
DEVELOPMENT AND PERFORMANCE OF A MASSIVELY PARALLEL
REGIONAL SPECTRAL MODEL

Yifeng Cui Hann-Ming Henry Juang
San Diego Supercomputer Center National Center for

University of California, San Diego Environment Prediction
9500 Gilman Drive, MC0505 World Weather Bureau,

La Jolla, CA 92093-0505, U.S.A 5200 Auth Road
E-mail: yfcui@sdsc.edu Camp Springs, MD 20746, U.S.A

Giridhar Chukkapalli Masao Kanamitsu
San Diego Supercomputer Center Scripps Institution of Oceanography

University of California, San Diego University of California, San Diego
9500 Gilman Drive, MC0505 9500 Gilman Drive, MC0224

La Jolla, CA 92093-0505, U.S.A La Jolla, 92093-0224, U.S.A

KEYWORDS
Regional Spectral Model; RSM; domain decomposition;
parallelization; message passing.

ABSTRACT

The Regional Spectral Model (RSM) is a nested
primitive equation spectral model used by U.S.
operational centers and international research
communities to perform weather forecasts and climate
prediction on a regional scale. In this paper, we present
the development of an efficient parallel RSM with a
message passing paradigm. Our model employs robust
and efficient 1-D and 2-D decomposition strategies and
incorporates promising parallel algorithms to deal with
complicated perturbation architecture and ensure
portability using hybrid MPI and openMP. We also
achieve bit reproducibility when our parallel RSM is
compared to the sequential code. Performance tests
were performed on an IBM SP, Compaq, NEC SX-6 and
the Earth Simulator and our results show good
scalability at over a thousand processors.

INTRODUCTION

The Regional Spectral Model (RSM) is a regional scale
climate model developed by the National Oceanic and
Atmospheric Administration’s National Center for
Environment Prediction (NCEP) for the study of
regional scale climate and conduct seasonal climate
predictions (Juang and Kanamitsu 1994; Juang et al.
1997). The model is nested within NCEP's global
spectral model (GSM), and the global model provides
the RSM with its required initial and boundary
conditions. The RSM requires large compute resources
to provide high-resolution scale climate predictions
focused on limited areas. For the past decade, RSM has
run on high-end workstations, on serial or shared

memory parallel sytems, and scalar or vector processor
systems. However, the need to run larger and longer
scenarios at high resolutions with more sophisticated
physics exceeds the capabilities of the original single-
node computer architectures. Increased availability of
distributed-memory para llel architectures provides the
motivation for this work, initiated in 2002, to implement
a message-passing version of the algorithm. The
current parallel version, completed in beginning 2003,
supports the message-passing interface for
implementation on scalable, distributed-memory
computers.

The RSM is a nested primitive equation spectral model
on a stereographic projection and uses sine-cosine
series as horizontal basis functions, consisting of a
low-resolution global spectral model and a high-
resolution regional spectral model. Spectral models
have proven to be effective in achieving high-order
accuracy when compared with grid-point models (Juang
and Kanamitsu 1994). The sequential implementation of
RSM uses nesting technique to interpolate coarse-grid
global data to fine-grid local data. The perturbation
technique is used to force the solution on the regional
scale simulations to the global scale coarse-grid
solution. The complex parallel implementation of the
RSM is designed to be highly flexible, so that the code
can be run on a range of architectures, including
distributed shared memory as well as distributed vector
processors.

Spectral transform methods have important
computational advantages (Bourke 1972), but are in
many respects the most difficult to parallelize efficiently
because of their highly nonlocal communication
patterns (Foster et al. 1995). In this paper, we provide a
comprehensive description of the design of the parallel
RSM, and an evaluation of its performance on IBM

Power3, Power4, NEC SX-6 as well as on Earth
Simulator platforms. We particularly emphasize the
flexible 1-D and 2-D data decomposition, and offer a
strategy to maintain code structure while improving
performance. Throughout our discussion the Regional
Spectral Model will be referred to as RSM and the
Global Spectral Model as GSM.

REGIONAL SPECTRAL MODEL

The RSM is introduced to predict deviations from the
global model, and to improve the forecast of poorly
represented global-scale waves in the regional domain
(Juang and Kanamitsu 1994). The RSM’s prognostic
variables are expressed as perturbations from its global
counterparts. The RSM uses the same primitive
hydrostatic system of virtual temperature, humidity,
surface pressure and mass continuity prognostic
equations on terrain following sigma coordinates as
global spectral model GSM does. The philosophy
behind this design is to use the regional model to
generate regional scale features forced by the large
scale. Thus, the large scale in the regional domain
needs to be pres erved. Consistency between the two
models insures that the change of the large-scale
motion in the regional domain is minimized.

The numerical method is described as follows. The
difference between the regional model and the global
model fields are decomp osed into sine and cosine
functions (as opposed to spherical harmonic functions
in the global model). The sine and cosine functions
conveniently satisfy the zero and symmetric lateral
boundary conditions appropriate for the differences.
The space derivatives are computed as a sum of the
derivatives computed from global spherical coefficients
and from the sine and cosine functions of the regional
model.

The RSM has ahigh-order accuracy of spectral
computations, and a time -dependent perturbation
method, which distinguishes it from other regional
spectral models (Juang et al. 1997). The spectral
transformation of the RSM is a two -dimensional cosine
series for perturbation of pressure, divergence,
temperature, and mixing ratio, and a two-dimensional
sine series for perturbation of vorticity. In the
horizontal, the regional model uses double sine-cosine
series with wall boundary conditions as base functions,
while the global model uses spherical harmonics as
base functions. In the vertical, the regional model uses
exactly the same finite-difference formulation as in the
global model.

One-dimensional Fast Fourier Transform is used in x-
direction while simple fourier summation is performed in
y-direction, intentionally avoiding the use of the two-
dimensional Fast Fourier Transform. This approach has

the advantage of reducing the memory requirement and
is the best fit for distributed machine adaptation. Also,
this method is analogous to the global spherical
transform, and thus the program structure of the two
models is very similar.

The RSM program system is managed by Concurrent
Versions System (CVS) and controlled by the configure
and Makefile system. The modeling system is
composed of three components: libraries, source code,
and run scripts. The library contains model libraries,
utilities, and climatological/constant fields, machine
dependent and resolution independent sources. The
library needs only to be made once. The source code is
used to create executables, defines model resolution
and options, creates model resolution dependent
constants, and compiles source codes and creates run
executables. The run scripts are for running the model
and producing the outputs.

The model output files include two restart files: one
contains fields on sigma surfaces, and the other
contains fields on ground surface including diagnostic
files such as surface fluxes and precipitation.

IMPLEMENTATION OF RSM ON MESSAGE
PASSING

The parallel RSM maintains the implementation
structure used in the GSM, but also makes use of
promising parallel algorithms. This concept was
designed by Juang in 2002. A future paper will discuss
the concept in more details.

The parallel implementation builds on the existing
shared-memory model. The basic strategy of the
implementation of RSM is to make a minimum of
changes to the 500,000 lines sequential code while a
scalable and portable parallel version of RSM can
obtain bit reproducible results. The coding design
emphasizes the flexibility and readability. For flexibility,
the parallel RSM is designed to run in hybrid mode, so
that the code can be used for a range of architecture
including inner loop vectorization, outer loop multi-
threads (openMP) and multi-nodes (MPI). For
readability and easy maintenance, the MPI
implementation is designed to be as consistent as
possible with the parent Global Spectral Model.

To achieve these goals, the single program multiple
data (SPMD) programming paradigm is used, such that
each processor performs all compositions for only one
subdomain. The model data structure is shrunk in the
north/south dimension, using only as much memory as
needed on each processor. The Fortran 90 data
structure is implemented to simplify the data sharing
among all routines through few passing arguments. In
order to manage the necessary code change, the C pre -

processor, such as #define and #ifdef etc, are used to
handle dependencies associated with shared- vs.
distributed memory coding constructs without
degrading the performance. For load balancing, local
symmetric distribution of the grids is used and the
computation in grids is partitioned so that each
processor has approximately the same amount of work
to do in each phase of the computation.

The perturbation method requires large memory and
significant computation time to deal with base field over
the entire regional domain. The parallel RSM employs a
number of Fortran 90 features, such as dynamic memory
and pointers, to achieve a more flexible and run-time
configuration model suitable for distributed memory
parallel computers. In particular, a dynamic memory
management scheme is employed for all large model
arrays to take full advantage of the large aggregate
memory on distributed-memory platforms. An example
of the coding design is:

#ifndef MP
 allocate (syn(igrd12_,levs_))

… …
 deallocate (syn)

#else
 if(km.eq.1) then
 allocate (synpk1(igrd12p_,jgrd12_))

… …
 deallocate (syn1)
 else if(km.eq.levs_) then
 allocate (synpk2(igrd12p_,levsp_,jgrd12_))

… …
 deallocate (synpk2)
 endif
#endif

where the C preprocessor is set for sequential or
parallel (one or multiple vertical levels) implementation.
Individual parallel tasks are assigned a range of model
latitudes for which they are responsible.

In parallel RSM, both 1-D and 2-D decompositio n are
built for flexibility, which enables runs on any number
of processors. 1-D can be used on any number of
processors, but only up to the number of the smallest
dimension among all directions and all space. The 2-D
decomposition data transposition strategy utilizes a 2-D
model data structures, meaning a single dimension of
data structure in memory for each processor. This
method has been applied successfully in several
parallel atmospheric models (Foster and Worley 1997;
Barros et al. 1995; Skalin and Bjorge 1997), including the
Global Spectral Model. 2-D can be used up to the
number of product of two smallest dimensions in all
directions and all spaces, except with any prime number
of processors (Juang and Kanamitsu 2001). In the
current design, the total numbers of working

processors NODES equals Nrow times Ncol where
Nrow and Ncol are any integers in X and Y directions. If
NODES are prime integer, we set Ncol=1 and
Nrow=NODES. In this case, 2-D decomposition
becomes 1-D.

For a spectral model that uses transform method as in
RSM, dependent variables and their tendencies take the
form of spectral coefficients and grid point values at
different stages of the computations. Each stage is
characterized by full dimension in one of the three-
dimensions. For example, when the Fourier transform is
performed in an east-west direction, the full array in the
east-west direction needs to be available on each
processor, but the size in the north-south and vertical
directions can be arbitrary. On the other hand, when the
Legendre transform is performed, each processor needs
the full array in north-south direction, but the array in
east-west and vertical directions can be arbitrary. Thus,
the parallelization of the spectral model requires
rearrangement of arrays from one configuration to the
other (for example, full array in x to full array in y). This
rearrangement, also called the transpose method,
requires communication between processors and is
programmed using MPI routines. The transpose
method is used to minimize the code modification - the
original serial is left unchanged, the transpose routines
are inserted between the transforms in east-west
direction and in the north-south direction.

Figure 1: Parallel RSM Data Transposition Strategy,
concepted by H.-M. H. Juang.

The entire transposition process is illustrated in Fig. 1.
The general sequences of the forecast model after data
are read in and transformed to spectral space include:
transform from spectral to grid-point space, compute all
non-linear model dynamics and model physics,
transform back from grid-point to spectral space, and
perform linear computation such as semi-implicit and
time filer in spectral space. It requires only one
transpose from the Legendre transform array
configuration to the Fourier transform configuration for
1-D decomposition. All processors communicate with

each other. In contrast to this, 2-D decomposition
requires three transposes in forward direction, namely
in advance of Legendre transform that has a north-
south dependency, in advance of Fourier transform that
has east-west dependency and in advance of nonlinear
computation that has vertical dependency. In this case,
communications only take place within a subgroup of
processors. After the dynamics and physical
computation with vertical dependency are complete, the
data is transformed back with three more transposes in
the reverse way.

The parallel code includes both the data model and the
message passing model. The input/output (I/O) is the
part of the code where the SPMD paradigm is not
employed. Also, the global to regional spherical
transform is not parallelized in the current effort. This is
primarily because of very limited execution time
compared with the regional forecast computation, as
was indicated in the profiler performance analysis. The
global coding is generally executed independently on
each node.

Bit reproducibility was a goal of this parallel effort. This
implies that on the testing computer, the parallel code
be run on a variable number of processors and the
sequential code should give identical results. To debug
the massage-passing version of RSM, we used a
parallel debugging tool called Totalview, developed at
Etnus, to compare serial and parallel version outputand
ensure bit-by-bit reproducibility. This produces a high
level of confidence at each coding step. The final
version of the parallel RSM produces results identical
to the original sequential code on the same machine,
independent of the number of processors on which it
ran.

PARALLEL PERFORMANCE

The parallel RSM is portable, and only minimal
modifications are needed to run the code on different
platforms. The code has already been run on an IBM
SP, Compaq Alpha, NEC SX-6 and the Earth Simulator.
The performance numbers listed below are collected
from an IBM SP and SX-6. The testing horizontal
resolutions are at T62L28r12885 and at T62L28r512335
(global model resolution of triangular truncation 62 with
28 levels). T62 has sufficient resolution to give good
large-scale predictions. Our test IBM SP platforms were
the Power3 Blue Horizon and Power4 DataStar, both
located at San Diego Supercomputer Center. The
Power4 DataStar is a 7.9 teraflops IBM SP system which
consists of 176 8-way 1.5Ghz p655 nodes and 7 32-way
1.8 Ghz p690 nodes , with total shared memory of 3.2
terabytes. The Power3 Blue Horizon is a 1.7 teraflop
system with 144 8-way SMP nodes. Each SMP node
has 4 gigabyte of memory shared among its eight 375
Mhz Power3 processors. The vector machine NEC-6 is a

single cabinet, 8 cpu node with 64 GB of symmetric
shared memory. Each cpu is a single -chip 8-way vector
processor. The vector units operate at 500 Mhz. Peak
performance is 8 GFLOPS/processor with 8 pipes given.
The 8 vector register per CPU are 256 elements long and
CPU-memory bandwidth is 32GB/sec/CPU (Baring
2003).

We performed our experiments in two stages. In the first
stage, single node tests were performed for code
optimization. In the second stage, we tested and analyzed
scalability on equivalent platforms.

Optimization

On IBM SPs, we use xprofiler and the IBM SP hardware
counter utilities HPM (Hardware Performance Monitor).
to analyze the single -node performance and final
options are tuned as:

FORT_FLAGS="-O3 -qfixed -qrealsize=8 -qnosave -
qmaxmem=-1 -bmaxdata:0x80000000 -
bmaxstack:0x10000000"

LOAD_FLAGS="-O3 -qfixed -qrealsize=8 -qnosave -
qmaxmem=-1 -bmaxdata:0x80000000 -
bmaxstack:0x10000000"

The total performance of the IBM SP3/SP4 is about
109/531 Mflop/s on a single processor at 128x85x28
resolution, resulting in a 7%/8% of peak performance.

On ARSC NEC-6, we set up some environments such as
I/O variable F_FILEINF, profiling variable F_FTRACE
and performance data variable F_PROGINF to analyze
the code performance. Some exploration of the compiler
options was made to achieve optimal performance. The
compiler options are tuned as:

FORT_FLAGS="-Chopt -ftrace -f3 -float0 -ew -llapack_64 -
lblas_64 -lfft_64 -I./MODS"

LOAD_FLAGS="-Chopt -ftrace -f3 -float0 -ew -llapack_64 -
lblas_64 -lfft_64 -I./MODS"

For a few subroutines, they abort under the highest
optimization (–Chopt) but not under a lower optimization
(–Cvopt). Some modest modifications such as inlining
are sufficient to achieve 35% of peak performance on
average (2806Gflops/p), and 80% of peak performance
in the best case for Legendre transform on the
resolution at 720x715x28. The vector ratio achieves over
96%.

Scalability

The wall clock time of the parallel code runs on different
number of processors are shown in Figure 2 for IBM
SP3/SP4. Here, a time step of 30 seconds is used and

the simulation period is 6h. The solid lines represent the
measurement on Power3, the dashed lines on Power4;
the hollow points reflect the 128x85x28 resolution, the
solid points the 512x335x28 resolution. The figure
shows that the low-resolution model performance
saturates quickly as the number of processors increase.
For the high-resolution model, it scales to 1024
processors and the model efficiency does not diminish
quickly with an increase in the number of processors.
The smoothness of the curve is affected at certain
points by a mismatch of the domain decomposition with
the number of mesh points (Wehner et al. 1995), as well
as a transition from using small number of nodes to
larger number of nodes. The speedup and efficiency on
various processor

RSM Execution Time on IBM-SP

0

2000

4000

6000

8000

10000

12000

14000

1 8 16 32 64 128 256 512 1024

Numbers of Processors

E
xe

cu
ti

o
n

 T
im

e
(s

ec
)

pwr3-128x85 pwr3-512x335
pwr4-128x85 pwr4-512x335

Figure 2: RSM Execution Time on IBM SPs

RSM Performance on IBM-SP

0

50

100

150

200

250

300

350

400

1 8 16 32 64 128 256 512 1024

Number of Processors

S
p

ee
d

-U
p

20%

30%

40%

50%

60%

70%

80%

90%

100%

E
ff

ic
ie

n
cy

pwr3-128x85 Speed-up pwr3-512x335 Speed-Up
pwr4-128x85 Speed-Up pwr4-512x335 Speed-Up
pwr3-128x85 Efficiency pwr3-512x335 Efficiency
pwr4-128x85 Efficiency pwr4-512x335 Efficiency

Figure 3: RSM Speedup and Efficiency on IBM SPs

configurations are summarized in Figure 3. The fine-
resolution runs (512x335) take significant longer time on
the dynamics and physics computation. At 1024
processors, the efficiency is reduced to 39%. There are
several factors contributing to the falloff in
performance. In addition to the remaining serial codes
for the treatment of lateral RSM boundaries, we use the
‘master-worker’ strategy - the master processor
distributes the work to the available processors and is
responsible for reading and writing the history and
checkpoint data on an hourly-averaged basis. As a
result, I/O may account for 20-30% of the total elapsed
time. Also, with the increased number of processors,
the message communication cost is increased, and the
load imbalance becomes noticeable, which will be
discussed later.

The performance measured with 64-processors at
512x335x28 resolution is 137/357 Mflop/s on IBM
SP3/SP4. Performance gradually degrades from this
level to 60 Mflop/s on 1024 processors, which is fairly
good when compared with other applications. The per-
processor performance achieved on microprocessor-
based parallel computers is often disappointing: a small
fraction of peak. The reasons for this are not yet fully
understood, but seem to be a combination of code
structure (data structures and loop structures designed
for vector machines often do not perform well on RISC
microprocessors) and high memory bandwidth
requirements (Drake and Foster 1995). Another reason
for this is the parallel partitioning strategy designed in
climate modeling. The spectral transform method
imposes the most severe constraint on selecting a
parallel decomp osition strategy (Hack et al. 1995). The
measurements above are based on system-independent
libraries including Fast Fourier Transform (FFT) for
portability consideration. We recently ported the code
to use vendor-supplied subroutine libraries ESSL FFT,
which increased performance by about 15%.

Communication Overhead

The parallel model has inter-processor communication
overhead not present in the sequential model. The
communication overhead in the parallel version of the
RSM at 512x335x28 was approximately 34% on the 64
processor run, but increased to 52% on the 128
processor run. As mentioned above, the spectral model
has the highly nonlocal communication patterns. The
results indicate that the communication cost is the most
responsible for sublinear performance scaling of the
code on IBM SP system.

Load Imbalance

With an increasing number of processors the load
imbalance becomes noticeable. The load imbalance
accounted for about 12% of the total cost on the 16-

processor runHere load imbalance is calculated as
follows:

max

max

T

TT
L avg−

=

where Tmax and Tavg are the maximum and average
execution times of MPI tests respectively. The load
balance of 1.0 means all processors take exactly the
same amount of time. Unlike the global spectral model
that uses triangular truncation, the regional spectral
model doesn’t have a markedly uneven subdomain
distribution in the 2-D decomposition. The load
imbalance is mainly due to the different tasks of the
processors such as the calculation in the physical
parameterization (e.g. shortwave radiative transfer) or
I/O.

Machine Comparisons

Our tests show that the one-dimensional decomposition is
more efficient than the two-decomposition on SX-6 vector
processors due to increased vector lengths. This is
consistent with previous work on the Fujitsu VPP5000
(Juang and Kanamitsu 1997). However, this does not
apply for cache-based IBM -SP. On the IBM SP, the 2-D
decomposition is significantly better than 1-D
decomposition. The tests on the Power3 show that on a
small number of processors (8 to 16), the run based on
2-D decomposition saves approximately 20% of the
execution time; on a large number of processors (such
as 128), it saves approximately 40% of execution time.

Table 1: Performance Comparison on SPs and SX-6

Power3 Power4 SX-6
1 cpu

 Execution time (sec) 902 193 94
 Mflips/Mflops 132 593 1002
 Sustained Performance* 8.8% 8.7% 12.5%

4 cpus
 Execution time (sec) 252 84 57
 Mflips/Mflops 136 345 708
 Sustained Performance* 9.1% 5.1% 8.9%
 Efficiency 90% 57% 41%
* Percent of theoretical Peak Performance

A rough comparison of the performance on different
machines is summarized in Table 1. A more detailed
comparison, including theEarth Simulator, will be
addressed later in another paper. Here, we test on the
small resolution at 128x85x28 and set a time step of 360
seconds. The Power4 is more than 4 times faster than
the Power3, but it sustains a much lower fraction of
peak due to its relatively poor ratio of memory
bandwidth to peak performance. Results demonstrate
that the SX-6 achieves high sustained performance and
significantly outperforms the superscalar designs of the

Power3 and Power4. In addition to its vector
architecture and the shared-memory structure, the SX-6
has high memory bandwidth and low memory latency.
The SX-6 vector unit lacks data cache. Instead of
relying on data locality to reduce memory overhead,
memory latencies are masked by overlapping pipelined
vector operations with memory fetches (Oliker et al.
2003). Limited scaling on the SX-6 is mainly due to the
reduced length of big vector loops as the number of
processors increases. More work is being done to
improve its scalability and efficiency on vector
architecture.

CONCLUDING REMARKS

The production parallel Regional Spectral Model is
designed to execute on massively parallel computer
systems. The model employs a flexible 1-D and 2-D
algorithmic decomposition, which has been
implemented for both shared-memory and distributed-
memory parallel architectures. With the parallel version
of RSM, overall computational performance is quite
respectable for distributed-memory implementation on
IBM SP machine over number of nodes from a few to
1024 processors. Since the completion of the parallel
implementation, the parallel RSM has been widely
adopted by the international research community. In
particular, the National Center for Environment
Prediction (NCEP) has incorporated the parallel
implementation into their operational RSM version for
daily operational weather forecast and climate
prediction.

Although the parallel RSM code scales up to 1024
processors with fine-resolution, the parallel speedup
with RSM begins to show a significant degradation as
the number of processors employed begins to approach
the maximum number of available parallel processes, as
seen with other climate models. The communication
overhead and load imbalance are among the reasons of
this degradation. A significant weakness in the current
version of the parallel RSM is the treatment of I/O.
Further implementation of parallel I/O techniques is
needed to achieve sufficient I/O bandwidth to the
parallel file systems. In addition, the model initialization
step involving global to regional spectral transform has
been done sequentially due to the small fraction of time
used by this step.

During the course of this work, the RSM was ported to
the Earth Simulator (ES) to prepare for a 50-year
downscaling of atmospheric reanalysis over the
continental US. While RSM performance is still being
optimized on the Earth Simulator, we have already
observed 1.6 Gflops preprocessor performance at the
preliminary test of 10-km resolution at 1024x651x28 on
ES, which is 20% of the peak performance. The ES is a
NEC supercomputer that implements high-speed vector

processors in full scale and consists of 640 nodes
connected by a 640x640 single-stage crossbar switch.
The experience on ES will be very important in enabling
meaningful comparisons between the capabilities of the
Earth Simulator and IBM SP, and can guide future
system upgrades to support RSM and similar
applications including distributed simulations.

ACKNOWLEDGEMENTS

This work was supported by the National Partnership
for Advanced Computational Infrastructure (NPACI) at
the San Diego Supercomputer Center, NOAA Climate
Dynamics and Experimental Prediction program,
California State, and Climate Modeling Center at
National Center for Environmental Prediction. We used
the IBM SP3 Blue Horizon and SP4 Datastar systems at
the San Diego Supercomputer Center, the NEC SX-6
system at the Alaska Arctic Region Supercomputing
Center, and the NEC Earth Simulator of Japan.

REFERENCES

Baring, T.L.. 2003. “SX-6 Compare and Contrast”. Techn.
Report. Arctive Regional Supercomputer Center,
University of Alaska Fairbanks (May).

Barros, S.R.M.; D. Dent; L. Isaksen; G. Robinson; G.
Mozdynski, and F. Wollenweber. 1995. “The IFS
model: A parallel production weather code”.
Parallel Computing,No.21 (Oct), 1621-1638.

Bourke, W.. 1972. “ An efficient, one-level, primitive-
quation spectral model”. Monthly Weather Review,
No.102, 687-701.

Drake , J. and I. Foster. 1995. “Introduction to the
special issue on parallel computing in climate and
weather modeling”. Parallel Computing, No.21
(Oct), 1539-1544.

Foster, I.; B. Toonen and P.H. Worley. 1995.
“Performance of Parallel Computers for Spectral
Atmospheric Models”. Tech. Report ORNL/TM-
12986, Oak Ridge National Laboratory. Oak Ridge,
Tenn., (Apr).

Foster, I. and P.H. Worley. 1997. “Parallel algorithms for
the spectral transform method”. SIAM J. Sci.
Comput, No.18(2), 806-837.

Hack , J.J.; J.M. Rosinski; D.L. Williamson; B.A.
Boville and J.E. Truesdale. 1995. “Computational
design of the NCAR community climate model”.
Parallel Computing , No.21 (Oct), 1545-1569.

Juang, H.-M. H. and M. Kanamitsu. 1994. “The NMC
Nested Regional Spectral Model”. Monthly Weather
Review, No.122, 3-26.

Juang, H.-M. H.; S.-Y. Hong and M. Kanamitsu. 1997.
“The NCEP Regional Spectral Model: An Update”.
Bulletin of the American Meteorology Socienty,
No.78, 2125-2143.

Juang, H.-M. and M. Kanamitsu. 2001. “The
Computational Performance of the NCEP Seaonal
Forecast Model on Fujitsu VPP5000”. Ninth

ECMWF Workshop on the use of high performance
computing in meteorology (Nov 13-17). World
Scientific under the title: Developments in
teracomputing. Ed. by W . Zwieflhofer and N Kreitz.
Singapore, ISBN 981-02-4761-3.

Oliker L.; A. Canning; J. Carter; J. Shalf and D. Skinner.
“Evaluation of Cache-based Superscalar and
Cacheless Vector Architectures for Scientific
Computations”. Supercomputing 2003 (Phoenix,
Arizona, Nov 15-21).

Skalin, R. and D. Bjorge. 1997. “Implementation and
performance of a parallel version of the HIRLAM
limited area atmospheric model”. Parallel
Computing, No.23 (Dec), 2161-2172.

Wehner, M.F.; A.A. Mirin; P.G. Eltgroth;
W.P.Dannevik; C.R.Mechoso; J.D. Farrara and J.A.
Spahr. 1995. “Performance of a distributed memory
finite difference atmospheric general circulation
model”. Parallel Computing , No.21 (Oct), 1655-
1675.

AUTHOR BIOGRAPHIES

CUI, YIFENG received his Ph.D. in Hydrology from
University of Freiburg. He also holds a bachelor degree
in Meteorology from Nanjing Institute of Meteorology,
and a master degree in Hydroclimatology from Hohai
University in 1987, China. He worked for a couple of
years for Environment Canada before moving in 2000 to
the University of California, San Diego, where he now
works on parallel performance with the Scientific
Computing Department at the San Diego
Supercomputer Center.. His e-mail address is:
yfcui@sdsc.edu.

HANN-MING HENRY JUANG is a research
meteorolo gist at the National Center for Climate
Prediction, NOAA. His e-mail address is:
henry.juang@noaa.gov.

GIRIDHAR CHUKKAPALLI received his Ph.D. in
Mechanical Engineering from University of Toronto,
Canada. He has an extensive background in CFD
algorithms (finite element/ finite difference, spectral
schemes). He is currently a senior computational
scientist with the Scientific Computing Department at
the San Diego Supercomputer Center, and has
extensive experience with both shared memory and
message passing programming. His e-mail address is:
giri@sdsc.edu.

MASAO KANAMITSU is a research meteorologist at
Scripps Institution of Oceanography, University of
California, San Diego. His e-mail address is
mkanamitsu@ucsd.edu.

	c0: Proceedings 18th European Simulation MulticonferenceGraham Horton (c) SCS Europe, 2004ISBN 3-936150-35-4 (book) / ISBN 3-936150-36-2 (CD)

