. They are scheduled in the conditional
queue to be processed in the next cycle. Next, when the
process is killed, null messages are scheduled for all
output channels at the local virtual time plus the
processes’ lookahead. They will kill the succeeding
processes (Figure 2). The first null message arriving at
an outgoing channel of the multiprocess determines the
window ceiling of the window that will be sent (O2 in
Figure 1). In the initialization phase of the simulation,
the first windows are generated. A cycle of independent
simulation is performed with empty windows at all
inputs (ceiling time zero). The edge processes will be
killed at time 0, generating lookahead-incremented null
messages for the succeeding processes. In this way, the
first global lookahead together with the first output
events are generated at the processor outputs for the
initial synchronisation of the multiprocesses (Fig. 2 at
the right).
By construction, no event is simulated after a null
message or outside a time window, hence the
correctness of our synchronization algorithm is proven.

Figure 2: Null Message Propagation

Our algorithm can be seen as a window algorithm: each
multiprocess receives a safe window to simulate. More
precisely, each channel has a safe simulation window
during each cycle. However, it is an asynchronous
algorithm. There is no global (barrier) synchronization
as with CTW algorithms. Each multiprocess decides
independently when and how much it can simulate, like
in CMB algorithms.

DISCUSSION OF THE CYCLE TIME

The shortest lookahead-path

Simulation takes place in cycles of communication and
independent simulation. A simulation cycle on a
processor lasts until the first output is reached by a null
event. This null event is generated by a previously
killed process, which on his turn is killed by another
null event, etc. This chain of null events starts at a
certain input and propagates through the model,
forming what we call a lookahead path, and ending at
an multiprocess output (Figure 1).
Each global output will be killed by a lookahead-path.
The shortest lookahead-path kills the first output and
determines thus the cycle size.

Fugre 3: Models with a Hop

If the shortest lookahead-path passes through multiple
processes we can speak about lookahead accumulation,
the global lookahead of the multiprocess is formed by
the sum of the lookahead of all processes in the path. If
on the contrary the shortest lookahead-path comes in
and leaves the multiprocess out immediately, we talk
about a hop (Figure 3). For those models, there is no
lookahead accumulation and the global lookahead
simply equals the lookahead of the edge process.

The shortest lookahead-path is the largest possible safe
simulation cycle. By construction, any larger cycle can
cause conditional events.

The cycle in CMB algorithms

In a similar way, a cycle can also be defined for CMB
algorithms. The cycle is defined as the frequency of
event communication and null event generation. In the
example of figure 4 (after Lin 1995), the process can
simulate in cycles of the sum of the lookaheads. We see
that it is also determined by the shortest lookahead path
from a process output back to an input. Each process
got its own shortest lookahead path, as opposed to our
algorithm where it is calculated per multiprocess.

Figure 4: Cycle in CMB algorithms

The cycle in CTW algorithms

For conservative time window algorithms, the window
size is calculated with the minimal lookahead of the
edge processes (connected with other multiprocesses).
The main CTW algorithms define a distance (Ayani
1992), an event horizon (Steinman 1994) or a mimimum
propagation delay (static lookahead) with opaque
periods (dynamic lookahead) (see the bounded lag
algorithm, lubachevsky 1989). All these concepts reflect
the lookahead of a process. For these algorithms, no
lookahead accumulation takes place and thus is the
cycle time the same as in our algorithm for hop-models.

QUALITATIVE PERFORMANCE ANALYSIS

This section discusses the performance of the algorithm
and compares it qualitatively with the two traditional
approaches. As a first order approximation, we assume
the sequential simulation time SeqSimT to be
proportional to the number of simulated events #evSim:

SimevCSeqSimT .#1 (1)

Parallel simulation on p processors is then the
simulation of p times less events plus the overhead
induced by the parallel nature of the simulation:

O

i
ioverheadTp

evSimCParSimT
#

1
#. (2)

with ParSimT the parallel simulation time and
overheadTi the time of overhead i, ranging from 1 to
#O, the number of overheads. The first term of the
equation assumes equal distribution of the events
among the processors, corresponding with an ideal
parallel processing. The effect of unequal distributions
must be seen as overhead and added to the right term.
Performance is measured by the speedup, which is the
ratio of sequential simulation time versus the parallel
simulation time. The impact of the overhead on the
speedup S is then the ratio of the overhead time with the
ideal parallel simulation time:

O

i
i

Sim

Sim

overheadTp
evC

evCS #

1

1

#.

.#
 (3)

O

i
i

O

i Sim

i Ovh

p

p
evC

overheadT
pS ##

1
1.#1

 (4)

The ratio overheadTi/ParSimT is defined as the
overhead ratio Ovhi of overhead i.
Our parallel simulation algorithm generates 3 main
types of overhead: communication, synchronization and
idle time. These result in 5 overhead ratios Ovhi and 5
performance factors reflecting the impact of simulation
statistics on the different overheads (Lemeire 2001), as
shown in Table 1.

Table 1: Overhead classification of the conservative
simulation algorithm

Overheads Overhead Ratios Performance
factors

Commu-
nication

Ovh1 per event overhead #evComm / #evSim

Ovh2 constant overhead #evSim / cycle
Synchro-
nisation

Ovh3 synchronization #evNull / #evSim

Ovh4 conditional queue #evCond/#evSim

Idle time Ovh5 load imbalance Differences in #evSim

per processor

The communication overhead is the time not
overlapping with computation for communicating the
events. This can be split in the variable overhead
(Ovh1), proportional to the data size, and the constant
communication overhead (Ovh2), induced by setting up

the communication link. The communication overhead
ratio Ovh1 is proportional to the number of
communicated events between the processors (#evComm)
versus the number of simulated events. This results in
the first performance factor, namely #evComm/#evSim. The
constant overhead ratio Ovh2 leads to #evSim/Cycle, the
number of simulated events per cycle. This ratio is also
called granularity or grain size (also event simultaneity
in Peterson93).
The synchronization overhead is the processing in each
cycle of the synchronisation information. For CMB-
algorithms and our algorithm this is the null event
processing, whereas for CTW-algorithms it is the
window size calculation. The processing time for this
depends in the first place on the number of null events
#evNull. This results for Ovh3 in a performance factor
#evNull/#evSim. Our algorithm induces an extra
synchronization overhead (Ovh4) due to the conditional
events #evCond that are queued to be processed in the
next cycle. This leads to a constant overhead and one
proportional to #evCond/#evSim.
Unequal simulation phases on the different processors
lead to idling, when processors have to wait for
incoming events. This is mainly caused by load
imbalances, here unequal number of events to be
simulated. This overhead ratio (Ovh5) is proportional to
the relative deviation of the number of events simulated
on each processor.

The Lookahead Accumulation Benefit

The synchronization algorithm influences all but the per
event communication overhead Ovh1, which is only
determined by the model partitioning. The other
overheads depend on the cycle time (Peterson 1993,
Choi 1995), which is determined by the lookahead
properties of the model. In case of real lookahead
accumulation (no-hop models), our algorithm gets
larger cycles and will attain a better performance. There
will be less constant communication overhead (Ovh2),
less synchronisation overhead (Ovh3), discussed in the
next section, and better elimination of temporal load
imbalances (Ovh5).

The Synchronization Overhead

The per cycle synchronization calculation depends
strongly on the algorithm. For CMB algorithms, it is the
processing of one null event per channel, whereas for
CTW, it is proportional to the number of edge-
processes. The synchronization information is thus the
lowest for the CTW, and the highest for CMB
approaches. In our algorithm it is one null event per
interconnection plus the depth of the null event
propagation. In case of a hop model, our algorithm
looses the lookahead accumulation advantage, the
synchronisation overhead will be similar as with CTW
(only the lookahead of the edge-processes is taken into
account) and so the performance will be equal.

The synchronization overhead is proportional to the
cycle frequency. For CTW algorithms it is also
proportional to the number of interconnections.
Whereas for CMB, the number of null events per cycle
equals the number of channels. Our algorithm performs
in between both: the number of null events per cycle is
proportional to the number of interconnections plus the
depth of the lookahead propagation
Note that a lot of modern algorithms optimize the
synchronization overhead, like diverse null event
reduction techniques in CMB algorithms (Ferscha 1995,
etc) and for example, the bounded lag in Lubachevsky's
CTW algorithm (Lubachevsky 1989).

The overhead Ovh4 is specific for our algorithm. The
cost for the extra lookahead of our algorithm is the
conditional queue. In case of a hop, simulation will stop
by the first killed process, no other processes were
killed so far and thus, there are no conditional events
and no conditional queue overhead. But in case of
lookahead accumulation, conditional events of the
killed processes must be stored in the conditional queue
to be simulated in the next cycle. These extra operations
cause the extra overhead: the check whether the process
is killed and the queuing. These events come in
chronological order out of the event queue and therefore
sorting of the conditional queue is not necessary. This
results in one extra operation for each event and one for
each conditional event. In Figure 2 it can be seen that
the number of conditional events could reach half of the
number of processed events, as for lp D. But in most
cases, it will be much less, because the last lookahead of
the lookahead-path causes no conditional events.
Moreover, deep processes (far from the edge) will not
be killed soon. In total, the extra overhead is thus
between 1 and maximally 1.5 extra operations (check
and append) per simulated event, which will be much
smaller compared to the time to simulate one event C1.
We can conclude that the extra overhead induced by our
algorithm is small, as is confirmed by the experimental
results.

EXPERIMENTS

Two models will demonstrate our claims. One gives
good results by exploiting the lookahead accumulation,
while the other fails due to low lookahead. Both are
simulated on a cluster of 4 Pentium II processors of
333MHz connected by a 100Mb/s non-blocking switch.

Fpga

Field Programmable Gate Arrays (FPGAs) are
prefabricated devices used to implement digital logic.
They feature a matrix structure of logic cells
interconnected by routing channels, and a periphery of
I/O cells. FPGAs can be programmed by a stream of
configuration bits to form a logic circuit. The simulation
model consists of 2387 processes and 10978 channels
(Bousis 2000). Geometrical partitioning (the dashed

lines in Figure 5) gives best load balancing and least
communication. However, the model is heavily
interconnected and contains many hops (namely 453).
The shortest lookahead path is only 8 ns, resulting in
only 70 events simulated per cycle of 8ns. The
performance results are shown in Table 2.

Figure 5: FPGA Model with Partitioning

Figure 6: ATM Switch Model with Partitioning and
Shortest Lookahead Path

ATM switch

The high capacity ATM switch model (Geudens 2000)
demonstrates the benefits of our algorithm (Figure 6).
The model consists of a detailed 4 by 4 switch with 16
entries. Each input receives IP-traffic by a simulated
network.

Table 2: Performance results for parallel simulation
with 4 processors

 FPGA ATM switch
Global Performance
Speedup 0.74 3.5
#evSim per realtime second 6592 events/s 44000 events/s
Cycle time 8ns 50000ns
Communication overhead 17.6% 0.6%

Ovh1 #evCom / #evSim 18% 5.7%
Ovh2 #evSim / Cycle 70 10100

Synchronisation overhead
Ovh3 #evNull / #evSim 470% 0.45%
Ovh4 #evCond / #evSim 0 1.6%
Ovh5 Idle time 9.4% 11%

Here again, a geometrical partitioning (horizontal) is the
only plausible one (dashed lines in Figure 6). The
model can accumulate the lookahead along a path that
leaves the switch, passes the network, enters the server
and returns back to the switch. This results in long
cycles giving an quasi ideal speedup of 3.5 as shown in
Table 2.

CONCLUSION

In this paper, we demonstrated the benefit of
accumulating lookahead with a hybrid conservative
parallel simulation algorithm, based on per processor
aggregation of its processes. The processors’ global
lookahead is determined by lookahead accumulation
across the shortest lookahead path, which results in
longer simulation cycles.
A qualitative performance analysis showed that our
algorithm gets a performance benefit over the
traditional (non-optimized) conservative algorithms
CMB (asynchronous null-message algorithms) and
CTW (synchronous window algorithms) in case of
partitioned models without ‘hops’.

REFERENCES

Ayani R., Rajaei H. “Parallel simulation using conservative
time windows”. In 1992 Winter Simulation Conferences
Proceedings, pp 709-717, 1992.

Bousis L. “Study and Implementation of a Scalable Simulator
for Complex Digital Systems”. Master Thesis, Free
University of Brussels, 2000.

Brissinck W., Steenhaut K., Dirkx E. “A Combined
Sequential/Distributed Algorithm for Discrete Simulation”.
Proceedings of IASTED, Modelling and Simulation,
Pennsylvania, 1995.

Choi E., Chung M. J. “An important factor for optimistic
protocol on distributed systems: granularity”. In 1995
Winter Simulation Conferences Proceedings, pp 642-649,
1995.

Ferscha A. “Parallel and Distributed Simulation of Discrete
Event Systems”. Handbook of Parallel and Distributed
Computing, McGraw-Hill, 1995.

Fujimoto R.M. “Parallel Discrete Event Simulation”.
Communications of the ACM, 33, pp 29-53, October 1990.

Fujimoto R.M. Performance “Measurements of Distributed
Simulation Strategies”. Proc. 1988 SCS Multiconference
on Distributed Simulation Strategies, pp 14-20, February
1988.

Geudens S. “Quantitative Study of a Highly Formant Network
Switch with Distributed Simulation”. Master Thesis, Free
University of Brussels, 2000.

Lemeire, J. and Dirkx, E.: “Performance Factors in Parallel
Discrete Event Simulation”. In: Proc. of the 15th European
Simulation Multiconference (ESM), Prague, 2001.

Lin Y., Fishwick P.A. “Asynchronous Parallel Discrete Event
Simulation”. 1995.

Lubachevsky B.D. “Efficient distributed event-driven
simulations of multiple-loop networks”. Communications
of the ACM, 32, 111-123. 1989.

Misra J. “Distributed Discrete-Event Simulation”. ACM
Computing Surveys, Vol. 18, No. 1, March 1986.

Peterson G.D., Chamberlain R.D. “Exploiting lookahead in
synchronous parallel simulation”. In 1993 Winter
Simulation Conferences Proceedings, pp 706-712, 1993.

Praehofer H. and Resinger G. “Distributed Simulation of
DEVS-Based Multiformalism Models”. IEEE, 1994.

Preiss B.R., Loucks W.M. “The impact of Lookahead on the
Performance of Conservative Distributed Simulation”.
1990.

Steinman J.S. “Discrete-event simulation and the event
horizon”. Proceedings of the 8th Workshop on Parallel and
Distributed Simulation(PADS), 1994.

AUTHOR BIOGRAPHIES

JAN LEMEIRE was born in Malmédy, Belgium. He
obtained his masters degree in electrotechnics
engineering in 1994 at the VUB. After an additional
masters in Computer Science, he started working for 3.5
years in the private sector. First for Cap Gemini, an IT
consulting firm, then for Warmoes & Van Damme, a
company specialised in knowledge systems. There, he
developed his professional skills, but in 1999 he
returned to the VUB to prove himself in a scientific

carreer. He was first allocated on a project on parallel
simulation in cooperation with Alcatel Bell . However,
since march 2001 he is employed as an assistent,
teaching with a lot of enthusiasm and pursuing a PhD
about parallel performance and inference. His e-mail
address is Jan.Lemeire@vub.ac.be and his webpage
is http://parallel.vub.ac.be/~jan.

ERIK DIRKX was born in Brussels, Belgium. He
obtained a MSc. in Electrotechnics Engineering, in
Computer Science, an MBA and a PhD in Computer
Science at the Vrije Universiteit Brussel. He was a
visiting scientist at IBM T.J. Watson Research lab,
ETL-Tsukuba (Japan) and Xilinx Research lab (San
Jose CA). He is currently an associate professor at the
VUB, teaching and coordinating research in the field of
parallel and distributed computing. His e-mail address is
: Erik.Dirkx@vub.ac.be and his webpage can be
found at http://parallel.vub.ac.be/~ efdirkx.

	c0: Proceedings 18th European Simulation MulticonferenceGraham Horton (c) SCS Europe, 2004ISBN 3-936150-35-4 (book) / ISBN 3-936150-36-2 (CD)

