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During the talk, the modeling paradigm Petri nets is 
explained. Then, it is shown how to obtain model 
parameters from field data, and finally, an exemplary 
analysis is performed, using the analysis tool Expect. 
Different modeling and analysis examples are 
discussed and demonstrated. Together with numerical 
examples, an introduction to the analysis tool Expect is 
provided. To obtain the model parameters, the tool 
ParEs is used.   
 
 
PETRI NET MODEL (GSPN) 
 
A Generalized Stochastic Petri Net (GSPN) is a state-
transition system, where the transitions are assigned 
firing times. The set of all possible states in the Petri 
net is called the state space of the Petri net. Only in the 
case where the Petri net consists only of exponential-
and timeless transitions, the state space can be solved 
in a closed form by setting up the balance equations 
and solving them. In the case of a transient analysis we 
obtain a system of linear differential equations to be 
solved and in the case of a steady state solution, the 
system of differential equations is reduced to a linear 
system of equations.  
Especially in industrial applications, we have very 
often non-exponential distributions assigned to the 
transitions. Consider for example the mileage behavior 
of a vehicle. In this case it turns out that the underlying 
distribution has a log-normal nature. Or, in the case of 
modeling the failure behavior of mechanical 
components, the underlying distribution usually shows 
some type of Weibull nature. We have either an infant 
mortality failure behavior (high failure rate at the 
beginning and then a decreasing failure rate over time), 
a wear-out behavior (low failure rate at the beginning 
and then an increasing failure rate over time), or a 
mixture of both types. Electronic components usually 
show a random failure behavior. Taking this into 
account, a numerical solution of the Petri net by 
solving the flow equations is usually not possible. 
Therefore, we turn very often to system simulation to 



solve a Petri net to obtain the corresponding 
performance, reliability, quality and cost  measures.  
In the following, we will introduce common types of 
distribution functions and how to obtain the parameters 
of a distribution function from field data in order to 
parameterize the corresponding Petri net models.  
 
 
PARAMETER ESTIMATION 
 
While stochastic Petri nets have become a widely used 
means for modeling complex systems, problems 
already arise in practical applications when the 
transitions in a net have to be parameterized. The goal 
of this paragraph is to introduce techniques, that allow 
the estimation of the parameters of several lifetime-
distributions from field-data. These parameters serve 
then as input for the Petri nets.  Besides the two- and 
tree-parameter Weibull distribution that are used in 
traditional reliability analysis, the exponential 
distribution, normal and logarithmic normal 
distribution and a new distribution-type, referred to as 
bathtub distribution, can be handled. The algorithms 
used for parameter estimation rely on traditional 
methods as regression and Maximum-Likelihood-
Estimation, employing local and global optimization 
techniques. 
 
 
THE WEIBULL FAMILY 
 
The Weibull distribution, introduced by Waloddi 
Weibull in 1937 [Abe94] is the most frequently used 
distribution in reliability engineering. The original 
Weibull distribution has the distribution function 
(CDF):  
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with the two parameters α and β (which we therefore 
refer to as the two-parameter Weibull distribution). 
α is called the characteristical lifetime, which is 
defined as the point, where F(α ) 0.632  (i.e. 63.2% 
of all units have failed. The parameter

≈
β  is referred to 

as the shape parameter, because it defines, whether the 
distribution models infant-mortality failures ( β  < 1) 
or wear-out failures ( β  > 1). In the case of β =1 we 
have the exponential case, i.e. random failure.  
 
 
THE BATHTUB DISTRIBUTION 
 
This distribution models the whole lifetime of a 
component with infant-mortality- random-and wear-
out-failures. It is obvious from the previous paragraph, 
that this distribution can be built from the superposition 
(weighted sum) of two Weibull and one exponential 

distributions. The name bathtub distribution is derived 
from the curve of the hazard rate of this distribution 
which gives the well known bathtub shape as shown in 
the following picture:  
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But doing this, one can see that, with one exception, 
the exponential distribution, which should explicitly 
model the stable lifetime, has nearly no influence on 
the shape of the distribution. The reason for this is that 
the exponential part is implicitly contained in the 
superposition of the two Weibulls. Therefore, for 
practical reasons we decided to leave the exponential 
part out to reduce the number of parameters to be 
estimated from eight to six (for clarity: this is not 
because we consider the exponential part as 
unimportant but because its explicit representation is 
superfluous).  The CDF of the bathtub distribution is 
therefore given by the following equation (please note 
that the parameter p determines to what extent the 
current distribution function is subject to infant 
mortality or subject to wear out):  
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The two parameter Weibull is used to model infant 
mortality failures and the three-parameter Weibull 
models wear-out-failures and p (0 p 1) defines the 
weight of the terms (note: the index 2 has been omitted 
intentionally to remember the reader, that the explicit 
representation of the exponential part is missing). The 
exceptional case mentioned above in which the 
influence of the exponential part would be visible is the 
case if there are no wear-out-failures. But in this case, 
the second Weibull distribution can be used with 

≤ ≤

3β  = 
1 to model the exponential part, such that this special 
case of a constant failure is also covered within the 
bathtub distribution. 
 
 
 



THE NORMAL FAMILY 
 
The distributions of this family, namely the normal and 
logarithmic normal (lognormal) distribution, are in 
general not used for the modeling of failure behaviour. 
The typical use of these distributions is the use as a 
mileage distribution, whereas the lognormal 
distribution has become the most commonly used 
distribution in this application area. The CDF of the 
normal distribution is given as: 
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and that of the lognormal distribution as 
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respectively. Hereby, µ is the mean value and σ  the 
standard deviation.  
 
DIFFERENT TYPES OF FIELD DATA 
 
In this paragraph we describe the different modes of 
data that have to be treated by the estimation 
algorithms. Most presentations of the algorithms shown 
later implicitly assume a so-called full sample, i.e. all 
parts fail till the end of the test and the exact times of 
the failures are known. In reality, this is very rarely the 
case. One has to deal with clustered and suspended 
data. Clustered means, that the exact failure times of an 
error are unknown but one only knows that there were 
for example  errors for parts with a lifetime between 

and hours / miles. Suspended means, that some 
parts survived the end of the test, each of which with a 
certain lifetime / milage. Certainly, also the 
information about the suspended elements can be 
clustered, for example there were  parts with an 

operating time between and  hours / miles, that 
did not fail. To put it in a nutshell, combining all 
possible modes of single / clustered data with failures 
and / or suspensions, there are six combinations that 
have to be considered in practice (the cases that contain 
only suspensions and no information about failures are 
not considered as all following estimation procedures 
need at least one failure for performing an estimation). 
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The main advantage of using field data for analysis is, 
that one can be sure that the data reflect the behaviour 
of the part under investigation under real conditions. 
Thus, by using field data, the most critical point of a 
test rig series -- does the simulated stress reflect the 
real usage stress -- is circumvented. But this 

convenience comes at a price: Usually, field data have 
very poor quality, such that the estimation algorithms 
must be able to work with this low quality, and 
commonly contains no information about the milage of 
the suspended elements, simply because one doesn't go 
to the garage if there is no error. Thus, in practice, the 
milage of the suspended elements has to be estimated, 
too. 
 
 
LINEAR REGRESSION 
 
In the following, the linear regression method for 
determining parameters of a distribution function is 
explained. Since the linear regression method is the 
simplest type of analysis techniques, we will focus on 
it. Other techniques as for example the maximum 
likelihood technique are not explained in detail. For 
more information on these techniques, the reader is 
referred to [BGdT98]. 
The basic idea of linear regression is to transform the 
CDF of the distribution into a linear form y = a*x + b, 
find a least-squares fit through the failures and finally 
calculate the distribution parameters from the straight 
line parameters. This is also the idea behind the well 
known probability papers. For example, in the case of 
the two-parameter Weibull distribution with CDF 
 

β

α
)(

1)(
x

exF
−

−=  
 
the linear form can be achieved by taking the natural 
logarithm twice. This leads to the linear form 
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and obtain the linear form y=ax+b. One of the 
problems in performing a least-squares fit to this form 
is, that one has only the x-values, i. e. the times of 
failure or suspension, but no y-values. Therefore one 
has to find an estimation for the correct plotting 
positions. According to [Abe94] median ranks, which 
have to be adjusted for the handling of suspended 
elements, are used for that. For the least-squares 
solution it is important that there is usually a large error 
in the time of failure, such that x should be taken as the 



dependent variable in the fit. Finally, the back-
transformation of the straight parameters to the 
distribution parameters in the two-parameter Weibull 
case is done by the formulas: 
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For the treatment of clustered failures and suspensions, 
there are different possibilities: For example, in 
[Lawl82]  an algorithm for calculating the ranks in the 
clustered case is given. In practice, a simpler solution is 
possible: the failures or suspensions in a cluster are 
distributed either uniform or normal over the cluster 
(both versions have been implemented and tested but 
the differences are neglectable) and then the formulas 
for the single-data-case are used. Surely, this enlarges 
the number of data points that have to be considered in 
the least-squares estimation, but in practice the runtime 
of the estimation even with thousands of failures is 
within a few seconds. 
The application of regression to the lognormal 
distribution leads to a numerical problem, as the linear 
 transformation is 
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and therefore requires the efficient calculation of the 
inverse of the Gaussian error function.This can be done 
starting with the equality 
 

0))(())(( =−⇒= yierferfyyyierferf
 
Defining  we must find 

the zeros of where can be approximated by 
one of the known total formulas for ierf. The solution 
follows the idea of Newton's Method [BuFa01] but 
uses a third-degree Taylor-polynomial instead of one of 
first order, which leads to faster convergence, and erfc 
instead of erf for numerical stability. 
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Another problem is the use of the three-parameter 
Weibull distribution with regression as one has to 
estimate three distribution parameters from two 
straight-parameters. As the parameters forα and 
β can be easily estimated by the method described 

above, it is obvious to separate the estimation of . 
When using a probability paper it is a hint that there is 
an  if the plotted points don't lie on a straight line. 
Hence it is adjacent to use the correlation coefficient, 
which indicates how well the points fit onto a straight 
line, for the estimation of , i.e. the failure times have 
to be shifted such that the correlation coefficient is 
maximized. A golden-section-search is used for 

performing the optimization. The shift needed for the 
maximization is the estimation for and the 
estimation of the remaining parameters works on the 
transformed values. 
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Parameter Estimation Tool ParEs 
 
This paragraph introduces ParEs, a tool for parameter 
estimation based on field data. ParEs (Parameter 
Estimation) is a GUI-based pure java-tool that 
incorporates all of the algorithms given above to give 
even the statistically non-experienced user the 
possibility to estimated parameters from field data and 
therewith to parameterize the transitions in his Petri net 
model. In the following, a screenshot of the tool is 
shown.  
 

 
 
As datasources, the user has the choice between an 
ODBC-datasource, which is usually a database in the 
background, the manual input of failures and 
suspensions in a spreadsheet-like form or the selection 
of special car-components from a tree-structure. The 
user has the choice to pre-define a distribution function 
to be fitted or he can select the automatic detection 
option. In this case the system determines 
automatically which distribution function fits the given 
field data best. After the selection of the estimation-
algorithm, the user may insert start values for the 
estimation, which are by default computed 
automatically, if someone wishes to fix some 
parameters to a special value. Finally, one can start 
either the computation of the point estimation and 
confidence-interval-calulation altogether or just the 
point estimation and the confidence-interval-
calculation manually afterwards. The reason for this 
possibility is, that the calculation of the point-
estimation is usually very fast while the computation of 
the confidence-intervals takes a lot of time, such that 
one should first be able to decide, if the distribution he 
guessed is correct before the lengthy part of the 
computation is started. To help the user in the decision 
if the supposed distribution is right, a Chi-Square 
goodness-of-fit test is performed, too. The final 
estimation results are presented to the user as the pure 
parameter values with the confidence bounds but also 



the typical plots of CDF, PDF, hazard-rate or the 
regression-straight line (if regression has been used) 
are provided. Finally, the resulting parameters are also 
provided as tagged data to facilitate the use of the 
component for example by the Petri net tool Expect. 
The idea behind this data export facility is, to make the 
whole parameter estimation process completely 
invisible for the user in the case of input modeling. 
Because in this case, users are usually not interested in 
and are not familiar with the parameter estimation 
process and its special details but just need appropriate 
parameters for their model. For example, if one wishes 
to use a transition in a Petri net to model the failure 
behavior of a special part, one just has to select this  
part and need not to know anything about the 
parameters. All the rest (parameter estimation, data 
handling and model parameterization) is handled by the 
tool. For this reason, a whole web based system 
environment has been set up and ParEs is part of this 
environment. This environment has been developed in 
Java and is constantly extended.  
In the following, we will demonstrate the accuracy of 
the methods given above. For a better judgement of the 
results, no real data were used but data that were 
generated by a random number generator for the given 
distribution. For all examples, the confidence level is 
set to 95%. In the Weibull example, 50 failures have 
been generated while in the bathtub case 500 failures 
were used. At a first glance, this seems to be only a few 
input data if one considers the fact, that in the case of 
real field data thousands of real vehicles are 
considered. But, on the other side, one has to consider 
the fact that the data used in this example are single 
data while in the case of real field data we have data 
clusters. Each of these clusters can contain thousands 
of data points. Thus, even with a small cluster size of  
only 1000 miles, 500 clusters would define a range 
from 0 to 500.000 miles which will surely cover the 
whole lifetime of a vehicle.  
The time for the evaluation of the likelihood function 
depends linear on the number of failures and 
suspensions in the case of single data and on the 
number of clusters, otherwise. Thus, one would expect 
that enlarging the size of the sample will always result 
in an enlarged runtime in the same order of magnitude. 
Practically, this can be taken as a worst case estimation 
because a larger sample usually contains also more 
information. Thus, fewer iteration steps will be needed 
if MLE is used such that the increase in runtime will be 
sub-linear in the average case. As in the regression 
case, there is a closed form solution where the runtime 
is within a few seconds even with thousands of 
failures. 
One question that is often asked is, how many failures 
are needed to perform a reasonable estimation. If using 
MLE, theoretically one typical failure is enough if 
there are suspensions. But, if  of the tree parameter 
Weibull distribution has to be estimated, too, at least 15 
failures are needed. Practical applications show that 
one can expect reasonable estimates if there are at least 

about 20 failures. But using these values, one has to 
keep in mind that this always means representative 
failures for the failure mode under investigation and 
not only random failures. 

0x

The first example to be demonstrated is a three 
parameter Weibull distribution.  The following table 
shows the result of the estimation with the confidence 
intervals for local optimization with heuristic 
confidence interval calculation and regression.  
Hereby, lα  denotes the lower confidence bound for 

the parameter α while uα  denotes the corresponding  
upper confidence bound.  
 

Parameter True Value MLE Regression 

lα  --- 137407 95435 

α  150000 151029 150969 

uα  --- 167381 279169 

lβ  --- 1.572 2.620 

β  3.2 3.092 2.710 

uβ  --- 4.542 2.801 

lx0  --- 0.736 44859 

0x  40000 40494 44859 

u
x

0
 --- 69144 44860 

 
The computation of the above results took 18 seconds 
(point estimation: 3 seconds, confidence interval 
calculation: 15 seconds), while the regression needed 
only 4 seconds. There is only a slight difference in the 
upper confidence bound of β if an evolutionary 
strategy or the deterministic version is used for 
calculation. But, in this case the calculation time 
increases to about 5 minutes (compared to 15 seconds 
as before). 
In the second example we apply our analysis 
algorithms to a bathtub distribution. The corresponding 
results are shown in the following table. 
 
Parameter True 

value 
Lower 
Bound 

Point 
Estimation 

Upper 
Bound

1α  3000 981 2026 4707 

1β  0.5 0.38 0.52 0.7 

3α  80000 79378 79944 80548 

3β  4.2 3.64 4.16 4.789 

0x  65000 62562 64645 66032 

p  0.15 0.11 0.16 0.22 
 
The computation time for the point-estimation was 29 
seconds with the penalty method, and 4 seconds with 
the simplex method. The confidence intervall 
calculation took 241 seconds.  
 



THE ANALYSIS TOOL EXPECT 
 
The analysis tool Expect has been developed at 
DaimlerChrysler [HeGrHo02] and is designed for a 
broad range of applications, including safety, quality 
and cost analysis. Safety analysis is concerned with the 
design of safe automotive systems, including their 
interactions with humans. In the area of safety analysis, 
system measures as for example reliability, availability, 
load and throughput of system components and 
probabilities for critical states, are determined. Quality 
analysis is concerned with building models at the 
component, system and vehicle levels for obtaining 
information on product quality. One example of this is 
comparing the behavior of systems built using different 
components. Cost analysis allows, for example, the 
calculation of price models for maintenance and 
service packages, which depends on the level of service 
offered, as well as the age and mileage of the vehicle. 
In addition, statistical methods are used to predict the 
expected quality and cost into the future. In all cases, 
the goal is that these analyses can be performed as fast 
and as comfortably as possible, while covering a large 
number of variants, in order to study and compare 
different real-life scenarios.  

The analysis tool Expect was designed with the goal of 
offering the modeler an easy to use and understand 
modeling environment and on the other side, allowing 
for an integrated system simulation, using discrete time 
event simulation. In the following, a short excerpt of 
the capabilities of Expect is described.  

 
TOOL FUNCTIONALITY 
The modeling and analysis tool Expect consists of a 
graphical editor, a simulator and a visualization 
component. It is implemented in Java in order to ensure 
platform independence, and also to make use of its 
special language features. One example is the dynamic 
loading of classes, which makes it possible to include 
functions in the Petri net model which are formulated 
in Java syntax, which can then be compiled and 
executed at run-time. This means that such functions 
execute with the same level of performance as the tool 
itself, since expensive parsing routines are no longer 
necessary. Furthermore, the Java compiler and 
interpreter are available everywhere free of charge.  

The Expect graphical editor is designed with multi-
document capability, allowing several nets to be edited 
simultaneously. This in turn allows sub-nets to be 
copied between models and for these to be compared 
quickly. Since Petri nets can quickly become very 
complex and unwieldy, Expect also allows hierarchical 
modeling. A net may be divided into sub-nets, which 
may be edited separately and linked together via 
transition or place interfaces. This supports both logical 
model development on the one hand, and clear 
graphical presentation of large models on the other. 
Expect contains a large number of configurable 

parameters; model parameterization is supported by 
dialog windows for each net component, which include 
plausibility checks for parameter values. All net 
components, with the exception of arcs, have unique 
names. 

The visualization component of Expect can be started 
directly from the editor. This allows the user to study 
the behavior of the net by watching the token game. 
This is important for demonstration and debugging 
purposes. The visualization module contains 
continuous speed settings as well as a step-by-step 
mode. The enabling state and enabling times of timed 
transitions are visualized in order to further enhance 
understanding of the net's dynamic behavior.  

The simulator may also be started directly from the 
editor. Both simulation up to a specified point in time 
or up to an absorbing state are permissible. 
Furthermore, a number of replications can be specified, 
and the simulator will provide appropriate statistical 
results. These include the values of the user-specified 
rewards in addition to the standard measures for places 
(probability of being non-empty, average number of 
tokens) and transitions (throughput and probability of 
being enabled.) In addition to this functionality, it is 
also possible to perform transient analyses by 
parameterizing the range and step size of solution time 
points. The simulator will then compute statistical 
values for each of these. 
 
 
CLASS OF NETS SUPPORTED 
Expect supports a very general class of stochastic Petri 
nets. These include many additional features which 
greatly enhance the usefulness of the tool to the 
modeler.  

Places can be assigned an initial marking and a 
maximum capacity, which may either have a constant 
value or be defined as a function of the current state of 
the net. An otherwise enabled transition is disabled, if, 
by firing, the maximum place capacity would be 
exceeded. 

Both timed and immediate transitions are supported. 
Immediate transitions can be assigned a weight, 
whereas timed transitions can be assigned a firing time 
distribution chosen from a large set of alternatives. 
Firing time distributions range from exponential and 
phase-type distributions to Weibull and Normal 
distributions. In addition, the parameters for the firing 
probabilities and distributions may be defined as 
marking-dependent functions. Expect also allows the 
use of marking-dependent guard functions and 
priorities to control the enabling of transitions.  

Transitions may be of single, multi- or infinite server 
type; multi-server and infinite-server transitions are 
treated by the simulator by assigning multiple firing 
times to the transition in accordance with the current 
enabling degree. Transitions may also be assigned a 



memory policy of type age or enabling. Memory 
policies define how the enabling time of a transition is 
treated when the transition becomes disabled for any 
reason other than itself firing. In the enabling case, a 
transition will "forget" that it has been enabled for a 
certain period; when it once again becomes enabled, a 
new firing time will be computed. In the case of the 
age policy, the transition "remembers" its enabling 
time, which shortens its remaining firing time when it 
once again becomes enabled. These memory policies 
are very important for modeling purposes. 

Expect also supports multiple arcs, whose multiplicity 
may be specified as a constant or with a function.  

Various types of rewards are also available, including 
accumulated, non-accumulated and impulse rewards, 
which are associated with the firing of a transition. In 
addition to the net components themselves, 
independent parameters and functions may be defined, 
which can be referenced by the functions used to 
parameterize the net components. These facilitate the 
fast and safe modification of model parameters. 
In the following, three screenshots of Expect 
demonstrate, how a system can be modeld in a 
hierarchical manner, how a detailed block looks like 
and  and how analysis results are finally presented to 
the user.  
• Hierarchical top layer of a Petri net 

 

 
• Detailed Petri net model within a hierarchical layer 
 

 

• Representation of the analysis results 

 
 
NEXT DEVELOPMENT STEPS 
Expect is used very heavily at DaimlerChrysler 
Research in the form described here. In addition to the 
current functionality, various extensions are also 
planned, which will be briefly described.  

One important application of Expect is the simulative 
prediction of the availability and reliability of current 
and future on-board vehicle systems. In addition, the 
tool is used to analyze quality measures and predict 
warranty costs. These applications include features for 
automatic report generation and integration with a 
corporate database, which contains up-to-the-minute 
reliability data. In order to access this database, an 
interface to Expect has been developed and is currently 
under test. Another very important topic while 
providing an interface between the analysis tool Expect 
and our corporate database is the pre-calculation of 
model parameters, based on our warranty data. 
Therefore, right now techniques are included into the 
tool Expect that allow the user to set up a model. Once 
this is done, the user can link every transition in the 
model with a component in our corporate database. As 
soon as this link is established, the system 
automatically extracts the field data from the corporate 
database that are associated with the link, performs a 
statistical analysis on these data and feeds the 
corresponding parameters into the model. Every time, 
the model is started and information in the corporate 
database has changed (e.g. new field data arrived at the 
corporate database), then the system automatically 
initiates a re-calculation of the parameters and starts a 
new  simulation.  

In this sense we are able to set up a quality-and cost 
tool suite, consisting of  

• A Web-framework that contains statistical analysis 
algorithms for pre-processing the field data 

• The analysis tool Expect that uses the pre-
processed field data to parameterize and analyze 
the model 



 

 

 

 

 

Many questions of interest can be answered by 
analyzing the state space of a net. These include 
qualitative properties such as deadlocks and livelocks 
in addition to the usual quantitative simulation results 
such as average reward values and marking 
probabilities. In particular, when all timed transitions in 
the net are exponentially distributed (or phase-type), 
then the state space can be converted into a continuous-
time Markov chain, for which very efficient numerical 
transient and steady-state analysis methods are 
available. For these reasons, state space generation and 
analysis techniques will also be included in the tool. 

A further issue of interest is to increase the 
performance of the discrete-event simulation itself. 
This is motivated by the high accuracy requirements 
for safety analyses, requiring a large number of 
replications to achieve statistically significant results, 
and the large degree of stiffness of many models, 
which require a long time to reach steady-state. In both 
cases, very expensive computations can result. Our 
approach to accelerating simulations by aggregation of 
the state space [HeHoLu98] will be studied in the Petri 
net context. In addition, an automatic parallelization of 
the net has been incorporated into the tool. Hereby, not 
the Petri net is split into pieces and each beeing 
analyzed on a different computer but we just parallelize 
the replications across a network of workstations. This 
means that we distribute the overall Petri net to 
different computers. Each computer starts the 
simulation with a different starting value. In this case 
we avoid the communication overhead involved in a 

standard parallelization (distributing pieces of the Petri 
net to different computers). This type of parallelization 
proved to be very effective, stable and provided a 
linear speed-up. Therefore, this type of parallelization 
has been incorporated into the tool as a standard feature  
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MODELING EXAMPLES 
 
Example 1: The following picture shows a screenshot 
taken during the visualization of the simulation of a 
small example net. The distribution functions of the 
transitions can be identified by the transition color. The 
expired enabling time of each transition is shown by 
the darker portion of the transition. Tokens are drawn 
in red. When a transition fires, tokens move 
symbolically along the input arcs from the input places 
to the transition and along the output arcs from the 
transition to the output places, according the various 
arc multiplicities. Viewing the simulation visualization 
in this manner significantly enhances the user's 
understanding of the net's dynamic behavior, and is 
very useful in presentations to non-specialists and of 
course for verifying (i.e debugging) the model. 

 
 

Example 2: The next Expect screenshot shows a small 
Petri net, which is part of a model developed at 
DaimlerChrysler Research. The goal of this project was 
to study the reliability of a system over the entire life 



cycle of a vehicle, including the interaction with the 
driver, in particular the manual deactivation of faulty 
systems. Rewards are used to compute the probabilities 
of light and serious damage occurring due to 
inappropriate behavior by the driver. The screenshot 
shows a Petri net with its initial state, in which the 
system is off. This is characterized by the token in the 
place sys_off. In this state it is possible to activate the 
system by the user or the system can fail unused. When 
the system is not used and it fails, it is detected by the 
system and it changes the state in defect. This behavior 
is modeled by the transition Sys_intError, which 
changes the state of the Petri net from Sys_off in 
Car_Garage. From this state, the system will be 
repaired and changes into the initial state of the net. If 
the system has not failed, the user can activate it and 
the token in place Sys_off walks to place Sys_on. By 
the activation of the system it is possible that the 
system is defect. In the case of no defect, the state of 
the system will change to working and the token walks 
to the place Sys_working by firing of the transition 
Sys_works. In this state the system can be deactivated 
by the user and the system changes in the state 
deactivated. This way from system deactivated to 
activated and back is the normal usage of the system, 
but while using the system, the system can fail and the 
token in place Sys_Working moves to the place 
Sys_Failed. This state of the system is the same state 
which will be reached if the system is down and will be 
activated. In the case of a system failure while the 
system is in use, either the driver can be warned by the 
vehicle or, in the case of a failure, the warning does not 
occur. When the user is warned, the token moves to 
place Warned. In this state, the driver can ignore the 
warning or he will secure the vehicle. Ignoring of the 
warning will lead to the same state as when the vehicle 
cannot warn the driver. This state is characterized by a 
token in place unwarned_ignor. At this point, the 
question arose, whether it is necessary to improve the 
availability of the warning or not. In the original model 
it was not obvious if it is or not. By analyzing the 
model, it was possible to prove that the warning must 
not be redesigned, because the most probable cause for 
damage was the ignorance of the driver. If  the driver 
does not ignore the warning, he secures the vehicle (by 
braking, for example) and the system will be repaired 
at a garage. This case is modeled by the places P4 and 
Car_Garage, and the transitions Drv_Secures_1, 
To_Garage and Car_Repair. In the case where the 
driver ignores the warning,  or there is a warning 
failure, we have three different possibilities. The first 
way is the securing by the driver, if he is fast enough to 
react; the second is securing by the front-seat passenger 
if he can react fast enough. In both cases, the token will 
go to place P4 and the system will be repaired in the 
garage. The last possibility is the worst one, in which 
the system has failed and the vehicle is in an 
uncontrolled state, in which there is no way to return to 
a secure state. In this situation, damage is unavoidable 
and the question is how heavy the damage will be. In 

the model, the damage is divided in two classes, light 
and heavy. These are modeled in the Petri net with the 
transitions p_Light and p_Heavy. In both cases, the 
vehicle is repaired after the crash and the vehicle with 
the system returns to the initial state. A very interesting 
question for DaimlerChrysler was the amount of light 
and heavy damage. For measuring this, the impulse 
rewards Rew_Garage_L and Rew_Garage_H are used. 
The model is a simplified model, because it abstracts 
from system functions and different failure modes of 
the system. Nevertheless, it shows the usage of Petri 
nets for analyzing systems and the behavior of systems 
with interactions with humans. With the model shown 
in this example, it was possible to prove that a failure 
in the warning system was not the main danger; the 
main problem was the driver ignoring the warning, 
which lead to new concepts for increasing the safety of 
the overall system. 
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