

KEYWORDS

System modeli
quality analysis.

ABSTRACT

Simulation in
popularity. Esp
simulation is us
vehicle concepts
continuous sim
applications.
On the other h
more and more p
mapped to discr
question of ho
vehicles can
warranty/courtes
continuous time
breakdown of
system, we h
system/scenario.
paradigm that i
suited for nume
use the modelin
which we have
modeling needs.
do no longer
therefore a clo
easily computab
simulation was
extended Petri N
model, using sim
corresponding m
have very often
analyzed statist
model paramete
finally be analyz
Based on
DaimlerChrysler
tool Expect was

USING SIMULATION TO PREDICT QUALITY AND
COST IN THE AUTOMOTIVE BUSINESS

Dr. Stefan Greiner

DaimlerChrysler Research
Dept. RIC/AS

70546 Stuttgart, Germany
HPC T 728

E-mail: stefan.greiner@daimlerchrysler.com

ng, parameter estimation, cost-and

industry has reached a very high
ecially in the automotive industry,
ed very heavily when developing new
 (e.g. crash test simulation). Typically,
ulation is used for these types of

and, discrete simulation is becoming
opular, because many problems can be

ete models. Consider, for example, the
w many breakdowns for a fleet of

be expected during their
y period. In this case, we have a
 frame and discrete events, namely the
a vehicle. Before we can analyze a
ave to set up a model for this
 Therefore, we need a modeling
s both easy to understand and well
rical analysis. At DaimlerChrysler, we
g paradigm of stochastic Petri Nets,
extended in order to fit our specific

 These extensions result in models that
have the Markovian property and

sed system solution was not longer
le. On the other hand, discrete system
perfectly suited to solve these types of
et models. Before we can analyze the
ulation, we have to parameterize the
odel. In industrial applications, we

 field data available which need to be
ically to obtain the corresponding
rs. The parameterized model can then
ed to obtain the results.
different research activities at
, the Petri net modeling and analysis
developed.

During the talk, the modeling paradigm Petri nets is
explained. Then, it is shown how to obtain model
parameters from field data, and finally, an exemplary
analysis is performed, using the analysis tool Expect.
Different modeling and analysis examples are
discussed and demonstrated. Together with numerical
examples, an introduction to the analysis tool Expect is
provided. To obtain the model parameters, the tool
ParEs is used.

PETRI NET MODEL (GSPN)

A Generalized Stochastic Petri Net (GSPN) is a state-
transition system, where the transitions are assigned
firing times. The set of all possible states in the Petri
net is called the state space of the Petri net. Only in the
case where the Petri net consists only of exponential-
and timeless transitions, the state space can be solved
in a closed form by setting up the balance equations
and solving them. In the case of a transient analysis we
obtain a system of linear differential equations to be
solved and in the case of a steady state solution, the
system of differential equations is reduced to a linear
system of equations.
Especially in industrial applications, we have very
often non-exponential distributions assigned to the
transitions. Consider for example the mileage behavior
of a vehicle. In this case it turns out that the underlying
distribution has a log-normal nature. Or, in the case of
modeling the failure behavior of mechanical
components, the underlying distribution usually shows
some type of Weibull nature. We have either an infant
mortality failure behavior (high failure rate at the
beginning and then a decreasing failure rate over time),
a wear-out behavior (low failure rate at the beginning
and then an increasing failure rate over time), or a
mixture of both types. Electronic components usually
show a random failure behavior. Taking this into
account, a numerical solution of the Petri net by
solving the flow equations is usually not possible.
Therefore, we turn very often to system simulation to

solve a Petri net to obtain the corresponding
performance, reliability, quality and cost measures.
In the following, we will introduce common types of
distribution functions and how to obtain the parameters
of a distribution function from field data in order to
parameterize the corresponding Petri net models.

PARAMETER ESTIMATION

While stochastic Petri nets have become a widely used
means for modeling complex systems, problems
already arise in practical applications when the
transitions in a net have to be parameterized. The goal
of this paragraph is to introduce techniques, that allow
the estimation of the parameters of several lifetime-
distributions from field-data. These parameters serve
then as input for the Petri nets. Besides the two- and
tree-parameter Weibull distribution that are used in
traditional reliability analysis, the exponential
distribution, normal and logarithmic normal
distribution and a new distribution-type, referred to as
bathtub distribution, can be handled. The algorithms
used for parameter estimation rely on traditional
methods as regression and Maximum-Likelihood-
Estimation, employing local and global optimization
techniques.

THE WEIBULL FAMILY

The Weibull distribution, introduced by Waloddi
Weibull in 1937 [Abe94] is the most frequently used
distribution in reliability engineering. The original
Weibull distribution has the distribution function
(CDF):

β

α
)(

1)(
x

exF
−

−=

with the two parameters α and β (which we therefore
refer to as the two-parameter Weibull distribution).
α is called the characteristical lifetime, which is
defined as the point, where F(α) 0.632 (i.e. 63.2%
of all units have failed. The parameter

≈
β is referred to

as the shape parameter, because it defines, whether the
distribution models infant-mortality failures (β < 1)
or wear-out failures (β > 1). In the case of β =1 we
have the exponential case, i.e. random failure.

THE BATHTUB DISTRIBUTION

This distribution models the whole lifetime of a
component with infant-mortality- random-and wear-
out-failures. It is obvious from the previous paragraph,
that this distribution can be built from the superposition
(weighted sum) of two Weibull and one exponential

distributions. The name bathtub distribution is derived
from the curve of the hazard rate of this distribution
which gives the well known bathtub shape as shown in
the following picture:

t

)(tλ

Infant
mortality

Random
failure

Wear-out

t

But doing this, one can see that, with one exception,
the exponential distribution, which should explicitly
model the stable lifetime, has nearly no influence on
the shape of the distribution. The reason for this is that
the exponential part is implicitly contained in the
superposition of the two Weibulls. Therefore, for
practical reasons we decided to leave the exponential
part out to reduce the number of parameters to be
estimated from eight to six (for clarity: this is not
because we consider the exponential part as
unimportant but because its explicit representation is
superfluous). The CDF of the bathtub distribution is
therefore given by the following equation (please note
that the parameter p determines to what extent the
current distribution function is subject to infant
mortality or subject to wear out):

≤
>−∗−

+−∗=

−
−

−

−

0

)
0

0(

)(

0
01)1(

)1()(
3

3

1

1

xx
xxep

epxF

x
xx

x

β

β

α

α

The two parameter Weibull is used to model infant
mortality failures and the three-parameter Weibull
models wear-out-failures and p (0 p 1) defines the
weight of the terms (note: the index 2 has been omitted
intentionally to remember the reader, that the explicit
representation of the exponential part is missing). The
exceptional case mentioned above in which the
influence of the exponential part would be visible is the
case if there are no wear-out-failures. But in this case,
the second Weibull distribution can be used with

≤ ≤

3β =
1 to model the exponential part, such that this special
case of a constant failure is also covered within the
bathtub distribution.

THE NORMAL FAMILY

The distributions of this family, namely the normal and
logarithmic normal (lognormal) distribution, are in
general not used for the modeling of failure behaviour.
The typical use of these distributions is the use as a
mileage distribution, whereas the lognormal
distribution has become the most commonly used
distribution in this application area. The CDF of the
normal distribution is given as:

∫
∞−

−
−

=
x t

dtexF 2

2

2
)(

2
1)(σ

µ

πσ

and that of the lognormal distribution as

dtexF
x t

∫
∞−

−
−

= 2

2

2
))(ln(

2
1)(σ

µ

πσ

respectively. Hereby, µ is the mean value and σ the
standard deviation.

DIFFERENT TYPES OF FIELD DATA

In this paragraph we describe the different modes of
data that have to be treated by the estimation
algorithms. Most presentations of the algorithms shown
later implicitly assume a so-called full sample, i.e. all
parts fail till the end of the test and the exact times of
the failures are known. In reality, this is very rarely the
case. One has to deal with clustered and suspended
data. Clustered means, that the exact failure times of an
error are unknown but one only knows that there were
for example errors for parts with a lifetime between

and hours / miles. Suspended means, that some
parts survived the end of the test, each of which with a
certain lifetime / milage. Certainly, also the
information about the suspended elements can be
clustered, for example there were parts with an

operating time between and hours / miles, that
did not fail. To put it in a nutshell, combining all
possible modes of single / clustered data with failures
and / or suspensions, there are six combinations that
have to be considered in practice (the cases that contain
only suspensions and no information about failures are
not considered as all following estimation procedures
need at least one failure for performing an estimation).

ik

ix 1+ix

il

ix 1+ix

The main advantage of using field data for analysis is,
that one can be sure that the data reflect the behaviour
of the part under investigation under real conditions.
Thus, by using field data, the most critical point of a
test rig series -- does the simulated stress reflect the
real usage stress -- is circumvented. But this

convenience comes at a price: Usually, field data have
very poor quality, such that the estimation algorithms
must be able to work with this low quality, and
commonly contains no information about the milage of
the suspended elements, simply because one doesn't go
to the garage if there is no error. Thus, in practice, the
milage of the suspended elements has to be estimated,
too.

LINEAR REGRESSION

In the following, the linear regression method for
determining parameters of a distribution function is
explained. Since the linear regression method is the
simplest type of analysis techniques, we will focus on
it. Other techniques as for example the maximum
likelihood technique are not explained in detail. For
more information on these techniques, the reader is
referred to [BGdT98].
The basic idea of linear regression is to transform the
CDF of the distribution into a linear form y = a*x + b,
find a least-squares fit through the failures and finally
calculate the distribution parameters from the straight
line parameters. This is also the idea behind the well
known probability papers. For example, in the case of
the two-parameter Weibull distribution with CDF

β

α
)(

1)(
x

exF
−

−=

the linear form can be achieved by taking the natural
logarithm twice. This leads to the linear form

)ln(*)ln(*))
)(1

1ln(ln(αββ −=
−

x
xF

Now, we define

)ln(*
)ln(

)
)(1

1ln(ln(

αβ

β

−=
=
=

−
=

b
xx

a
xF

y

and obtain the linear form y=ax+b. One of the
problems in performing a least-squares fit to this form
is, that one has only the x-values, i. e. the times of
failure or suspension, but no y-values. Therefore one
has to find an estimation for the correct plotting
positions. According to [Abe94] median ranks, which
have to be adjusted for the handling of suspended
elements, are used for that. For the least-squares
solution it is important that there is usually a large error
in the time of failure, such that x should be taken as the

dependent variable in the fit. Finally, the back-
transformation of the straight parameters to the
distribution parameters in the two-parameter Weibull
case is done by the formulas:

a
e a

b

=
=

−

β
α

)(

For the treatment of clustered failures and suspensions,
there are different possibilities: For example, in
[Lawl82] an algorithm for calculating the ranks in the
clustered case is given. In practice, a simpler solution is
possible: the failures or suspensions in a cluster are
distributed either uniform or normal over the cluster
(both versions have been implemented and tested but
the differences are neglectable) and then the formulas
for the single-data-case are used. Surely, this enlarges
the number of data points that have to be considered in
the least-squares estimation, but in practice the runtime
of the estimation even with thousands of failures is
within a few seconds.
The application of regression to the lognormal
distribution leads to a numerical problem, as the linear
 transformation is

σ
µ

σ 2
)ln(

2
1)1)(*2(−=− xxFierf

and therefore requires the efficient calculation of the
inverse of the Gaussian error function.This can be done
starting with the equality

0))(())((=−⇒= yierferfyyyierferf

Defining we must find

the zeros of where can be approximated by
one of the known total formulas for ierf. The solution
follows the idea of Newton's Method [BuFa01] but
uses a third-degree Taylor-polynomial instead of one of
first order, which leads to faster convergence, and erfc
instead of erf for numerical stability.

0)()(=−= nn xerfyxf
)(nxf 0x

Another problem is the use of the three-parameter
Weibull distribution with regression as one has to
estimate three distribution parameters from two
straight-parameters. As the parameters forα and
β can be easily estimated by the method described

above, it is obvious to separate the estimation of .
When using a probability paper it is a hint that there is
an if the plotted points don't lie on a straight line.
Hence it is adjacent to use the correlation coefficient,
which indicates how well the points fit onto a straight
line, for the estimation of , i.e. the failure times have
to be shifted such that the correlation coefficient is
maximized. A golden-section-search is used for

performing the optimization. The shift needed for the
maximization is the estimation for and the
estimation of the remaining parameters works on the
transformed values.

0x

0x

0x

0x

Parameter Estimation Tool ParEs

This paragraph introduces ParEs, a tool for parameter
estimation based on field data. ParEs (Parameter
Estimation) is a GUI-based pure java-tool that
incorporates all of the algorithms given above to give
even the statistically non-experienced user the
possibility to estimated parameters from field data and
therewith to parameterize the transitions in his Petri net
model. In the following, a screenshot of the tool is
shown.

As datasources, the user has the choice between an
ODBC-datasource, which is usually a database in the
background, the manual input of failures and
suspensions in a spreadsheet-like form or the selection
of special car-components from a tree-structure. The
user has the choice to pre-define a distribution function
to be fitted or he can select the automatic detection
option. In this case the system determines
automatically which distribution function fits the given
field data best. After the selection of the estimation-
algorithm, the user may insert start values for the
estimation, which are by default computed
automatically, if someone wishes to fix some
parameters to a special value. Finally, one can start
either the computation of the point estimation and
confidence-interval-calulation altogether or just the
point estimation and the confidence-interval-
calculation manually afterwards. The reason for this
possibility is, that the calculation of the point-
estimation is usually very fast while the computation of
the confidence-intervals takes a lot of time, such that
one should first be able to decide, if the distribution he
guessed is correct before the lengthy part of the
computation is started. To help the user in the decision
if the supposed distribution is right, a Chi-Square
goodness-of-fit test is performed, too. The final
estimation results are presented to the user as the pure
parameter values with the confidence bounds but also

the typical plots of CDF, PDF, hazard-rate or the
regression-straight line (if regression has been used)
are provided. Finally, the resulting parameters are also
provided as tagged data to facilitate the use of the
component for example by the Petri net tool Expect.
The idea behind this data export facility is, to make the
whole parameter estimation process completely
invisible for the user in the case of input modeling.
Because in this case, users are usually not interested in
and are not familiar with the parameter estimation
process and its special details but just need appropriate
parameters for their model. For example, if one wishes
to use a transition in a Petri net to model the failure
behavior of a special part, one just has to select this
part and need not to know anything about the
parameters. All the rest (parameter estimation, data
handling and model parameterization) is handled by the
tool. For this reason, a whole web based system
environment has been set up and ParEs is part of this
environment. This environment has been developed in
Java and is constantly extended.
In the following, we will demonstrate the accuracy of
the methods given above. For a better judgement of the
results, no real data were used but data that were
generated by a random number generator for the given
distribution. For all examples, the confidence level is
set to 95%. In the Weibull example, 50 failures have
been generated while in the bathtub case 500 failures
were used. At a first glance, this seems to be only a few
input data if one considers the fact, that in the case of
real field data thousands of real vehicles are
considered. But, on the other side, one has to consider
the fact that the data used in this example are single
data while in the case of real field data we have data
clusters. Each of these clusters can contain thousands
of data points. Thus, even with a small cluster size of
only 1000 miles, 500 clusters would define a range
from 0 to 500.000 miles which will surely cover the
whole lifetime of a vehicle.
The time for the evaluation of the likelihood function
depends linear on the number of failures and
suspensions in the case of single data and on the
number of clusters, otherwise. Thus, one would expect
that enlarging the size of the sample will always result
in an enlarged runtime in the same order of magnitude.
Practically, this can be taken as a worst case estimation
because a larger sample usually contains also more
information. Thus, fewer iteration steps will be needed
if MLE is used such that the increase in runtime will be
sub-linear in the average case. As in the regression
case, there is a closed form solution where the runtime
is within a few seconds even with thousands of
failures.
One question that is often asked is, how many failures
are needed to perform a reasonable estimation. If using
MLE, theoretically one typical failure is enough if
there are suspensions. But, if of the tree parameter
Weibull distribution has to be estimated, too, at least 15
failures are needed. Practical applications show that
one can expect reasonable estimates if there are at least

about 20 failures. But using these values, one has to
keep in mind that this always means representative
failures for the failure mode under investigation and
not only random failures.

0x

The first example to be demonstrated is a three
parameter Weibull distribution. The following table
shows the result of the estimation with the confidence
intervals for local optimization with heuristic
confidence interval calculation and regression.
Hereby, lα denotes the lower confidence bound for

the parameter α while uα denotes the corresponding
upper confidence bound.

Parameter True Value MLE Regression

lα --- 137407 95435

α 150000 151029 150969

uα --- 167381 279169

lβ --- 1.572 2.620

β 3.2 3.092 2.710

uβ --- 4.542 2.801

lx0 --- 0.736 44859

0x 40000 40494 44859

u
x

0
 --- 69144 44860

The computation of the above results took 18 seconds
(point estimation: 3 seconds, confidence interval
calculation: 15 seconds), while the regression needed
only 4 seconds. There is only a slight difference in the
upper confidence bound of β if an evolutionary
strategy or the deterministic version is used for
calculation. But, in this case the calculation time
increases to about 5 minutes (compared to 15 seconds
as before).
In the second example we apply our analysis
algorithms to a bathtub distribution. The corresponding
results are shown in the following table.

Parameter True

value
Lower
Bound

Point
Estimation

Upper
Bound

1α 3000 981 2026 4707

1β 0.5 0.38 0.52 0.7

3α 80000 79378 79944 80548

3β 4.2 3.64 4.16 4.789

0x 65000 62562 64645 66032

p 0.15 0.11 0.16 0.22

The computation time for the point-estimation was 29
seconds with the penalty method, and 4 seconds with
the simplex method. The confidence intervall
calculation took 241 seconds.

THE ANALYSIS TOOL EXPECT

The analysis tool Expect has been developed at
DaimlerChrysler [HeGrHo02] and is designed for a
broad range of applications, including safety, quality
and cost analysis. Safety analysis is concerned with the
design of safe automotive systems, including their
interactions with humans. In the area of safety analysis,
system measures as for example reliability, availability,
load and throughput of system components and
probabilities for critical states, are determined. Quality
analysis is concerned with building models at the
component, system and vehicle levels for obtaining
information on product quality. One example of this is
comparing the behavior of systems built using different
components. Cost analysis allows, for example, the
calculation of price models for maintenance and
service packages, which depends on the level of service
offered, as well as the age and mileage of the vehicle.
In addition, statistical methods are used to predict the
expected quality and cost into the future. In all cases,
the goal is that these analyses can be performed as fast
and as comfortably as possible, while covering a large
number of variants, in order to study and compare
different real-life scenarios.

The analysis tool Expect was designed with the goal of
offering the modeler an easy to use and understand
modeling environment and on the other side, allowing
for an integrated system simulation, using discrete time
event simulation. In the following, a short excerpt of
the capabilities of Expect is described.

TOOL FUNCTIONALITY
The modeling and analysis tool Expect consists of a
graphical editor, a simulator and a visualization
component. It is implemented in Java in order to ensure
platform independence, and also to make use of its
special language features. One example is the dynamic
loading of classes, which makes it possible to include
functions in the Petri net model which are formulated
in Java syntax, which can then be compiled and
executed at run-time. This means that such functions
execute with the same level of performance as the tool
itself, since expensive parsing routines are no longer
necessary. Furthermore, the Java compiler and
interpreter are available everywhere free of charge.

The Expect graphical editor is designed with multi-
document capability, allowing several nets to be edited
simultaneously. This in turn allows sub-nets to be
copied between models and for these to be compared
quickly. Since Petri nets can quickly become very
complex and unwieldy, Expect also allows hierarchical
modeling. A net may be divided into sub-nets, which
may be edited separately and linked together via
transition or place interfaces. This supports both logical
model development on the one hand, and clear
graphical presentation of large models on the other.
Expect contains a large number of configurable

parameters; model parameterization is supported by
dialog windows for each net component, which include
plausibility checks for parameter values. All net
components, with the exception of arcs, have unique
names.

The visualization component of Expect can be started
directly from the editor. This allows the user to study
the behavior of the net by watching the token game.
This is important for demonstration and debugging
purposes. The visualization module contains
continuous speed settings as well as a step-by-step
mode. The enabling state and enabling times of timed
transitions are visualized in order to further enhance
understanding of the net's dynamic behavior.

The simulator may also be started directly from the
editor. Both simulation up to a specified point in time
or up to an absorbing state are permissible.
Furthermore, a number of replications can be specified,
and the simulator will provide appropriate statistical
results. These include the values of the user-specified
rewards in addition to the standard measures for places
(probability of being non-empty, average number of
tokens) and transitions (throughput and probability of
being enabled.) In addition to this functionality, it is
also possible to perform transient analyses by
parameterizing the range and step size of solution time
points. The simulator will then compute statistical
values for each of these.

CLASS OF NETS SUPPORTED
Expect supports a very general class of stochastic Petri
nets. These include many additional features which
greatly enhance the usefulness of the tool to the
modeler.

Places can be assigned an initial marking and a
maximum capacity, which may either have a constant
value or be defined as a function of the current state of
the net. An otherwise enabled transition is disabled, if,
by firing, the maximum place capacity would be
exceeded.

Both timed and immediate transitions are supported.
Immediate transitions can be assigned a weight,
whereas timed transitions can be assigned a firing time
distribution chosen from a large set of alternatives.
Firing time distributions range from exponential and
phase-type distributions to Weibull and Normal
distributions. In addition, the parameters for the firing
probabilities and distributions may be defined as
marking-dependent functions. Expect also allows the
use of marking-dependent guard functions and
priorities to control the enabling of transitions.

Transitions may be of single, multi- or infinite server
type; multi-server and infinite-server transitions are
treated by the simulator by assigning multiple firing
times to the transition in accordance with the current
enabling degree. Transitions may also be assigned a

memory policy of type age or enabling. Memory
policies define how the enabling time of a transition is
treated when the transition becomes disabled for any
reason other than itself firing. In the enabling case, a
transition will "forget" that it has been enabled for a
certain period; when it once again becomes enabled, a
new firing time will be computed. In the case of the
age policy, the transition "remembers" its enabling
time, which shortens its remaining firing time when it
once again becomes enabled. These memory policies
are very important for modeling purposes.

Expect also supports multiple arcs, whose multiplicity
may be specified as a constant or with a function.

Various types of rewards are also available, including
accumulated, non-accumulated and impulse rewards,
which are associated with the firing of a transition. In
addition to the net components themselves,
independent parameters and functions may be defined,
which can be referenced by the functions used to
parameterize the net components. These facilitate the
fast and safe modification of model parameters.
In the following, three screenshots of Expect
demonstrate, how a system can be modeld in a
hierarchical manner, how a detailed block looks like
and and how analysis results are finally presented to
the user.
• Hierarchical top layer of a Petri net

• Detailed Petri net model within a hierarchical layer

• Representation of the analysis results

NEXT DEVELOPMENT STEPS
Expect is used very heavily at DaimlerChrysler
Research in the form described here. In addition to the
current functionality, various extensions are also
planned, which will be briefly described.

One important application of Expect is the simulative
prediction of the availability and reliability of current
and future on-board vehicle systems. In addition, the
tool is used to analyze quality measures and predict
warranty costs. These applications include features for
automatic report generation and integration with a
corporate database, which contains up-to-the-minute
reliability data. In order to access this database, an
interface to Expect has been developed and is currently
under test. Another very important topic while
providing an interface between the analysis tool Expect
and our corporate database is the pre-calculation of
model parameters, based on our warranty data.
Therefore, right now techniques are included into the
tool Expect that allow the user to set up a model. Once
this is done, the user can link every transition in the
model with a component in our corporate database. As
soon as this link is established, the system
automatically extracts the field data from the corporate
database that are associated with the link, performs a
statistical analysis on these data and feeds the
corresponding parameters into the model. Every time,
the model is started and information in the corporate
database has changed (e.g. new field data arrived at the
corporate database), then the system automatically
initiates a re-calculation of the parameters and starts a
new simulation.

In this sense we are able to set up a quality-and cost
tool suite, consisting of

• A Web-framework that contains statistical analysis
algorithms for pre-processing the field data

• The analysis tool Expect that uses the pre-
processed field data to parameterize and analyze
the model

Many questions of interest can be answered by
analyzing the state space of a net. These include
qualitative properties such as deadlocks and livelocks
in addition to the usual quantitative simulation results
such as average reward values and marking
probabilities. In particular, when all timed transitions in
the net are exponentially distributed (or phase-type),
then the state space can be converted into a continuous-
time Markov chain, for which very efficient numerical
transient and steady-state analysis methods are
available. For these reasons, state space generation and
analysis techniques will also be included in the tool.

A further issue of interest is to increase the
performance of the discrete-event simulation itself.
This is motivated by the high accuracy requirements
for safety analyses, requiring a large number of
replications to achieve statistically significant results,
and the large degree of stiffness of many models,
which require a long time to reach steady-state. In both
cases, very expensive computations can result. Our
approach to accelerating simulations by aggregation of
the state space [HeHoLu98] will be studied in the Petri
net context. In addition, an automatic parallelization of
the net has been incorporated into the tool. Hereby, not
the Petri net is split into pieces and each beeing
analyzed on a different computer but we just parallelize
the replications across a network of workstations. This
means that we distribute the overall Petri net to
different computers. Each computer starts the
simulation with a different starting value. In this case
we avoid the communication overhead involved in a

standard parallelization (distributing pieces of the Petri
net to different computers). This type of parallelization
proved to be very effective, stable and provided a
linear speed-up. Therefore, this type of parallelization
has been incorporated into the tool as a standard feature

Web Framework
• Statistical

Algorithms
• Data Mining

Algorithms

Corporate
Database

MODELING EXAMPLES

Example 1: The following picture shows a screenshot
taken during the visualization of the simulation of a
small example net. The distribution functions of the
transitions can be identified by the transition color. The
expired enabling time of each transition is shown by
the darker portion of the transition. Tokens are drawn
in red. When a transition fires, tokens move
symbolically along the input arcs from the input places
to the transition and along the output arcs from the
transition to the output places, according the various
arc multiplicities. Viewing the simulation visualization
in this manner significantly enhances the user's
understanding of the net's dynamic behavior, and is
very useful in presentations to non-specialists and of
course for verifying (i.e debugging) the model.

Example 2: The next Expect screenshot shows a small
Petri net, which is part of a model developed at
DaimlerChrysler Research. The goal of this project was
to study the reliability of a system over the entire life

cycle of a vehicle, including the interaction with the
driver, in particular the manual deactivation of faulty
systems. Rewards are used to compute the probabilities
of light and serious damage occurring due to
inappropriate behavior by the driver. The screenshot
shows a Petri net with its initial state, in which the
system is off. This is characterized by the token in the
place sys_off. In this state it is possible to activate the
system by the user or the system can fail unused. When
the system is not used and it fails, it is detected by the
system and it changes the state in defect. This behavior
is modeled by the transition Sys_intError, which
changes the state of the Petri net from Sys_off in
Car_Garage. From this state, the system will be
repaired and changes into the initial state of the net. If
the system has not failed, the user can activate it and
the token in place Sys_off walks to place Sys_on. By
the activation of the system it is possible that the
system is defect. In the case of no defect, the state of
the system will change to working and the token walks
to the place Sys_working by firing of the transition
Sys_works. In this state the system can be deactivated
by the user and the system changes in the state
deactivated. This way from system deactivated to
activated and back is the normal usage of the system,
but while using the system, the system can fail and the
token in place Sys_Working moves to the place
Sys_Failed. This state of the system is the same state
which will be reached if the system is down and will be
activated. In the case of a system failure while the
system is in use, either the driver can be warned by the
vehicle or, in the case of a failure, the warning does not
occur. When the user is warned, the token moves to
place Warned. In this state, the driver can ignore the
warning or he will secure the vehicle. Ignoring of the
warning will lead to the same state as when the vehicle
cannot warn the driver. This state is characterized by a
token in place unwarned_ignor. At this point, the
question arose, whether it is necessary to improve the
availability of the warning or not. In the original model
it was not obvious if it is or not. By analyzing the
model, it was possible to prove that the warning must
not be redesigned, because the most probable cause for
damage was the ignorance of the driver. If the driver
does not ignore the warning, he secures the vehicle (by
braking, for example) and the system will be repaired
at a garage. This case is modeled by the places P4 and
Car_Garage, and the transitions Drv_Secures_1,
To_Garage and Car_Repair. In the case where the
driver ignores the warning, or there is a warning
failure, we have three different possibilities. The first
way is the securing by the driver, if he is fast enough to
react; the second is securing by the front-seat passenger
if he can react fast enough. In both cases, the token will
go to place P4 and the system will be repaired in the
garage. The last possibility is the worst one, in which
the system has failed and the vehicle is in an
uncontrolled state, in which there is no way to return to
a secure state. In this situation, damage is unavoidable
and the question is how heavy the damage will be. In

the model, the damage is divided in two classes, light
and heavy. These are modeled in the Petri net with the
transitions p_Light and p_Heavy. In both cases, the
vehicle is repaired after the crash and the vehicle with
the system returns to the initial state. A very interesting
question for DaimlerChrysler was the amount of light
and heavy damage. For measuring this, the impulse
rewards Rew_Garage_L and Rew_Garage_H are used.
The model is a simplified model, because it abstracts
from system functions and different failure modes of
the system. Nevertheless, it shows the usage of Petri
nets for analyzing systems and the behavior of systems
with interactions with humans. With the model shown
in this example, it was possible to prove that a failure
in the warning system was not the main danger; the
main problem was the driver ignoring the warning,
which lead to new concepts for increasing the safety of
the overall system.

REFERENCES

[ABE94] R.B. Abernethy, “The New Weibull
Handbook”, 536 Oyster Road, North Palm Beach,
Florida, 1994.
[BGdT98] G. Bolch, S. Greiner, H. deMeer, K.
Trivedi, “Queueing Networks and Markov Chains –
Modeling and Performance Evaluation with Computer
Science Applications”, Jogn Wiley&Sons, New York,
1998.
[BuFa01] R.L. Burden, J.D. Faires, “Numerical
Analysis”, 7th Edition, Pacific Grove: Brooks/Coole,
2001.
[HeGrHo92] S. Heller, S. Greiner. G. Horton,
“PeNeTo: A Petri Net Simulator for Fast Safety and
Quality Analysis and Cost Prediction”, Proceedings
ESM 2002.
[HeHoLu01] S. Heller, G. Horton, M. Luber,
"Accelerating Discrete-Event Simulation via State
Space Reduction", ESM 2001, Prague, June 2001,
Society for Computer Simulation and Modeling.
[Lawl92] J. Lawless, “Statistical Models and Methods
for Lifetime Data”, John Wiley, New York, 1982.

BIOGRAPHY

Dr. Stefan Greiner studied Computer Science at the
University of Erlangen. After two years at Duke
University (Prof. Trivedi) he received his PhD degree
in 2000 from the University of Erlangen. Since 1997 he
is working for DaimlerChrysler Research in Stuttgart.
His research area is the analysis and prediction of
quality and cost. In this context, a tool environment for
quality, cost and safety analysis is developed and
contantly extended.

	TOOL FUNCTIONALITY

	c0: Proceedings 18th European Simulation MulticonferenceGraham Horton (c) SCS Europe, 2004ISBN 3-936150-35-4 (book) / ISBN 3-936150-36-2 (CD)

