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ABSTRACT

The Regional Spectral Model (RSM) is a nested
primitive equation spectral model used by U.S.
operational centers and international research
communities to perform weather forecasts and climate 
prediction on a regional scale.  In this paper, we present
the development of an efficient parallel RSM with a 
message passing paradigm. Our model employs robust 
and efficient 1-D and 2-D decomposition strategies and 
incorporates promising parallel algorithms to deal with 
complicated perturbation architecture and ensure
portability using hybrid MPI and openMP. We also 
achieve bit reproducibility when our parallel RSM is 
compared to the sequential code. Performance tests 
were performed on an IBM SP, Compaq, NEC SX-6 and 
the Earth Simulator and our results show good
scalability at over a thousand processors.

INTRODUCTION

The Regional Spectral Model (RSM) is a regional scale 
climate model developed by the National Oceanic and 
Atmospheric Administration’s National Center for
Environment Prediction (NCEP) for the study of
regional scale climate and conduct seasonal climate 
predictions (Juang and Kanamitsu 1994; Juang et al. 
1997). The model is nested within NCEP's global
spectral model (GSM), and the global model provides 
the RSM with its required initial and boundary
conditions. The RSM requires large compute resources 
to provide high-resolution scale climate predictions
focused on limited areas. For the past decade, RSM has 
run on high-end workstations, on serial or shared

memory parallel sytems, and scalar or vector processor 
systems. However, the need to run larger and longer 
scenarios at high resolutions with more sophisticated 
physics exceeds the capabilities of the original single-
node computer architectures. Increased availability of 
distributed-memory para llel architectures provides the 
motivation for this work, initiated in 2002, to implement 
a message-passing version of the algorithm. The
current parallel version, completed in beginning 2003, 
supports the message-passing interface for
implementation on scalable, distributed-memory
computers.

The RSM is a nested primitive equation spectral model 
on a stereographic projection and uses sine-cosine
series as horizontal basis functions, consisting of a 
low-resolution global spectral model and a high-
resolution regional spectral model. Spectral models 
have proven to be effective in achieving high-order
accuracy when compared with grid-point models (Juang 
and Kanamitsu 1994). The sequential implementation of 
RSM uses nesting technique to interpolate coarse-grid
global data to fine-grid local data. The perturbation 
technique is used to force the solution on the regional 
scale simulations to the global scale coarse-grid
solution. The complex parallel implementation of the 
RSM is designed to be highly flexible, so that the code 
can be run on a range of architectures, including 
distributed shared memory as well as distributed vector 
processors.

Spectral transform methods have important
computational advantages (Bourke 1972), but are in 
many respects the most difficult  to parallelize efficiently 
because of their highly nonlocal communication
patterns (Foster et al. 1995). In this paper, we provide a 
comprehensive description of the design of the parallel 
RSM, and an evaluation of its performance on IBM 



Power3, Power4, NEC SX-6 as well as on Earth
Simulator platforms. We particularly emphasize the
flexible 1-D and 2-D data decomposition, and offer a 
strategy to maintain code structure while improving 
performance. Throughout our discussion the Regional 
Spectral Model will be referred to as RSM and the 
Global Spectral Model as GSM.

REGIONAL SPECTRAL MODEL

The RSM is introduced to predict deviations from the 
global model, and to improve the forecast of poorly 
represented global-scale waves in the regional domain 
(Juang and Kanamitsu 1994). The RSM’s prognostic 
variables are expressed as perturbations from its global 
counterparts. The RSM uses the same primitive
hydrostatic system of virtual temperature, humidity, 
surface pressure and mass continuity prognostic
equations on terrain following sigma coordinates as 
global spectral model GSM does. The philosophy
behind this design is to use the regional model to 
generate regional scale features forced by the large 
scale. Thus, the large scale in the regional domain 
needs to be pres erved. Consistency between the two 
models insures that the change of the large-scale
motion in the regional domain is minimized.

The numerical method is described as follows. The 
difference between the regional model and the global 
model fields are decomp osed into sine and cosine 
functions (as opposed to spherical harmonic functions 
in the global model). The sine and cosine functions 
conveniently satisfy the zero and symmetric lateral
boundary conditions appropriate for the differences. 
The space derivatives are computed as a sum of the 
derivatives computed from global spherical coefficients 
and from the sine and cosine functions of the regional 
model.

The RSM has ahigh-order accuracy of spectral
computations, and a time -dependent perturbation
method, which distinguishes it from other regional
spectral models (Juang et al. 1997). The spectral
transformation of the RSM is a two -dimensional cosine 
series for perturbation of pressure, divergence,
temperature, and mixing ratio, and a two-dimensional
sine series for perturbation of vorticity. In the
horizontal, the regional model uses double sine-cosine
series with wall boundary conditions as base functions, 
while the global model uses spherical harmonics as 
base functions. In the vertical, the regional model uses
exactly the same finite-difference formulation as in the 
global model.

One-dimensional Fast Fourier Transform is used in x-
direction while simple fourier summation is performed in 
y-direction, intentionally avoiding the use of the two-
dimensional Fast Fourier Transform. This approach has 

the advantage of reducing the memory requirement and 
is the best fit for distributed machine adaptation. Also, 
this method is analogous to the global spherical
transform, and thus the program structure of the two 
models  is very similar.

The RSM program system is managed by Concurrent 
Versions System (CVS) and controlled by the configure 
and Makefile system. The modeling system is
composed of three components: libraries, source code, 
and run scripts. The library contains model libraries, 
utilities, and climatological/constant fields, machine 
dependent and resolution independent sources. The 
library needs only to be made once. The source code is 
used to create executables, defines model resolution 
and options, creates model resolution dependent
constants, and compiles source codes and creates run 
executables. The run scripts are for running the model 
and producing the outputs.

The model output files include two restart files: one 
contains fields on sigma surfaces, and the other
contains fields on ground surface including diagnostic 
files such as surface fluxes and precipitation.

IMPLEMENTATION OF RSM ON MESSAGE 
PASSING

The parallel RSM maintains the implementation
structure used in the GSM, but also makes use of 
promising parallel algorithms. This concept was
designed by Juang in 2002. A future paper will discuss 
the concept in more details.

The parallel implementation builds on the existing 
shared-memory model. The basic strategy of the
implementation of RSM is to make a minimum of 
changes to the 500,000 lines sequential code while a 
scalable and portable parallel version of RSM can 
obtain bit reproducible results. The coding design 
emphasizes the flexibility and readability. For flexibility, 
the parallel RSM is designed to run in hybrid mode, so 
that the code can be used for a range of architecture 
including inner loop vectorization, outer loop multi-
threads (openMP) and multi-nodes (MPI). For
readability and easy maintenance, the MPI
implementation is designed to be as consistent as 
possible with the parent Global Spectral Model.

To achieve these goals, the single program multiple 
data (SPMD) programming paradigm is used, such that 
each processor performs all compositions for only one 
subdomain. The model data structure is shrunk in the 
north/south dimension, using only as much memory as 
needed on each processor. The Fortran 90 data
structure is implemented to simplify the data sharing 
among all routines through few passing arguments. In 
order to manage the necessary code change, the C pre -



processor, such as #define and #ifdef etc, are used to 
handle dependencies associated with shared- vs.
distributed memory coding constructs without
degrading the performance. For load balancing, local 
symmetric distribution of the grids is used and the 
computation in grids is partitioned so that each
processor has approximately the same amount of work 
to do in each phase of the computation.

The perturbation method requires large memory and 
significant computation time to deal with base field over 
the entire regional domain. The parallel RSM employs a 
number of Fortran 90 features, such as dynamic memory 
and pointers, to achieve a more flexible and run-time
configuration model suitable for distributed memory 
parallel computers. In particular, a dynamic memory 
management scheme is employed for all large model 
arrays to take full advantage of the large aggregate 
memory on distributed-memory platforms. An example 
of the coding design is:

#ifndef MP
      allocate (syn(igrd12_,levs_))

… …
  deallocate (syn)

#else
      if(km.eq.1) then
        allocate (synpk1(igrd12p_,jgrd12_))

… …
        deallocate (syn1)
      else if(km.eq.levs_) then
        allocate (synpk2(igrd12p_,levsp_,jgrd12_))

… …
        deallocate (synpk2)
      endif
#endif

where the C preprocessor is set for sequential or
parallel (one or multiple vertical levels) implementation. 
Individual parallel tasks are assigned a range of model 
latitudes for which they are responsible.

In parallel RSM, both 1-D and 2-D decompositio n are 
built for flexibility, which enables runs on any number 
of processors. 1-D can be used on any number of 
processors, but only up to the number of the smallest 
dimension among all directions and all space. The 2-D
decomposition data transposition strategy utilizes a 2-D
model data structures, meaning a single dimension of 
data structure in memory for each processor. This
method has been applied successfully in several
parallel atmospheric models (Foster and Worley 1997; 
Barros et al. 1995; Skalin and Bjorge 1997), including the 
Global Spectral Model. 2-D can be used up to the 
number of product of two smallest dimensions in all 
directions and all spaces, except with any prime number 
of processors (Juang and Kanamitsu 2001). In the
current design, the total numbers of working

processors NODES equals Nrow times Ncol where 
Nrow and Ncol are any integers in X and Y directions. If 
NODES are prime integer, we set Ncol=1 and
Nrow=NODES. In this case, 2-D decomposition
becomes 1-D.

For a spectral model that uses  transform method as in 
RSM, dependent variables and their tendencies take the 
form of spectral coefficients and grid point values at 
different stages of the computations. Each stage is 
characterized by full dimension in one of the three-
dimensions. For example, when the Fourier transform is 
performed in an east-west direction, the full array in the 
east-west direction needs to be available on each 
processor, but the size in the north-south and vertical 
directions can be arbitrary. On the other hand, when the
Legendre transform is performed, each processor needs 
the full array in north-south direction, but the array in 
east-west and vertical directions can be arbitrary. Thus, 
the parallelization of the spectral model requires
rearrangement of arrays from one configuration to the 
other (for example, full array in x to full array in y). This 
rearrangement, also called the transpose method,
requires communication between processors and is 
programmed using MPI routines. The transpose
method is used to minimize the code modification - the 
original serial is left unchanged, the transpose routines 
are inserted between the transforms in east-west
direction and in the north-south direction. 

Figure 1: Parallel RSM Data Transposition Strategy, 
concepted by H.-M. H. Juang.

The entire transposition process is illustrated in Fig. 1. 
The general sequences of the forecast model after data 
are read in and transformed to spectral space include: 
transform from spectral to grid-point space, compute all 
non-linear model dynamics and model physics,
transform back from grid-point to spectral space, and 
perform linear computation such as semi-implicit and 
time filer in spectral space. It requires only one
transpose from the Legendre transform array
configuration to the Fourier transform configuration for 
1-D decomposition. All processors communicate with 



each other. In contrast to this, 2-D decomposition 
requires three transposes in forward direction, namely 
in advance of Legendre transform that has a north-
south dependency, in advance of Fourier transform that 
has east-west dependency and in advance of nonlinear 
computation that has vertical dependency. In this case, 
communications only take place within a subgroup of 
processors. After the dynamics and physical
computation with vertical dependency are complete, the 
data is transformed back with three more transposes in 
the reverse way. 

The parallel code includes both the data model and the 
message passing model. The input/output (I/O) is the 
part of the code where the SPMD paradigm is not 
employed. Also, the global to regional spherical
transform is not parallelized in the current effort. This is 
primarily because of very limited execution time
compared with the regional forecast computation, as 
was indicated in the profiler performance analysis. The 
global coding is generally executed independently on 
each node. 

Bit reproducibility was a goal of this parallel effort. This 
implies that on the testing computer, the parallel code 
be run on a variable number of processors and the 
sequential code should give identical results. To debug 
the massage-passing version of RSM, we used a
parallel debugging tool called Totalview, developed at 
Etnus, to compare serial and parallel version outputand 
ensure bit-by-bit reproducibility. This produces a high 
level of confidence at each coding step. The final 
version of the parallel RSM produces results identical 
to the original sequential code on the same machine, 
independent of the number of processors on which it 
ran.

PARALLEL PERFORMANCE

The parallel RSM is portable, and only minimal
modifications are needed to run the code on different 
platforms. The code has already been run on an IBM 
SP, Compaq Alpha, NEC SX-6 and the Earth Simulator. 
The performance numbers listed below are collected 
from an IBM SP and SX-6. The testing horizontal 
resolutions are at T62L28r12885 and at T62L28r512335 
(global model resolution of triangular truncation 62 with 
28 levels). T62 has sufficient resolution to give good 
large-scale predictions. Our test IBM SP platforms were 
the Power3 Blue Horizon and Power4 DataStar, both 
located at San Diego Supercomputer Center. The
Power4 DataStar is a 7.9 teraflops IBM SP system which 
consists of 176 8-way 1.5Ghz p655 nodes and 7 32-way
1.8 Ghz p690 nodes , with total shared memory of 3.2 
terabytes. The Power3 Blue Horizon is a 1.7 teraflop 
system with 144 8-way SMP nodes. Each SMP node 
has 4 gigabyte of memory shared among its eight 375 
Mhz Power3 processors. The vector machine NEC-6 is a 

single cabinet, 8 cpu node with 64 GB of symmetric
shared memory. Each cpu is a single -chip 8-way vector 
processor. The vector units operate at 500 Mhz. Peak 
performance is 8 GFLOPS/processor with 8 pipes given. 
The 8 vector register per CPU are 256 elements long and
CPU-memory bandwidth is 32GB/sec/CPU (Baring
2003).

We performed our experiments in two stages. In the first 
stage, single node tests were performed for code
optimization. In the second stage, we tested and analyzed 
scalability on equivalent platforms. 

Optimization

On IBM SPs, we use xprofiler and the IBM SP hardware 
counter utilities HPM (Hardware Performance Monitor). 
to analyze the single -node performance and final
options are tuned as:

FORT_FLAGS="-O3 -qfixed -qrealsize=8 -qnosave -
qmaxmem=-1 -bmaxdata:0x80000000 -
bmaxstack:0x10000000"

LOAD_FLAGS="-O3 -qfixed -qrealsize=8 -qnosave -
qmaxmem=-1 -bmaxdata:0x80000000 -
bmaxstack:0x10000000"

The total performance of the IBM SP3/SP4 is about 
109/531 Mflop/s on a single processor at 128x85x28 
resolution, resulting in a 7%/8% of peak performance.

On ARSC NEC-6, we set up some environments such as 
I/O variable F_FILEINF, profiling variable F_FTRACE 
and performance data variable F_PROGINF to analyze 
the code performance. Some exploration of the compiler 
options was made to achieve optimal performance. The 
compiler options are tuned as:

FORT_FLAGS="-Chopt -ftrace -f3 -float0 -ew -llapack_64 -
lblas_64 -lfft_64 -I./MODS"

LOAD_FLAGS="-Chopt -ftrace -f3 -float0 -ew -llapack_64 -
lblas_64 -lfft_64 -I./MODS"

For a few subroutines, they abort under the highest
optimization (–Chopt) but not under a lower optimization 
(–Cvopt). Some modest modifications such as inlining 
are sufficient to achieve 35% of peak performance on 
average (2806Gflops/p), and 80% of peak performance 
in the best case for Legendre transform on the
resolution at 720x715x28. The vector ratio achieves over 
96%.

Scalability

The wall clock time of the parallel code runs on different 
number of processors are shown in Figure 2 for IBM 
SP3/SP4. Here, a time step of 30 seconds is used and



the simulation period is 6h. The solid lines represent the 
measurement on Power3, the dashed lines on Power4; 
the hollow points reflect the 128x85x28 resolution, the 
solid points the 512x335x28 resolution. The figure
shows that the low-resolution model performance
saturates quickly as the number of processors increase. 
For the high-resolution model, it scales to 1024
processors and the model efficiency does not diminish 
quickly with an increase in the number of processors. 
The smoothness of the curve is affected at certain 
points by a mismatch of the domain decomposition with 
the number of mesh points (Wehner et al. 1995), as well 
as a transition from using small number of nodes to 
larger number of nodes. The speedup and efficiency on 
various processor
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Figure 2: RSM Execution Time on IBM SPs
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Figure 3: RSM Speedup and Efficiency on IBM SPs

configurations are summarized in Figure 3. The fine-
resolution runs (512x335) take significant longer time on 
the dynamics and physics computation. At 1024
processors, the efficiency is reduced to 39%. There are 
several factors contributing to the falloff in
performance. In addition to the remaining serial codes 
for the treatment of lateral RSM boundaries, we use the
‘master-worker’ strategy - the master processor
distributes the work to the available processors and is 
responsible for reading and writing the history and 
checkpoint data on an hourly-averaged basis. As a 
result, I/O may account for 20-30% of the total elapsed
time. Also, with the increased number of processors, 
the message communication cost is increased, and the 
load imbalance becomes noticeable, which will be
discussed later.

The performance measured with 64-processors at
512x335x28 resolution is 137/357 Mflop/s on IBM
SP3/SP4. Performance gradually degrades from this 
level to 60 Mflop/s on 1024 processors, which is fairly 
good when compared with other applications. The per-
processor performance achieved on microprocessor-
based parallel computers is often disappointing: a small 
fraction of peak. The reasons for this are not yet fully 
understood, but seem to be a combination of code 
structure (data structures and loop structures designed 
for vector machines often do not perform well on RISC 
microprocessors) and high memory bandwidth
requirements (Drake and Foster 1995). Another reason 
for this is the parallel partitioning strategy designed in 
climate modeling. The spectral transform method
imposes the most severe constraint on selecting a 
parallel decomp osition strategy (Hack et al. 1995). The 
measurements above are based on system-independent
libraries including Fast Fourier Transform (FFT) for 
portability consideration. We recently ported the code 
to use vendor-supplied subroutine libraries ESSL FFT, 
which increased performance by about 15%.

Communication Overhead

The parallel model has inter-processor communication 
overhead not present in the sequential model. The 
communication overhead in the parallel version of the 
RSM at 512x335x28 was approximately  34% on the 64 
processor run, but increased to 52% on the 128
processor run. As mentioned above, the spectral model 
has the highly nonlocal communication patterns. The 
results indicate that the communication cost is the most 
responsible for sublinear performance scaling of the 
code on IBM SP system. 

Load Imbalance

With an increasing number of processors the load 
imbalance becomes noticeable. The load imbalance
accounted for about 12% of the total cost on the 16-



processor runHere load imbalance is calculated as
follows:

max

max

T

TT
L avg−

=

where Tmax and Tavg are the maximum and average 
execution times of MPI tests respectively. The load 
balance of 1.0 means all processors take exactly the 
same amount of time. Unlike the global spectral model 
that uses triangular truncation, the regional spectral 
model doesn’t have a markedly uneven subdomain 
distribution in the 2-D decomposition. The load
imbalance is mainly due to the different tasks of the 
processors such as the calculation in the physical 
parameterization (e.g. shortwave radiative transfer) or 
I/O.

Machine Comparisons

Our tests show that the one-dimensional decomposition is 
more efficient than the two-decomposition on SX-6 vector
processors due to increased vector lengths. This is 
consistent with previous work on the Fujitsu VPP5000 
(Juang and Kanamitsu 1997). However, this does not 
apply for cache-based IBM -SP. On the IBM SP, the 2-D
decomposition is significantly better than 1-D
decomposition. The tests on the Power3 show that on a 
small number of processors (8 to 16), the run based on 
2-D decomposition saves approximately 20% of the 
execution time; on a large number of processors (such 
as 128), it saves approximately 40% of execution time.

Table 1: Performance Comparison on SPs and SX-6

Power3 Power4 SX-6
1 cpu

 Execution time (sec) 902 193 94
 Mflips/Mflops 132 593 1002
 Sustained Performance* 8.8% 8.7% 12.5%

4 cpus
 Execution time (sec) 252 84 57
 Mflips/Mflops 136 345 708
 Sustained Performance* 9.1% 5.1% 8.9%
 Efficiency 90% 57% 41%
* Percent of theoretical Peak Performance

A rough comparison of the performance on different 
machines is summarized in Table 1. A more detailed 
comparison, including theEarth Simulator, will be
addressed later in another paper. Here, we test on the 
small resolution at 128x85x28 and set a time step of 360 
seconds. The Power4 is more than 4 times faster than 
the Power3, but it sustains a much lower fraction of 
peak due to its relatively poor ratio of memory
bandwidth to peak performance. Results demonstrate 
that the SX-6 achieves high sustained performance and 
significantly outperforms the superscalar designs of the 

Power3 and Power4. In addition to its vector
architecture and the shared-memory structure, the SX-6
has high memory bandwidth and low memory latency.
The SX-6 vector unit lacks data cache. Instead of 
relying on data locality to reduce memory overhead, 
memory latencies are masked by overlapping pipelined 
vector operations with memory fetches (Oliker et al. 
2003). Limited scaling on the SX-6 is mainly due to the 
reduced length of big vector loops as the number of 
processors increases. More work is being done to 
improve its scalability and efficiency on vector
architecture.

CONCLUDING REMARKS

The production parallel Regional Spectral Model is 
designed to execute on massively parallel computer 
systems. The model employs a flexible 1-D and 2-D
algorithmic decomposition, which has been
implemented for both shared-memory and distributed-
memory parallel architectures. With the parallel version
of RSM, overall computational performance is quite 
respectable for distributed-memory implementation on 
IBM SP machine over number of nodes from a few to 
1024 processors. Since the completion of the parallel 
implementation, the parallel RSM has been widely
adopted by the international research community. In 
particular, the National Center for Environment
Prediction (NCEP) has incorporated the parallel
implementation into their operational RSM version for 
daily operational weather forecast and climate
prediction.

Although the parallel RSM code scales up to 1024 
processors with fine-resolution, the parallel speedup 
with RSM begins to show a significant degradation as 
the number of processors employed begins to approach 
the maximum number of available parallel processes, as 
seen with other climate models. The communication 
overhead and load imbalance are among the reasons of 
this degradation. A significant weakness in the current 
version of the parallel RSM is the treatment of I/O. 
Further implementation of parallel I/O techniques is 
needed to achieve sufficient I/O bandwidth to the 
parallel file systems. In addition, the model initialization 
step involving global to regional spectral transform has 
been done sequentially due to the small fraction of time 
used by this step.

During the course of this work, the RSM was ported to 
the Earth Simulator (ES) to prepare for a 50-year
downscaling of atmospheric reanalysis over the
continental US. While RSM performance is still being 
optimized on the Earth Simulator, we have already 
observed 1.6 Gflops preprocessor performance at the 
preliminary test of 10-km resolution at 1024x651x28 on 
ES, which is 20% of the peak performance. The ES is a 
NEC supercomputer that implements high-speed vector 



processors in full scale and consists of 640 nodes 
connected by a 640x640 single-stage crossbar switch. 
The experience on ES will be very important in enabling 
meaningful comparisons between the capabilities of the 
Earth Simulator and IBM SP, and can guide future 
system upgrades to support RSM and similar
applications including distributed simulations.
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